Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Biochem Biophys Res Commun ; 720: 150072, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749187

RESUMEN

The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.


Asunto(s)
Ritmo Circadiano , Efrinas , Cuerpos Pedunculados , Neuroglía , Neuronas , Transducción de Señal , Sueño , Animales , Neuroglía/metabolismo , Sueño/fisiología , Sueño/genética , Ritmo Circadiano/fisiología , Neuronas/metabolismo , Efrinas/metabolismo , Efrinas/genética , Cuerpos Pedunculados/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores de la Familia Eph/metabolismo , Receptores de la Familia Eph/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Drosophila melanogaster/genética , Drosophila/metabolismo
2.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648719

RESUMEN

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Asunto(s)
Proteínas de Drosophila , Proteínas del Choque Térmico HSP40 , Memoria a Largo Plazo , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Memoria a Largo Plazo/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Cuerpos Pedunculados/metabolismo , Multimerización de Proteína , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
3.
Biochemistry (Mosc) ; 89(3): 393-406, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648760

RESUMEN

Courtship suppression is a behavioral adaptation of the fruit fly. When majority of the females in a fly population are fertilized and non-receptive for mating, a male, after a series of failed attempts, decreases its courtship activity towards all females, saving its energy and reproductive resources. The time of courtship decrease depends on both duration of unsuccessful courtship and genetically determined features of the male nervous system. Thereby, courtship suppression paradigm can be used for studying molecular mechanisms of learning and memory. p-Cofilin, a component of the actin remodeling signaling cascade and product of LIM-kinase 1 (LIMK1), regulates Drosophila melanogaster forgetting in olfactory learning paradigm. Previously, we have shown that limk1 suppression in the specific types of nervous cells differently affects fly courtship memory. Here, we used Gal4 > UAS system to induce limk1 overexpression in the same types of neurons. limk1 activation in the mushroom body, glia, and fruitless neurons decreased learning index compared to the control strain or the strain with limk1 knockdown. In cholinergic and dopaminergic/serotoninergic neurons, both overexpression and knockdown of limk1 impaired Drosophila short-term memory. Thus, proper balance of the limk1 activity is crucial for normal cognitive activity of the fruit fly.


Asunto(s)
Cortejo , Proteínas de Drosophila , Drosophila melanogaster , Quinasas Lim , Memoria , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino , Quinasas Lim/metabolismo , Quinasas Lim/genética , Femenino , Cuerpos Pedunculados/metabolismo , Cuerpos Pedunculados/fisiología , Conducta Sexual Animal
4.
Curr Biol ; 34(9): 1904-1917.e6, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38642548

RESUMEN

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Asunto(s)
Axones , Proteínas de Drosophila , Drosophila melanogaster , Memoria a Largo Plazo , Mitocondrias , Dinámicas Mitocondriales , Cuerpos Pedunculados , Animales , Memoria a Largo Plazo/fisiología , Dinámicas Mitocondriales/fisiología , Axones/metabolismo , Axones/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Drosophila melanogaster/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neuronas/metabolismo , Neuronas/fisiología
5.
Neurotoxicol Teratol ; 102: 107331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38301979

RESUMEN

Bisphenol F (BPF) is a potential neurotoxicant used as a replacement for bisphenol A (BPA) in polycarbonate plastics and epoxy resins. We investigated the neurodevelopmental impacts of BPF exposure using Drosophila melanogaster as a model. Our transcriptomic analysis indicated that developmental exposure to BPF caused the downregulation of neurodevelopmentally relevant genes, including those associated with synapse formation and neuronal projection. To investigate the functional outcome of BPF exposure, we evaluated neurodevelopmental impacts across two genetic strains of Drosophila- w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We found that BPF exposure in w1118 Drosophila caused hypoactive larval locomotor activity, decreased time spent grooming by adults, reduced courtship activity, and increased the severity but not frequency of ß-lobe midline crossing defects by axons in the mushroom body. In contrast, although BPF reduced peristaltic contractions in FXS larvae, it had no impact on other larval locomotor phenotypes, grooming activity, or courtship activity. Strikingly, BPF exposure reduced both the severity and frequency of ß-lobe midline crossing defects in the mushroom body of FXS flies, a phenotype previously observed in FXS flies exposed to BPA. This data indicates that BPF can affect neurodevelopment and its impacts vary depending on genetic background. Further, BPF may elicit a gene-environment interaction with Drosophila fragile X messenger ribonucleoprotein 1 (dFmr1)-the ortholog of human FMR1, which causes fragile X syndrome and is the most common monogenetic cause of intellectual disability and autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Proteínas de Drosophila , Síndrome del Cromosoma X Frágil , Fenoles , Animales , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Síndrome del Cromosoma X Frágil/inducido químicamente , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Trastorno del Espectro Autista/metabolismo , Cuerpos Pedunculados/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Drosophila , Compuestos de Bencidrilo/toxicidad , Expresión Génica
6.
Biochem Biophys Res Commun ; 682: 77-84, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37804590

RESUMEN

A LIM homeodomain transcription factor Apterous (Ap) regulates embryonic and larval neurodevelopment in Drosophila. Although Ap is still expressed in the adult brain, it remains elusive whether Ap is involved in neurodevelopmental events in the adult brain because flies homozygous for ap mutations are usually lethal before they reach the adult stage. In this study, using adult escapers of ap knockout (KO) homozygotes, we examined whether the complete lack of ap expression affects the morphology of the mushroom body (MB) neurons and Pigment-dispersing factor (Pdf)-positive clock neurons in the adult brain. Although ap KO escapers showed severe structural defects of MB neurons, no clear morphological defects were found in Pdf-positive clock neurons. These results suggest that Ap in the adult brain is essential for the neurodevelopment of specific ap-positive neurons, but it is not necessarily involved in the development of all ap-positive neurons.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Cuerpos Pedunculados/metabolismo
7.
J Neurosci ; 43(49): 8294-8305, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37429719

RESUMEN

Dopamine neurons (DANs) are extensively studied in the context of associative learning, in both vertebrates and invertebrates. In the acquisition of male and female Drosophila olfactory memory, the PAM cluster of DANs provides the reward signal, and the PPL1 cluster of DANs sends the punishment signal to the Kenyon cells (KCs) of mushroom bodies, the center for memory formation. However, thermo-genetical activation of the PPL1 DANs after memory acquisition impaired aversive memory, and that of the PAM DANs impaired appetitive memory. We demonstrate that the knockdown of glutamate decarboxylase, which catalyzes glutamate conversion to GABA in PAM DANs, potentiated the appetitive memory. In addition, the knockdown of glutamate transporter in PPL1 DANs potentiated aversive memory, suggesting that GABA and glutamate co-transmitters act in an inhibitory manner in olfactory memory formation. We also found that, in γKCs, the Rdl receptor for GABA and the mGluR DmGluRA mediate the inhibition. Although multiple-spaced training is required to form long-term aversive memory, a single cycle of training was sufficient to develop long-term memory when the glutamate transporter was knocked down, in even a single subset of PPL1 DANs. Our results suggest that the mGluR signaling pathway may set a threshold for memory acquisition to allow the organisms' behaviors to adapt to changing physiological conditions and environments.SIGNIFICANCE STATEMENT In the acquisition of olfactory memory in Drosophila, the PAM cluster of dopamine neurons (DANs) mediates the reward signal, while the PPL1 cluster of DANs conveys the punishment signal to the Kenyon cells of the mushroom bodies, which serve as the center for memory formation. We found that GABA co-transmitters in the PAM DANs and glutamate co-transmitters in the PPL1 DANs inhibit olfactory memory formation. Our findings demonstrate that long-term memory acquisition, which typically necessitates multiple-spaced training sessions to establish aversive memory, can be triggered with a single training cycle in cases where the glutamate co-transmission is inhibited, even within a single subset of PPL1 DANs, suggesting that the glutamate co-transmission may modulate the threshold for memory acquisition.


Asunto(s)
Drosophila , Olfato , Animales , Femenino , Masculino , Drosophila/fisiología , Olfato/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Penicilinas/metabolismo , Glutamatos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Cuerpos Pedunculados/metabolismo , Drosophila melanogaster/metabolismo
8.
PLoS Genet ; 19(6): e1010802, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37307281

RESUMEN

The formation of long-term memories requires changes in the transcriptional program and de novo protein synthesis. One of the critical regulators for long-term memory (LTM) formation and maintenance is the transcription factor CREB. Genetic studies have dissected the requirement of CREB activity within memory circuits, however less is known about the genetic mechanisms acting downstream of CREB and how they may contribute defining LTM phases. To better understand the downstream mechanisms, we here used a targeted DamID approach (TaDa). We generated a CREB-Dam fusion protein using the fruit fly Drosophila melanogaster as model. Expressing CREB-Dam in the mushroom bodies (MBs), a brain center implicated in olfactory memory formation, we identified genes that are differentially expressed between paired and unpaired appetitive training paradigm. Of those genes we selected candidates for an RNAi screen in which we identified genes causing increased or decreased LTM.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cuerpos Pedunculados/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/metabolismo , Drosophila/metabolismo
9.
Mol Brain ; 16(1): 42, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194019

RESUMEN

Dysregulation of HDAC4 expression and/or nucleocytoplasmic shuttling results in impaired neuronal morphogenesis and long-term memory in Drosophila melanogaster. A recent genetic screen for genes that interact in the same molecular pathway as HDAC4 identified the cytoskeletal adapter Ankyrin2 (Ank2). Here we sought to investigate the role of Ank2 in neuronal morphogenesis, learning and memory. We found that Ank2 is expressed widely throughout the Drosophila brain where it localizes predominantly to axon tracts. Pan-neuronal knockdown of Ank2 in the mushroom body, a region critical for memory formation, resulted in defects in axon morphogenesis. Similarly, reduction of Ank2 in lobular plate tangential neurons of the optic lobe disrupted dendritic branching and arborization. Conditional knockdown of Ank2 in the mushroom body of adult Drosophila significantly impaired long-term memory (LTM) of courtship suppression, and its expression was essential in the γ neurons of the mushroom body for normal LTM. In summary, we provide the first characterization of the expression pattern of Ank2 in the adult Drosophila brain and demonstrate that Ank2 is critical for morphogenesis of the mushroom body and for the molecular processes required in the adult brain for the formation of long-term memories.


Asunto(s)
Ancirinas , Proteínas de Drosophila , Drosophila melanogaster , Animales , Ancirinas/metabolismo , Cortejo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Memoria a Largo Plazo/fisiología , Morfogénesis , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo
10.
J Neurosci ; 43(12): 2210-2220, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36750369

RESUMEN

Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize the following three distinct forms of ethanol tolerance in male Drosophila: rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for 2 d, induces ethanol preference, and hinders the development of rapid tolerance through the activity of histone deacetylases (HDACs). Unlike rapid tolerance, chronic tolerance is independent of the immediate early gene Hr38/Nr4a Chronic tolerance is suppressed by the sirtuin HDAC Sirt1, whereas rapid tolerance is enhanced by Sirt1 Moreover, rapid and chronic tolerance map to anatomically distinct regions of the mushroom body learning and memory centers. Chronic tolerance, like long-term memory, is dependent on new protein synthesis and it induces the kayak/c-fos immediate early gene, but it depends on CREB signaling outside the mushroom bodies, and it does not require the Radish GTPase. Thus, chronic ethanol exposure creates an ethanol-specific memory-like state that is molecularly and anatomically different from other forms of ethanol tolerance.SIGNIFICANCE STATEMENT The pattern and concentration of initial ethanol exposure causes operationally distinct types of ethanol tolerance to form. We identify separate molecular and neural circuit mechanisms for two forms of ethanol tolerance, rapid and chronic. We also discover that chronic tolerance forms an ethanol-specific long-term memory-like state that localizes to learning and memory circuits, but it is different from appetitive and aversive long-term memories. By contrast, rapid tolerance is composed of labile and consolidated short-term memory-like states. The multiple forms of ethanol memory-like states are genetically tractable for understanding how initial forms of ethanol-induced neural plasticity form a substrate for the longer-term brain changes associated with alcohol use disorder.


Asunto(s)
Alcoholismo , Proteínas de Drosophila , Animales , Masculino , Drosophila/metabolismo , Sirtuina 1/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Etanol/farmacología , Alcoholismo/metabolismo , Cuerpos Pedunculados/metabolismo , Drosophila melanogaster/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
11.
Cell Rep ; 42(2): 112026, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36701232

RESUMEN

Odor-based learning and innate odor-driven behavior have been hypothesized to require separate neuronal circuitry. Contrary to this notion, innate behavior and olfactory learning were recently shown to share circuitry that includes the Drosophila mushroom body (MB). But how a single circuit drives two discrete behaviors remains unknown. Here, we define an MB circuit responsible for both olfactory learning and innate odor avoidance and the distinct dDA1 dopamine receptor-dependent signaling pathways that mediate these behaviors. Associative learning and learning-induced MB plasticity require rutabaga-encoded adenylyl cyclase activity in the MB. In contrast, innate odor preferences driven by naive MB neurotransmission are rutabaga independent, requiring the adenylyl cyclase ACXD. Both learning and innate odor preferences converge on PKA and the downstream MBON-γ2α'1. Importantly, the utilization of this shared circuitry for innate behavior only becomes apparent with hunger, indicating that hardwired innate behavior becomes more flexible during states of stress.


Asunto(s)
Odorantes , Olfato , Animales , Olfato/fisiología , Adenilil Ciclasas/metabolismo , Aprendizaje/fisiología , Drosophila/metabolismo , Transducción de Señal , Dopamina/metabolismo , Cuerpos Pedunculados/metabolismo , Drosophila melanogaster/metabolismo
12.
Sci Rep ; 12(1): 21367, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494426

RESUMEN

Among hymenopteran insects, aculeate species such as bees, ants, and wasps have enlarged and morphologically elaborate mushroom bodies (MBs), a higher-order brain center in the insect, implying their relationship with the advanced behavioral traits of aculeate species. The molecular bases leading to the acquisition of complicated MB functions, however, remains unclear. We previously reported the constitutive and MB-preferential expression of an ecdysone-signaling related transcription factor, Mblk-1/E93, in the honey bee brain. Here, we searched for target genes of Mblk-1 in the worker honey bee MBs using chromatin immunoprecipitation sequence analyses and found that Mblk-1 targets several genes involved in synaptic plasticity, learning, and memory abilities. We also demonstrated that Mblk-1 expression is self-regulated via Mblk-1-binding sites, which are located upstream of Mblk-1. Furthermore, we showed that the number of the Mblk-1-binding motif located upstream of Mblk-1 homologs increased associated with evolution of hymenopteran insects. Our findings suggest that Mblk-1, which has been focused on as a developmental gene transiently induced by ecdysone, has acquired a novel expression pattern to play a role in synaptic plasticity in honey bee MBs, raising a possibility that molecular evolution of Mblk-1 may have partly contributed to the elaboration of MB function in insects.


Asunto(s)
Ecdisona , Cuerpos Pedunculados , Animales , Abejas/genética , Cuerpos Pedunculados/metabolismo , Ecdisona/metabolismo , Factores de Transcripción/metabolismo , Plasticidad Neuronal/genética , Regulación de la Expresión Génica , Encéfalo/metabolismo
13.
BMC Biol ; 20(1): 198, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071487

RESUMEN

BACKGROUND: Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS: We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS: These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Cuerpos Pedunculados , Receptores Citoplasmáticos y Nucleares , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/farmacología , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo
14.
Curr Biol ; 32(13): 2908-2920.e4, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35659864

RESUMEN

Alternative splicing of Drosophila Dscam1 into 38,016 isoforms provides neurons with a unique molecular code for self-recognition and self-avoidance. A canonical model suggests that the homophilic binding of identical Dscam1 isoforms on the sister branches of mushroom body (MB) axons supports segregation with high fidelity, even when only a single isoform is expressed. Here, we generated a series of mutant flies with a single exon 4, 6, or 9 variant, encoding 1,584, 396, or 576 potential isoforms, respectively. Surprisingly, most of the mutants in the latter two groups exhibited obvious defects in the growth, branching, and segregation of MB axonal sister branches. This demonstrates that the repertoires of 396 and 576 Dscam1 isoforms were not sufficient for the normal patterning of axonal branches. Moreover, reducing Dscam1 levels largely reversed the defects caused by reduced isoform diversity, suggesting a functional link between Dscam1 expression levels and isoform diversity. Taken together, these results indicate that canonical self-avoidance alone does not explain the function of Dscam1 in MB axonal wiring.


Asunto(s)
Proteínas de Drosophila , Cuerpos Pedunculados , Animales , Axones/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cuerpos Pedunculados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Curr Biol ; 32(12): 2730-2738.e5, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35545085

RESUMEN

How compartment-specific local proteomes are generated and maintained is inadequately understood, particularly in neurons, which display extreme asymmetries. Here we show that local enrichment of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in axons of Drosophila mushroom body neurons is necessary for cellular plasticity and associative memory formation. Enrichment is achieved via enhanced axoplasmic translation of CaMKII mRNA, through a mechanism requiring the RNA-binding protein Mub and a 23-base Mub-recognition element in the CaMKII 3' UTR. Perturbation of either dramatically reduces axonal, but not somatic, CaMKII protein without altering the distribution or amount of mRNA in vivo, and both are necessary and sufficient to enhance axonal translation of reporter mRNA. Together, these data identify elevated levels of translation of an evenly distributed mRNA as a novel strategy for generating subcellular biochemical asymmetries. They further demonstrate the importance of distributional asymmetry in the computational and biological functions of neurons.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Neuronas , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Drosophila/genética , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo
16.
Trends Neurosci ; 45(7): 539-549, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597687

RESUMEN

Regulating energy metabolism is critical to maintain homeostasis of cellular and systemic functions. In the brain, specialised centres for energy storage regulation finely communicate with the periphery and integrate signals about internal states. As a result, the behavioural responses can be directly adjusted accordingly to the energetic demands. In the fruit fly Drosophila melanogaster, one of these regulatory centres is the mushroom bodies (MBs), a brain region involved in olfactory memory. The integration of metabolic cues by the MBs has a crucial impact on learned behaviour. In this review, we explore recent advances supporting the interplay between energy metabolism and memory establishment, as well as the instructive role of energy during the switch between memory phases.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Encéfalo/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memoria , Cuerpos Pedunculados/metabolismo , Olfato/fisiología
17.
Commun Biol ; 5(1): 130, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165405

RESUMEN

Free-flying bees learn efficiently to solve numerous visual tasks. Yet, the neural underpinnings of this capacity remain unexplored. We used a 3D virtual reality (VR) environment to study visual learning and determine if it leads to changes in immediate early gene (IEG) expression in specific areas of the bee brain. We focused on kakusei, Hr38 and Egr1, three IEGs that have been related to bee foraging and orientation, and compared their relative expression in the calyces of the mushroom bodies, the optic lobes and the rest of the brain after color discrimination learning. Bees learned to discriminate virtual stimuli displaying different colors and retained the information learned. Successful learners exhibited Egr1 upregulation only in the calyces of the mushroom bodies, thus uncovering a privileged involvement of these brain regions in associative color learning and the usefulness of Egr1 as a marker of neural activity induced by this phenomenon.


Asunto(s)
Cuerpos Pedunculados , Realidad Virtual , Animales , Abejas/genética , Encéfalo/metabolismo , Genes Inmediatos-Precoces , Aprendizaje , Cuerpos Pedunculados/metabolismo
18.
J Exp Biol ; 225(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202460

RESUMEN

Adverse social experience affects social structure by modifying the behavior of individuals, but the relationship between an individual's behavioral state and its response to adversity is poorly understood. We leveraged naturally occurring division of labor in honey bees and studied the biological embedding of environmental threat using laboratory assays and automated behavioral tracking of whole colonies. Guard bees showed low intrinsic levels of sociability compared with foragers and nurse bees, but large increases in sociability following exposure to a threat. Threat experience also modified the expression of caregiving-related genes in a brain region called the mushroom bodies. These results demonstrate that the biological embedding of environmental experience depends on an individual's societal role and, in turn, affects its future sociability.


Asunto(s)
Encéfalo , Cuerpos Pedunculados , Animales , Abejas/genética , Encéfalo/fisiología , Expresión Génica , Cuerpos Pedunculados/metabolismo , Red Social
19.
Neurosci Lett ; 769: 136432, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34974109

RESUMEN

The Drosophila Bicra (CG11873) gene encodes the sole ortholog of mammalian GLTSCR1 and GLTSCR1L, which are components of a chromatin remodeling complex involved in neoplasia and metastasis of cancer cells. Bicra is highly expressed in Drosophila larval CNS and adult brain, yet its physiological functions in the nervous system remain elusive. Here we report that Bicra is expressed in both neurons and glia of adult brains, and is required for courtship learning and choice ability of male flies. The function of Bicra in the mushroom body, and in particular, Bicra expression in neurons but not glia, is responsible for the male courtship learning and choice performance. This study unravels a novel function of Bicra in cognition-related courtship behaviors in Drosophila, and may provide insight into the neuronal functions of its mammalian orthologs.


Asunto(s)
Conducta de Elección , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Aprendizaje , Preferencia en el Apareamiento Animal , Cuerpos Pedunculados/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Supresoras de Tumor/genética
20.
Insect Sci ; 29(3): 683-690, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34580998

RESUMEN

Brain transcriptional regulatory network for behavior demonstrates that brain gene expression in the honey bee can be accurately predicted from the expression transcription factors (TFs), but roles for specific TFs are less understood. Mushroom bodies (MBs) are important for learning, memory and sensory integration in the honey bee brain. A TFs, Mblk-1, expressed preferentially in the large-type Kenyon cells of the honeybee MBs is predicted to be involved in brain function by regulating transcription of its target genes in honey bee. However, its function and the mechanism of regulation in behavior of honey bee is still obscure. Here we show that Mblk-1 had significantly higher expression in the brains of forager bees relative to nurse bees. Mblk-1 was significantly inhibited in bees fed small interfering RNA. In addition, inhibition of Mblk-1 decreased sucrose responsiveness in foragers. Finally, we determined that Mblk-1 regulated the messenger RNA of AmGR1. These findings suggest that Mblk-1 may target AmGR1 to regulate the sucrose responsiveness of foragers.


Asunto(s)
Cuerpos Pedunculados , Azúcares , Animales , Abejas/genética , Encéfalo/metabolismo , Cuerpos Pedunculados/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...