Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862166

RESUMEN

Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.


Asunto(s)
Memoria , Cuerpos Pedunculados , Animales , Memoria/efectos de los fármacos , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/efectos de los fármacos , Aprendizaje/fisiología , Aprendizaje/efectos de los fármacos , Trastornos Relacionados con Sustancias , Drosophila melanogaster/fisiología , Humanos , Drosophila/fisiología , Drogas Ilícitas/farmacología
2.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862169

RESUMEN

Octopamine, the functional analog of noradrenaline, modulates many different behaviors and physiological processes in invertebrates. In the central nervous system, a few octopaminergic neurons project throughout the brain and innervate almost all neuropils. The center of memory formation in insects, the mushroom bodies, receive octopaminergic innervations in all insects investigated so far. Different octopamine receptors, either increasing or decreasing cAMP or calcium levels in the cell, are localized in Kenyon cells, further supporting the release of octopamine in the mushroom bodies. In addition, different mushroom body (MB) output neurons, projection neurons, and dopaminergic PAM cells are targets of octopaminergic neurons, enabling the modulation of learning circuits at different neural sites. For some years, the theory persisted that octopamine mediates rewarding stimuli, whereas dopamine (DA) represents aversive stimuli. This simple picture has been challenged by the finding that DA is required for both appetitive and aversive learning. Furthermore, octopamine is also involved in aversive learning and a rather complex interaction between these biogenic amines seems to modulate learning and memory. This review summarizes the role of octopamine in MB function, focusing on the anatomical principles and the role of the biogenic amine in learning and memory.


Asunto(s)
Aprendizaje , Memoria , Cuerpos Pedunculados , Octopamina , Octopamina/metabolismo , Octopamina/farmacología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/efectos de los fármacos , Animales , Memoria/fisiología , Memoria/efectos de los fármacos , Aprendizaje/fisiología , Aprendizaje/efectos de los fármacos , Dopamina/metabolismo , Insectos/fisiología , Neuronas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
3.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38749704

RESUMEN

General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.


Asunto(s)
Encéfalo , Proteínas de Drosophila , Isoflurano , Proteínas SNARE , Sinapsis , Animales , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/fisiología , Femenino , Proteínas SNARE/metabolismo , Isoflurano/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila , Anestésicos por Inhalación/farmacología , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Cuerpos Pedunculados/fisiología
4.
PLoS Biol ; 19(10): e3001412, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34613972

RESUMEN

Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aß42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aß42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aß peptides.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Dopamina/metabolismo , Drosophila melanogaster/fisiología , Memoria/fisiología , Neuronas/fisiología , Sueño/fisiología , Animales , Encéfalo/metabolismo , Drosophila melanogaster/efectos de los fármacos , Memoria/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Neuronas/efectos de los fármacos
5.
Cell Rep ; 34(11): 108871, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730583

RESUMEN

The formation and consolidation of memories are complex phenomena involving synaptic plasticity, microcircuit reorganization, and the formation of multiple representations within distinct circuits. To gain insight into the structural aspects of memory consolidation, we focus on the calyx of the Drosophila mushroom body. In this essential center, essential for olfactory learning, second- and third-order neurons connect through large synaptic microglomeruli, which we dissect at the electron microscopy level. Focusing on microglomeruli that respond to a specific odor, we reveal that appetitive long-term memory results in increased numbers of precisely those functional microglomeruli responding to the conditioned odor. Hindering memory consolidation by non-coincident presentation of odor and reward, by blocking protein synthesis, or by including memory mutants suppress these structural changes, revealing their tight correlation with the process of memory consolidation. Thus, olfactory long-term memory is associated with input-specific structural modifications in a high-order center of the fly brain.


Asunto(s)
Drosophila melanogaster/fisiología , Consolidación de la Memoria/fisiología , Cuerpos Pedunculados/inervación , Red Nerviosa/fisiología , Animales , Axones/efectos de los fármacos , Axones/fisiología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/ultraestructura , Consolidación de la Memoria/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/ultraestructura , Red Nerviosa/efectos de los fármacos , Red Nerviosa/ultraestructura , Plasticidad Neuronal/efectos de los fármacos , Odorantes , Ácidos Oléicos/farmacología , Feromonas/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Sinapsis/ultraestructura
6.
Anal Chem ; 92(21): 14398-14407, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33048531

RESUMEN

Drosophila melanogaster, a fruit fly, is an exquisite model organism to understand neurotransmission. Dopaminergic signaling in the Drosophila mushroom body (MB) is involved in olfactory learning and memory, with different compartments controlling aversive learning (heel) vs. appetitive learning (medial tip). Here, the goal was to develop techniques to measure endogenous dopamine in compartments of the MB for the first time. We compared three stimulation methods: acetylcholine (natural stimulus), P2X2 (chemogenetics), and CsChrimson (optogenetics). Evoked dopamine release was measured with fast-scan cyclic voltammetry in isolated adult Drosophila brains. Acetylcholine stimulated the largest dopamine release (0.40 µM) followed by P2X2 (0.14 µM) and CsChrimson (0.07 µM). With the larger acetylcholine and P2X2 stimulations, there were no regional or sex differences in dopamine release. However, with CsChrimson, dopamine release was significantly higher in the heel than the medial tip, and females had more dopamine than males. Michaelis-Menten modeling of the single-light pulse revealed no significant regional differences in Km, but the heel had a significantly lower Vmax (0.12 µM/s vs. 0.19 µM/s) and higher dopamine release (0.05 µM vs. 0.03 µM). Optogenetic experiments are challenging because CsChrimson is also sensitive to blue light used to activate green fluorescent protein, and thus, light exposure during brain dissection must be minimized. These experiments expand the toolkit for measuring endogenous dopamine release in Drosophila, introducing chemogenetic and optogenetic experiments for the first time. With a variety of stimulations, different experiments will help improve our understanding of neurochemical signaling in Drosophila.


Asunto(s)
Dopamina/metabolismo , Drosophila melanogaster/anatomía & histología , Cuerpos Pedunculados/metabolismo , Acetilcolina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/efectos de la radiación , Optogenética , Receptores Purinérgicos P2X2/metabolismo , Factores de Tiempo
7.
Genetics ; 215(1): 103-116, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32132098

RESUMEN

Repeated alcohol experiences can produce long-lasting memories for sensory cues associated with intoxication. These memories can problematically trigger relapse in individuals recovering from alcohol use disorder (AUD). The molecular mechanisms by which ethanol changes memories to become long-lasting and inflexible remain unclear. New methods to analyze gene expression within precise neuronal cell types can provide further insight toward AUD prevention and treatment. Here, we used genetic tools in Drosophila melanogaster to investigate the lasting consequences of ethanol on transcription in memory-encoding neurons. Drosophila rely on mushroom body (MB) neurons to make associative memories, including memories of ethanol-associated sensory cues. Differential expression analyses revealed that distinct transcripts, but not genes, in the MB were associated with experiencing ethanol alone compared to forming a memory of an odor cue associated with ethanol. Adult MB-specific knockdown of spliceosome-associated proteins demonstrated the necessity of RNA-processing in ethanol memory formation. These findings highlight the dynamic, context-specific regulation of transcription in cue-encoding neurons, and the lasting effect of ethanol on transcript usage during memory formation.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Cuerpos Pedunculados/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Transcriptoma , Animales , Drosophila melanogaster , Memoria , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Células Receptoras Sensoriales/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
8.
Elife ; 82019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31215865

RESUMEN

Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here, we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Aprendizaje , Receptores Muscarínicos/fisiología , Olfato/fisiología , Animales , Conducta Animal/efectos de los fármacos , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Muscarina/farmacología , Agonistas Muscarínicos/farmacología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/fisiología , Mutación/genética , Odorantes , Receptores Muscarínicos/genética , Olfato/efectos de los fármacos
9.
Elife ; 82019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30865587

RESUMEN

Sleep-like states in diverse organisms can be separated into distinct stages, each with a characteristic arousal threshold. However, the molecular pathways underlying different sleep stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during both day and night, with night sleep associated with higher arousal thresholds compared to day sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in promoting sleep during the night but not the day by suppressing nocturnal arousal and hyperactivity. We show that both circadian and light-sensing pathways define the temporal window in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing synaptic release from a dispersed wake-promoting neural network and demonstrate that the mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance the understanding of how sleep stages are genetically defined.


Asunto(s)
Nivel de Alerta , Drosophila melanogaster/fisiología , Neurocalcina/metabolismo , Sueño , Animales , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología
10.
Genes Brain Behav ; 18(3): e12486, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29726098

RESUMEN

Drug naïve animals given a single dose of ethanol show changed responses to subsequent doses, including the development of ethanol tolerance and ethanol preference. These simple forms of behavioral plasticity are due in part to changes in gene expression and neuronal properties. Surprisingly little is known about how ethanol initiates changes in gene expression or what the changes do. Here we demonstrate a role in ethanol plasticity for Hr38, the sole Drosophila homolog of the mammalian Nr4a1/2/3 class of immediate early response transcription factors. Acute ethanol exposure induces transient expression of Hr38 and other immediate early neuronal activity genes. Ethanol activates the Mef2 transcriptional activator to induce Hr38, and the Sirt1 histone/protein deacetylase is required to terminate Hr38 induction. Loss of Hr38 decreases ethanol tolerance and causes precocious but short-lasting ethanol preference. Similarly, reduced Mef2 activity in all neurons or specifically in the mushroom body α/ß neurons decreases ethanol tolerance; Sirt1 promotes ethanol tolerance in these same neurons. Genetically decreasing Hr38 expression levels in Sirt1 null mutants restores ethanol tolerance, demonstrating that both induction and termination of Hr38 expression are important for behavioral plasticity to proceed. These data demonstrate that Hr38 functions as an immediate early transcription factor that promotes ethanol behavioral plasticity.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Depresores del Sistema Nervioso Central/farmacología , Proteínas de Drosophila/genética , Etanol/farmacología , Factores Reguladores Miogénicos/genética , Neuronas/efectos de los fármacos , Sirtuina 1/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Mutación con Pérdida de Función , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Factores Reguladores Miogénicos/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Sirtuina 1/metabolismo
11.
Elife ; 72018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30576281

RESUMEN

Habituation is the process that enables salience filtering, precipitating perceptual changes that alter the value of environmental stimuli. To discern the neuronal circuits underlying habituation to brief inconsequential stimuli, we developed a novel olfactory habituation paradigm, identifying two distinct phases of the response that engage distinct neuronal circuits. Responsiveness to the continuous odor stimulus is maintained initially, a phase we term habituation latency and requires Rutabaga Adenylyl-Cyclase-depended neurotransmission from GABAergic Antennal Lobe Interneurons and activation of excitatory Projection Neurons (PNs) and the Mushroom Bodies. In contrast, habituation depends on the inhibitory PNs of the middle Antenno-Cerebral Track, requires inner Antenno-Cerebral Track PN activation and defines a temporally distinct phase. Collectively, our data support the involvement of Lateral Horn excitatory and inhibitory stimulation in habituation. These results provide essential cellular substrates for future analyses of the molecular mechanisms that govern the duration and transition between these distinct temporal habituation phases. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Antenas de Artrópodos/fisiología , Drosophila melanogaster/efectos de los fármacos , Interneuronas/fisiología , Cuerpos Pedunculados/fisiología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Acetatos/farmacología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/efectos de los fármacos , Benzaldehídos/farmacología , Diacetil/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Expresión Génica , Hidroxiurea/toxicidad , Interneuronas/citología , Interneuronas/efectos de los fármacos , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Octanoles/farmacología , Odorantes/análisis , Vías Olfatorias/citología , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Transmisión Sináptica/fisiología
12.
Neuron ; 100(5): 1209-1223.e4, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30482693

RESUMEN

Drugs of abuse, like alcohol, modulate gene expression in reward circuits and consequently alter behavior. However, the in vivo cellular mechanisms through which alcohol induces lasting transcriptional changes are unclear. We show that Drosophila Notch/Su(H) signaling and the secreted fibrinogen-related protein Scabrous in mushroom body (MB) memory circuitry are important for the enduring preference of cues associated with alcohol's rewarding properties. Alcohol exposure affects Notch responsivity in the adult MB and alters Su(H) targeting at the dopamine-2-like receptor (Dop2R). Alcohol cue training also caused lasting changes to the MB nuclear transcriptome, including changes in the alternative splicing of Dop2R and newly implicated transcripts like Stat92E. Together, our data suggest that alcohol-induced activation of the highly conserved Notch pathway and accompanying transcriptional responses in memory circuitry contribute to addiction. Ultimately, this provides mechanistic insight into the etiology and pathophysiology of alcohol use disorder.


Asunto(s)
Proteínas de Drosophila/metabolismo , Etanol/administración & dosificación , Glicoproteínas/metabolismo , Memoria/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Animales , Señales (Psicología) , Masculino , Cuerpos Pedunculados/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Odorantes , Isoformas de Proteínas/metabolismo , Receptores de Dopamina D2/metabolismo , Transcriptoma
13.
Open Biol ; 8(10)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381362

RESUMEN

Chemical detection is key to various behaviours in both marine and terrestrial animals. Marine species, though highly diverse, have been underrepresented so far in studies on chemosensory systems, and our knowledge mostly concerns the detection of airborne cues. A broader comparative approach is therefore desirable. Marine annelid worms with their rich behavioural repertoire represent attractive models for chemosensation. Here, we study the marine worm Platynereis dumerilii to provide the first comprehensive investigation of head chemosensory organ physiology in an annelid. By combining microfluidics and calcium imaging, we record neuronal activity in the entire head of early juveniles upon chemical stimulation. We find that Platynereis uses four types of organs to detect stimuli such as alcohols, esters, amino acids and sugars. Antennae are the main chemosensory organs, compared to the more differentially responding nuchal organs or palps. We report chemically evoked activity in possible downstream brain regions including the mushroom bodies (MBs), which are anatomically and molecularly similar to insect MBs. We conclude that chemosensation is a major sensory modality for marine annelids and propose early Platynereis juveniles as a model to study annelid chemosensory systems.


Asunto(s)
Anélidos/fisiología , Cabeza/fisiología , Grabación en Video , 1-Butanol/farmacología , Animales , Calcio/metabolismo , Ácido Glutámico/farmacología , Microfluídica , Modelos Animales , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pentanoles/farmacología , Sacarosa/farmacología
14.
Sci Rep ; 8(1): 16277, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389979

RESUMEN

In Drosophila melanogaster, aversive (electric shock) stimuli have been shown to activate subpopulations of dopaminergic neurons with terminals in the mushroom bodies (MBs) of the brain. While there is compelling evidence that dopamine (DA)-induced synaptic plasticity underpins the formation of aversive memories in insects, the mechanisms involved have yet to be fully resolved. Here we take advantage of the accessibility of MBs in the brain of the honey bee to examine, using fast scan cyclic voltammetry, the kinetics of DA release and reuptake in vivo in response to electric shock, and to investigate factors that modulate the release of this amine. DA increased transiently in the MBs in response to electric shock stimuli. The magnitude of release varied depending on stimulus duration and intensity, and a strong correlation was identified between DA release and the intensity of behavioural responses to shock. With repeated stimulation, peak DA levels increased. However, the amount of DA released on the first stimulation pulse typically exceeded that evoked by subsequent pulses. No signal was detected in response to odour alone. Interestingly, however, if odour presentation was paired with electric shock, DA release was enhanced. These results set the stage for analysing the mechanisms that modulate DA release in the MBs of the bee.


Asunto(s)
Abejas/fisiología , Condicionamiento Psicológico/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Cuerpos Pedunculados/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Electrodos , Electrochoque/instrumentación , Electrochoque/métodos , Masculino , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Nomifensina/farmacología , Odorantes
15.
Curr Biol ; 28(11): 1783-1793.e4, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29779874

RESUMEN

Memory consolidation is a crucial step for long-term memory (LTM) storage. However, we still lack a clear picture of how memory consolidation is regulated at the neuronal circuit level. Here, we took advantage of the well-described anatomy of the Drosophila olfactory memory center, the mushroom body (MB), to address this question in the context of appetitive LTM. The MB lobes, which are made by the fascicled axons of the MB intrinsic neurons, are organized into discrete anatomical modules, each covered by the terminals of a defined type of dopaminergic neuron (DAN) and the dendrites of a corresponding type of MB output neuron (MBON). We previously revealed the essential role of one DAN, the MP1 neuron, in the formation of appetitive LTM. The MP1 neuron is anatomically matched to the GABAergic MBON MVP2, which has been attributed feedforward inhibitory functions recently. Here, we used behavior experiments and in vivo imaging to challenge the existence of MP1-MVP2 synapses and investigate their role in appetitive LTM consolidation. We show that MP1 and MVP2 neurons form an anatomically and functionally recurrent circuit, which features a feedback inhibition that regulates consolidation of appetitive memory. This circuit involves two opposite type 1 and type 2 dopamine receptors in MVP2 neurons and the metabotropic GABAB-R1 receptor in MP1 neurons. We propose that this dual-receptor feedback supports a bidirectional self-regulation of MP1 input to the MB. This mechanism displays striking similarities with the mammalian reward system, in which modulation of the dopaminergic signal is primarily assigned to inhibitory neurons.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila/fisiología , Neuronas GABAérgicas/fisiología , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/fisiología , Percepción Olfatoria/fisiología , Animales , Neuronas GABAérgicas/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Odorantes
16.
Neuroscience ; 371: 433-444, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29292079

RESUMEN

The communication between sensory systems and the specific brain centers that process this information is crucial to develop adequate behavioral responses. Modulatory systems, including dopaminergic circuits, regulate this communication to finely tune the behavioral response associated to any given stimulus. For instance, the Mushroom Body (MB), an insect brain integration center that receives and processes several sensory stimuli and organizes the execution of motor programs, communicates with MB output neurons (MBONs) to develop behavioral responses associated to olfactory stimuli. This communication is modulated by dopaminergic neural systems. Here we show that silencing dopaminergic neurons increases the aversive response observed in adult flies exposed to Benzaldehyde (Bz) or octanol. We studied the contribution of two dopaminergic clusters that innervate different zones of MB, Protocerebral anterior medial (PAM) and Protocerebral posterior lateral 1 (PPL1), on the innate value to the aversive stimulus and the associated locomotor behavior. In order to do this, we manipulated the synaptic transmission of these neural clusters through the expression of Tetanus toxin, Kir2.1 and Transient receptor potential cation channel A1 (TrpA1) channels. Our results show that neurons in PPL1 and PAM differentially modulate the innate value to Bz in adult flies. On the other hand, blocking neurotransmission or genetic silencing of PAM neurons results in decreased locomotor behavior in flies, an effect not observed when silencing PPL1. Our results suggest that as in mammals, specific dopaminergic pathways differentially modulate locomotor behavior and the innate value for an odorant, a limbic-like response in Drosophila.


Asunto(s)
Reacción de Prevención/fisiología , Dopamina/metabolismo , Drosophila/metabolismo , Actividad Motora/fisiología , Percepción Olfatoria/fisiología , Animales , Animales Modificados Genéticamente , Reacción de Prevención/efectos de los fármacos , Drosophila/anatomía & histología , Proteínas de Drosophila/metabolismo , Canales Iónicos , Actividad Motora/efectos de los fármacos , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Percepción Olfatoria/efectos de los fármacos , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Olfato/efectos de los fármacos , Olfato/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Canal Catiónico TRPA1/metabolismo
17.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1578-1588, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28554773

RESUMEN

G-protein-coupled receptors (GPCRs) for steroid hormones mediate unconventional steroid signaling and play a significant role in the rapid actions of steroids in a variety of biological processes, including those in the nervous system. However, the effects of these GPCRs on overall neuronal activity remain largely elusive. Drosophila DopEcR is a GPCR that responds to both ecdysone (the major steroid hormone in insects) and dopamine, regulating multiple second messenger systems. Recent studies have revealed that DopEcR is preferentially expressed in the nervous system and involved in behavioral regulation. Here we utilized the bioluminescent Ca2+-indicator GFP-aequorin to monitor the nicotine-induced Ca2+-response within the mushroom bodies (MB), a higher-order brain center in flies, and examined how DopEcR modulates these Ca2+-dynamics. Our results show that in DopEcR knockdown flies, the nicotine-induced Ca2+-response in the MB was significantly enhanced selectively in the medial lobes. We then reveal that application of DopEcR's ligands, ecdysone and dopamine, had different effects on nicotine-induced Ca2+-responses in the MB: ecdysone enhanced activity in the calyx and cell body region in a DopEcR-dependent manner, whereas dopamine reduced activity in the medial lobes independently of DopEcR. Finally, we show that flies with reduced DopEcR function in the MB display decreased locomotor activity. This behavioral phenotype of DopEcR-deficient flies may be partly due to their enhanced MB activity, since the MB have been implicated in the suppression of locomotor activity. Overall, these data suggest that DopEcR is involved in region-specific modulation of Ca2+ dynamics within the MB, which may play a role in behavioral modulation.


Asunto(s)
Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Receptores Dopaminérgicos/genética , Receptores de Esteroides/genética , Animales , Dopamina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Ecdisona/metabolismo , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Nicotina/farmacología , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G , Receptores de Esteroides/metabolismo , Transducción de Señal
18.
J Neurosci ; 37(22): 5496-5510, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28416593

RESUMEN

Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact.SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila, Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation.


Asunto(s)
Anestésicos/administración & dosificación , Reacción de Prevención/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Memoria/fisiología , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Olfato/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Drosophila/efectos de los fármacos , Memoria/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/fisiología , Dominios Proteicos , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Olfato/efectos de los fármacos , Relación Estructura-Actividad
19.
Sci Rep ; 6: 38110, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905515

RESUMEN

Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively affect a number of behaviours, including performance of olfactory learning and memory, due to their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence that neonicotinoids can affect odour coding upstream of the mushroom bodies, in the first odour processing centres of the honeybee brain, i.e. the antennal lobes (ALs). In particular, we investigated the effects of imidacloprid, the most common neonicotinoid, in the AL glomeruli via in vivo two-photon calcium imaging combined with pulsed odour stimulation. Following acute imidacloprid treatment, odour-evoked calcium response amplitude in single glomeruli decreases, and at the network level the representations of different odours are no longer separated. This demonstrates that, under neonicotinoid influence, olfactory information might reach the mushroom bodies in a form that is already incorrect. Thus, some of the impairments in olfactory learning and memory caused by neonicotinoids could, in fact, arise from the disruption in odor coding and olfactory discrimination ability of the honey bees.


Asunto(s)
Abejas/efectos de los fármacos , Abejas/fisiología , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Odorantes , Olfato/efectos de los fármacos , Olfato/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/fisiología , Nitrocompuestos/toxicidad , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología
20.
PLoS Genet ; 12(5): e1006061, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27195782

RESUMEN

Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αß, α'ß', and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)-αß neurons and the octopaminergic anterior paired lateral (APL)-α'ß' neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αß neurons and that of α'ß' neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octß2R in αß and α'ß' neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α'ß' neuron output is independent of radish. We identified MBON-ß2ß'2a and MBON-ß'2mp as the MB output neurons downstream of αß and α'ß' neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α'ß' neurons could be functionally subdivided into α'ß'm neurons required for ARM retrieval, and α'ß'ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Corteza Olfatoria/metabolismo , Fosfoproteínas/genética , Receptores Acoplados a Proteínas G/genética , Olfato/genética , Anestesia/efectos adversos , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/metabolismo , Técnicas de Silenciamiento del Gen , Memoria/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Olfato/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...