Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38583183

RESUMEN

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Asunto(s)
Ácido Ascórbico , Neoplasias Colorrectales , Humanos , Células CACO-2 , Ácido Ascórbico/farmacología , Cuerpos Nucleares de la Leucemia Promielocítica , Metilación de ADN , Cuerpos Nucleares , Vitaminas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
2.
Nucleus ; 15(1): 2339580, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38616309
3.
Proc Natl Acad Sci U S A ; 121(12): e2316610121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38489385

RESUMEN

Many biomolecular condensates, including transcriptional condensates, are formed in elastic mediums. In this work, we study the nonequilibrium condensate dynamics in a chromatin-like environment modeled as a heterogeneous elastic medium. We demonstrate that the ripening process in such an elastic medium exhibits a temporal power-law scaling of the average condensate radius, depending on the local stiffness distribution and different from Ostwald ripening. Moreover, we incorporate an active process to model the dissolution of transcriptional condensates upon RNA accumulation. Intriguingly, three types of kinetics of condensate growth emerge, corresponding to constitutively expressed, transcriptional-bursting, and silenced genes. Furthermore, the simulated burst frequency decreases exponentially with the local stiffness, through which we infer a lognormal distribution of local stiffness in living cells using the transcriptome-wide distribution of burst frequency. Under the inferred stiffness distribution, the simulated distributions of bursting kinetic parameters agree reasonably well with the experimental data. Our findings reveal the interplay between biomolecular condensates and elastic mediums, yielding far-reaching implications for gene expression.


Asunto(s)
Condensados Biomoleculares , Cuerpos Nucleares , Cromatina , Elasticidad , Cinética
4.
Commun Biol ; 7(1): 187, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365945

RESUMEN

Whether phase-separation is involved in the organization of the transcriptional machinery and if it aids or inhibits the transcriptional process is a matter of intense debate. In this Mini Review, we will cover the current knowledge regarding the role of transcriptional condensates on gene expression regulation. We will summarize the latest discoveries on the relationship between condensate formation, genome organization, and transcriptional activity, focusing on the strengths and weaknesses of the experimental approaches used to interrogate these aspects of transcription in living cells. Finally, we will discuss the challenges for future research.


Asunto(s)
Regulación de la Expresión Génica , Cuerpos Nucleares , Hidrolasas , Separación de Fases
5.
J Cell Biol ; 223(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393070

RESUMEN

The functional importance of nuclear protein condensation remains often unclear. The bHLH FER-like iron deficiency-induced transcription factor (FIT) controls iron acquisition and growth in plants. Previously described C-terminal serine residues allow FIT to interact and form active transcription factor complexes with subgroup Ib bHLH factors such as bHLH039. FIT has lower nuclear mobility than mutant FITmSS271AA. Here, we show that FIT undergoes a light-inducible subnuclear partitioning into FIT nuclear bodies (NBs). Using quantitative and qualitative microscopy-based approaches, we characterized FIT NBs as condensates that were reversible and likely formed by liquid-liquid phase separation. FIT accumulated preferentially in NBs versus nucleoplasm when engaged in protein complexes with itself and with bHLH039. FITmSS271AA, instead, localized to NBs with different dynamics. FIT colocalized with splicing and light signaling NB markers. The NB-inducing light conditions were linked with active FIT and elevated FIT target gene expression in roots. FIT condensation may affect nuclear mobility and be relevant for integrating environmental and Fe nutrition signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Hierro , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Cuerpos Nucleares/genética , Cuerpos Nucleares/metabolismo
7.
Nucleus ; 14(1): 2293604, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38095604

RESUMEN

Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent (RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadenylated and instead end in a conserved 3' stem loop critical for coordinated production of histone proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present throughout the cell cycle even though RD histone genes are only expressed during S phase, changes in HLB composition during cell cycle progression drive much of the cell cycle regulation of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the cause-and-effect relationships between nuclear body formation and cell cycle regulated gene expression. In this review, we focus on progress during the last five years that has advanced our understanding of HLB biology.


Asunto(s)
Condensados Biomoleculares , Histonas , Animales , Histonas/metabolismo , Ciclo Celular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Expresión Génica , Cuerpos Nucleares
8.
Front Cell Infect Microbiol ; 13: 1239234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928180

RESUMEN

Promyelocytic leukemia (PML) protein constitutes an indispensable element within PML-nuclear bodies (PML-NBs), playing a pivotal role in the regulation of multiple cellular functions while coordinating the innate immune response against viral invasions. Simultaneously, numerous viruses elude immune detection by targeting PML-NBs. Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis, a severe neurological disease that affects humans and animals. However, the mechanism through which JEV evades immunity via PML-NBs has been scarcely investigated. In the present study, PK15 cells were infected with JEV, and the quantity of intracellular PML-NBs was enumerated. The immunofluorescence results indicated that the number of PML-NBs was significantly reduced in JEV antigen-positive cells compared to viral antigen-negative cells. Subsequently, ten JEV proteins were cloned and transfected into PK15 cells. The results revealed that JEV non-structural proteins, NS2B, NS3, NS4A, NS4B, and NS5, significantly diminished the quantity of PML-NBs. Co-transfection was performed with the five JEV proteins and various porcine PML isoforms. The results demonstrated that NS2B colocalized with PML4 and PML5, NS4A colocalized with PML1 and PML4, NS4B colocalized with PML1, PML3, PML4, and PML5, while NS3 and NS5 interacted with all five PML isoforms. Furthermore, ectopic expression of PML isoforms confirmed that PML1, PML3, PML4, and PML5 inhibited JEV replication. These findings suggest that JEV disrupts the structure of PML-NBs through interaction with PML isoforms, potentially leading to the attenuation of the host's antiviral immune response.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Antígenos Virales , Cuerpos Nucleares , Proteína de la Leucemia Promielocítica , Isoformas de Proteínas , Porcinos , Factores de Transcripción
9.
Cell Rep ; 42(8): 112884, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516964

RESUMEN

NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.


Asunto(s)
Leucemia , Proteínas de Complejo Poro Nuclear , Humanos , Proteínas de Complejo Poro Nuclear/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Homeodominio/metabolismo , Leucemia/metabolismo , Cromatina , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Cuerpos Nucleares
10.
J Biol Chem ; 299(9): 105053, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454741

RESUMEN

Alternative lengthening of telomeres (ALTs) mechanism is activated in some somatic, germ cells, and human cancer cells. However, the key regulators and mechanisms of the ALT pathway remain elusive. Here we demonstrated that ZBTB40 is a novel telomere-associated protein and binds to telomeric dsDNA through its N-terminal BTB (BR-C, ttk and bab) or POZ (Pox virus and Zinc finger) domain in ALT cells. Notably, the knockout or knockdown of ZBTB40 resulted in the telomere dysfunction-induced foci and telomere lengthening in the ALT cells. The results also show that ZBTB40 is associated with ALT-associated promyelocytic leukemia nuclear bodies, and the loss of ZBTB40 induces the accumulation of the ALT-associated promyelocytic leukemia nuclear bodies in U2OS cells. Taken together, our results implicate that ZBTB40 is a key player of telomere protection and telomere lengthening regulation in human ALT cells.


Asunto(s)
Proteínas de Unión al ADN , Telómero , Humanos , Línea Celular Tumoral , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Unión Proteica , ADN/metabolismo , Cuerpos Nucleares/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Apoptosis/genética
11.
Biophys J ; 122(13): 2757-2772, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37277993

RESUMEN

Long noncoding RNAs (lncRNAs) perform several important functions in cells including cis-regulation of transcription. Barring a few specific cases, the mechanisms underlying transcriptional regulation by lncRNAs remain poorly understood. Transcriptional proteins can form condensates via phase separation at protein-binding loci (BL) on the genome (e.g., enhancers and promoters). lncRNA-coding genes are present at loci in close genomic proximity of these BL and these RNAs can interact with transcriptional proteins via attractive heterotypic interactions mediated by their net charge. Motivated by these observations, we propose that lncRNAs can dynamically regulate transcription in cis via charge-based heterotypic interactions with transcriptional proteins in condensates. To study the consequences of this mechanism, we developed and studied a dynamical phase-field model. We find that proximal lncRNAs can promote condensate formation at the BL. Vicinally localized lncRNA can migrate to the BL to attract more protein because of favorable interaction free energies. However, increasing the distance beyond a threshold leads to a sharp decrease in protein recruitment to the BL. This finding could potentially explain why genomic distances between lncRNA-coding genes and protein-coding genes are conserved across metazoans. Finally, our model predicts that lncRNA transcription can fine-tune transcription from neighboring condensate-controlled genes, repressing transcription from highly expressed genes and enhancing transcription of genes expressed at a low level. This nonequilibrium effect can reconcile conflicting reports that lncRNAs can enhance or repress transcription from proximal genes.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Regulación de la Expresión Génica , Proteínas/genética , Cuerpos Nucleares , Expresión Génica
12.
Dev Cell ; 58(11): 915-916, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279696

RESUMEN

The condensate-forming ability of transcription factors (TFs) has received considerable attention, although how condensates function in transcription remains unclear. In this issue of Developmental Cell, Wang et al. show that target DNA and transcriptional regulators work as soap-like surfactants to adsorb on condensates, affecting the activities of transcriptional condensates.


Asunto(s)
Jabones , Factores de Transcripción , Factores de Transcripción/genética , ADN/genética , Cuerpos Nucleares
14.
Nucleus ; 14(1): 2213551, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37218279

RESUMEN

Transcription is the fundamental process of gene expression, which in eukaryotes occurs within the complex physicochemical environment of the nucleus. Decades of research have provided extreme detail in the molecular and functional mechanisms of transcription, but the spatial and genomic organization of transcription remains mysterious. Recent discoveries show that transcriptional components can undergo phase separation and create distinct compartments inside the nucleus, providing new models through which to view the transcription process in eukaryotes. In this review, we focus on transcriptional condensates and their phase separation-like behaviors. We suggest differentiation between physical descriptions of phase separation and the complex and dynamic biomolecular assemblies required for productive gene expression, and we discuss how transcriptional condensates are central to organizing the three-dimensional genome across spatial and temporal scales. Finally, we map approaches for therapeutic manipulation of transcriptional condensates and ask what technical advances are needed to understand transcriptional condensates more completely.


Asunto(s)
Núcleo Celular , Cuerpos Nucleares
15.
Gene ; 872: 147441, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094694

RESUMEN

Human Histone Locus Bodies (HLBs) are nuclear subdomains comprised of clustered histone genes that are coordinately regulated throughout the cell cycle. We addressed temporal-spatial higher-order genome organization for time-dependent chromatin remodeling at HLBs that supports control of cell proliferation. Proximity distances of specific genomic contacts within histone gene clusters exhibit subtle changes during the G1 phase in MCF10 breast cancer progression model cell lines. This approach directly demonstrates that the two principal histone gene regulatory proteins, HINFP (H4 gene regulator) and NPAT, localize at chromatin loop anchor-points, denoted by CTCF binding, supporting the stringent requirement for histone biosynthesis to package newly replicated DNA as chromatin. We identified a novel enhancer region located âˆ¼ 2 MB distal to histone gene sub-clusters on chromosome 6 that consistently makes genomic contacts with HLB chromatin and is bound by NPAT. During G1 progression the first DNA loops form between one of three histone gene sub-clusters bound by HINFP and the distal enhancer region. Our findings are consistent with a model that the HINFP/NPAT complex controls the formation and dynamic remodeling of higher-order genomic organization of histone gene clusters at HLBs in early to late G1 phase to support transcription of histone mRNAs in S phase.


Asunto(s)
Neoplasias de la Mama , Histonas , Humanos , Femenino , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Neoplasias de la Mama/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Cuerpos Nucleares , Familia de Multigenes
16.
Skelet Muscle ; 13(1): 4, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36859305

RESUMEN

The body muscle is an important tissue used in organisms for proper viability and locomotion. Although this tissue is generally well studied and characterized, and many pathways have been elucidated throughout the years, we still lack a comprehensive understanding of its transcriptome and how it controls muscle development and function. Here, we have updated a nuclear FACS sorting-based methodology to isolate and sequence a high-quality muscle transcriptome from Caenorhabditis elegans mixed-stage animals. We have identified 2848 muscle-specific protein-coding genes, including 78 transcription factors and 206 protein-coding genes containing an RNA binding domain. We studied their interaction network, performed a detailed promoter analysis, and identified novel muscle-specific cis-acting elements. We have also identified 16 high-quality muscle-specific miRNAs, studied their function in vivo using fluorochrome-based analyses, and developed a high-quality C. elegans miRNA interactome incorporating other muscle-specific datasets produced by our lab and others.Our study expands our understanding of how muscle tissue functions in C. elegans andin turn provides results that can in the future be applied to humans to study muscular-related diseases.


Asunto(s)
Caenorhabditis elegans , MicroARNs , Animales , Humanos , Transcriptoma , Músculos , Cuerpos Nucleares , Movimiento Celular
17.
Bioessays ; 45(4): e2200178, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36852638

RESUMEN

Mediator is a coregulatory complex that plays essential roles in multiple processes of transcription regulation. One of the human Mediator subunits, MED26, has a role in recruitment of the super elongation complex (SEC) to polyadenylated genes and little elongation complex (LEC) to non-polyadenylated genes, including small nuclear RNAs (snRNAs) and replication-dependent histone (RDH) genes. MED26-containing Mediator plays a role in 3' Pol II pausing at the proximal region of transcript end sites in RDH genes through recruitment of Cajal bodies (CBs) to histone locus bodies (HLBs). This finding suggests that Mediator is involved in the association of CBs with HLBs to facilitate 3' Pol II pausing and subsequent 3'-end processing by supplying 3'-end processing factors from CBs. Thus, we argue the possibility that Mediator is involved in the organization of nuclear bodies to orchestrate multiple processes of gene transcription.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Cuerpos Nucleares , Transcripción Genética , Complejo Mediador
18.
ACS Sens ; 8(2): 619-629, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36662613

RESUMEN

DNA-intercalated motifs (iMs) are facile scaffolds for the design of various pH-responsive nanomachines, including biocompatible pH sensors. First, DNA pH sensors relied on complex intermolecular scaffolds. Here, we used a simple unimolecular dual-labeled iM scaffold and minimized it by replacing the redundant loop nucleosides with abasic or alkyl linkers. These modifications improved the thermal stability of the iM and increased the rates of its pH-induced conformational transitions. The best effects were obtained upon the replacement of all three native loops with short and flexible linkers, such as the propyl one. The resulting sensor showed a pH transition value equal to 6.9 ± 0.1 and responded rapidly to minor acidification (tau1/2 <1 s for 7.2 → 6.6 pH jump). We demonstrated the applicability of this sensor for pH measurements in the nuclei of human lung adenocarcinoma cells (pH = 7.4 ± 0.2) and immortalized embryonic kidney cells (pH = 7.0 ± 0.2). The sensor stained diffusely the nucleoplasm and piled up in interchromatin granules. These findings highlight the prospects of iMs in the studies of normal and pathological pH-dependent processes in the nucleus, including the formation of biomolecular condensates.


Asunto(s)
Núcleo Celular , ADN , Humanos , Concentración de Iones de Hidrógeno , ADN/química , Cuerpos Nucleares
19.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394233

RESUMEN

MOTIVATION: The compartmentalization of biochemical reactions, involved in the activation of gene expression in the eukaryotic nucleus, leads to the formation of membraneless bodies through liquid-liquid phase separation. These formations, called transcriptional condensates, appear to play important roles in gene regulation as they are assembled through the association of multiple enhancer regions in 3D genomic space. To date, we are still lacking efficient computational methodologies to identify the regions responsible for the formation of such condensates, based on genomic and conformational data. RESULTS: In this work, we present SEGCOND, a computational framework aiming to highlight genomic regions involved in the formation of transcriptional condensates. SEGCOND is flexible in combining multiple genomic datasets related to enhancer activity and chromatin accessibility, to perform a genome segmentation. It then uses this segmentation for the detection of highly transcriptionally active regions of the genome. At a final step, and through the integration of Hi-C data, it identifies regions of putative transcriptional condensates (PTCs) as genomic domains where multiple enhancer elements coalesce in 3D space. SEGCOND identifies a subset of enhancer segments with increased transcriptional activity. PTCs are also found to significantly overlap highly interconnected enhancer elements and super enhancers obtained through two independent approaches. Application of SEGCOND on data from a well-defined system of B-cell to macrophage transdifferentiation leads to the identification of previously unreported genes with a likely role in the process. AVAILABILITY AND IMPLEMENTATION: Source code and details for the implementation of SEGCOND is available at https://github.com/AntonisK95/SEGCOND. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Elementos de Facilitación Genéticos , Multiómica , Genómica/métodos , Cromatina/genética , Cuerpos Nucleares
20.
Mol Cell ; 82(22): 4386-4399.e7, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36327976

RESUMEN

Mammalian developmental and disease-associated genes concentrate large quantities of the transcriptional machinery by forming membrane-less compartments known as transcriptional condensates. However, it is unknown whether these structures are evolutionarily conserved or involved in 3D genome reorganization. Here, we identify inducible transcriptional condensates in the yeast heat shock response (HSR). HSR condensates are biophysically dynamic spatiotemporal clusters of the sequence-specific transcription factor heat shock factor 1 (Hsf1) with Mediator and RNA Pol II. Uniquely, HSR condensates drive the coalescence of multiple Hsf1 target genes, even those located on different chromosomes. Binding of the chaperone Hsp70 to a site on Hsf1 represses clustering, whereas an intrinsically disordered region on Hsf1 promotes condensate formation and intergenic interactions. Mutation of both Hsf1 determinants reprograms HSR condensates to become constitutively active without intergenic coalescence, which comes at a fitness cost. These results suggest that transcriptional condensates are ancient and flexible compartments of eukaryotic gene control.


Asunto(s)
Respuesta al Choque Térmico , Cuerpos Nucleares , Animales , Respuesta al Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/genética , Mamíferos , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...