Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.875
Filtrar
1.
J Nanobiotechnology ; 22(1): 370, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918856

RESUMEN

Parkinson's disease (PD) is the second largest group of neurodegenerative diseases, and its existing drug treatments are not satisfactory. Natural cell membrane drugs are used for homologous targeting to enhance efficacy. In this study, microfluidic electroporation chip prepared mesenchymal stem cell-derived neuron-like cell membrane-coated curcumin PLGA nanoparticles (MM-Cur-NPs) was synthesized and explored therapeutic effect and mechanism in PD. MM-Cur-NPs can protect neuron from damage, restore mitochondrial membrane potential and reduce oxidative stress in vitro. In PD mice, it also can improve movement disorders and restore damaged TH neurons. MM-Cur-NPs was found to be distributed in the brain and metabolized with a delay within 24 h. After 1 h administration, MM-Cur-NPs were distributed in brain with a variety of neurotransmitters were significantly upregulated, such as dopamine. Differentially expressed genes of RNA-seq were enriched in the inflammation regulation, and it was found the up-expression of anti-inflammatory factors and inhibited pro-inflammatory factors in PD. Mechanically, MM-Cur-NPs can not only reduce neuronal apoptosis, inhibit the microglial marker IBA-1 and inflammation, but also upregulate expression of neuronal mitochondrial protein VDAC1 and restore mitochondrial membrane potential. This study proposes a therapeutic strategy provide neuroprotective effects through MM-Cur-NPs therapy for PD.


Asunto(s)
Apoptosis , Membrana Celular , Inflamación , Células Madre Mesenquimatosas , Nanopartículas , Neuronas , Enfermedad de Parkinson , Animales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Nanopartículas/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Curcumina/farmacología , Curcumina/química , Ratones Endogámicos C57BL , Microfluídica/métodos , Masculino , Estrés Oxidativo/efectos de los fármacos
2.
ACS Sens ; 9(6): 3455-3464, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38875528

RESUMEN

Even though significant advances have been made, there is still a lack of reliable sensors capable of noninvasively monitoring bilirubin and diagnosing jaundice as the most common neonatal disease, particularly at the point-of-care (POC) where blood sampling from infants is accompanied by serious challenges and concerns. Herein, for the first time, using an easy-to-fabricate/use assay, we demonstrate the capability of curcumin embedded within paper for noninvasive optical monitoring of bilirubin in saliva. The highly selective sensing of the developed sensor toward bilirubin is attributed to bilirubin photoisomerization under blue light exposure, which can selectively restore the bilirubin-induced quenched fluorescence of curcumin. We also fabricated an IoT-enabled hand-held optoelectronic reader to measure and quantify the fluorescence and color signals of our sensor. Clinical analysis on the saliva of 18 jaundiced infants by using our developed smart salivary sensor proved that it is amenable to be widely exploited in POC applications for bilirubin monitoring as there are good correlations between its results with those of reference methods in saliva and blood. Meeting all WHO's REASSURED criteria by our developed sensor makes it a highly promising sensor for smart noninvasive diagnosis and therapeutic monitoring of jaundice, hepatitis, and other bilirubin-induced neurologic diseases at the POC.


Asunto(s)
Bilirrubina , Curcumina , Ictericia , Sistemas de Atención de Punto , Saliva , Humanos , Saliva/química , Bilirrubina/análisis , Bilirrubina/sangre , Ictericia/diagnóstico , Ictericia/sangre , Curcumina/química , Recién Nacido , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Lactante
3.
Biomolecules ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927101

RESUMEN

In recent years, there has been growing interest in the development of metal-free, environmentally friendly, and cost-effective biopolymer-based piezoelectric strain sensors (bio-PSSs) for flexible applications. In this study, we have developed a bio-PSS based on pure deoxyribonucleic acid (DNA) and curcumin materials in a thin-film form and studied its strain-induced current-voltage characteristics based on piezoelectric phenomena. The bio-PSS exhibited flexibility under varying compressive and tensile loads. Notably, the sensor achieved a strain gauge factor of 407 at an applied compressive strain of -0.027%, which is 8.67 times greater than that of traditional metal strain gauges. Furthermore, the flexible bio-PSS demonstrated a rapid response under a compressive strain of -0.08%. Our findings suggest that the proposed flexible bio-PSS holds significant promise as a motion sensor, addressing the demand for environmentally safe, wearable, and flexible strain sensor applications.


Asunto(s)
Técnicas Biosensibles , Curcumina , ADN , Grafito , Curcumina/química , ADN/química , Grafito/química , Biopolímeros/química , Técnicas Biosensibles/métodos
4.
Chem Commun (Camb) ; 60(52): 6683-6686, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860957

RESUMEN

This study introduces boronic ester-based ROS-responsive amphiphilic copolymers for antioxidant drug delivery. Tuning the hydrophobic/hydrophilic balance optimized the size, curcumin encapsulation, ROS-triggered release, cellular uptake, and intracellular ROS scavenging. The lead P1b formulation self-assembled into stable 10 nm micelles enabling rapid ROS-triggered curcumin release and preferential cellular internalization. P1b eliminated over 90% of pathogenic intracellular ROS within 10 minutes, demonstrating a rapid antioxidant therapy.


Asunto(s)
Ácidos Borónicos , Curcumina , Ésteres , Polímeros , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Ésteres/química , Ésteres/farmacología , Humanos , Ácidos Borónicos/química , Curcumina/química , Curcumina/farmacología , Polímeros/química , Micelas , Interacciones Hidrofóbicas e Hidrofílicas , Antioxidantes/química , Antioxidantes/farmacología , Portadores de Fármacos/química , Tensoactivos/química , Tensoactivos/síntesis química , Liberación de Fármacos , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos , Estructura Molecular
5.
J Enzyme Inhib Med Chem ; 39(1): 2339901, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38864175

RESUMEN

The spices and aromatic herbs were used not only in cooking to add flavour and smell to dishes but also for medicinal use. Nigella sativa, also called black cumin, is one of the species that contains an important bioactive component, thymoquinone (TQ), which has antioxidant, anti-inflammatory, antimicrobial, and antidiabetic effects. Curcuma longa, which also includes curcumin, has numerous anti-cancer properties. However, the bioavailability of curcumin is lower than that of its analogs. An analog of curcumin (EF-24), which has better bioavailability than curcumin, is capable of exerting a high anti-cancer effect. In our study, we determined the effects of PON1 enzyme activity on the proliferation and aggressiveness of glioblastoma cancer treated with TQ and EF-24 from lysates of the glioblastoma cell line U87MG. The results were determined as increased PON1 activity after treatment with TQ and EF-24 in the U87MG cell line (p < 0.0001).


Asunto(s)
Arildialquilfosfatasa , Benzoquinonas , Proliferación Celular , Curcumina , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma , Humanos , Arildialquilfosfatasa/metabolismo , Arildialquilfosfatasa/antagonistas & inhibidores , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Benzoquinonas/farmacología , Benzoquinonas/química , Curcumina/farmacología , Curcumina/química , Curcumina/síntesis química , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Células Tumorales Cultivadas
6.
Carbohydr Polym ; 341: 122330, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876726

RESUMEN

Polyelectrolyte complexes (PECs) were elaborated from chitosan as cationic polymer and carboxy-methylpullulan (CMP), hyaluronic acid (HA) and their derivatives grafted with aminoguaiacol (G) with different degrees of substitution (DSGA) with the aim of obtaining nanogels for drug delivery. For each couple of polysaccharides, the charge ratios giving the smaller size with the lower PDI were selected to produce PECs. CMP_CHIT and CMP-G_CHIT PECs had smaller sizes (220-280 nm) than HA_CHIT and HA-G_CHIT PECs (280-390 nm). PECs were stable at 4 °C during 28 days at pH 5. In phosphate buffer saline (PBS) at pH 7.4, at 4 °C, a better stability of PECs based on CMP-G derivatives was observed. The hydrophobic associations between aminoguaiacol groups (highlighted by measurements of pyrene fluorescence) led to a better PECs' stabilization in PBS. The PECs' antioxidant and antibacterial activities were demonstrated and related to the DSGA. Diclofenac and curcumin were used as drug models: their loading reached 260 and 53 µg/mg PEC, respectively. The release of diclofenac in PBS at 37 °C followed a quasi-Fickian diffusion mechanism with release constant between 0.88 and 1.04 h-1. The curcumin release followed a slow linear increase in PBS/EtOH (60/40 V/V) with an effect of DSGA.


Asunto(s)
Antibacterianos , Quitosano , Curcumina , Ácido Hialurónico , Ácido Hialurónico/química , Quitosano/química , Quitosano/análogos & derivados , Curcumina/química , Curcumina/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Guayacol/química , Guayacol/análogos & derivados , Guayacol/farmacología , Diclofenaco/química , Diclofenaco/farmacología , Portadores de Fármacos/química , Polielectrolitos/química , Sistemas de Liberación de Medicamentos/métodos , Nanogeles/química , Glucanos/química , Escherichia coli/efectos de los fármacos , Liberación de Fármacos
7.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892468

RESUMEN

The biological activities and related mechanisms of curcumin, a major polyphenolic compound in turmeric, the rhizome of Curcuma longa, have been extensively investigated. Due to its poor solubility in water, the analysis of curcumin's biological activities is limited in most aqueous experimental systems. In the present study, the effects of polyvinyl alcohol (PVA), a dietary-compatible vehicle, on the solubility, stability, cellular uptake, and bioactivities of curcumin were investigated. Curcumin solubility was improved significantly by PVA; the color intensity of curcumin aqueous solution in the presence of PVA increased concentration-dependently with its peak shift to a shorter wavelength. Improved suspension stability and photostability of curcumin in an aqueous solution were also observed in the presence of PVA, even at 62.5 µg/mL. The scavenging activities of curcumin against DPPH, ABTS, AAPH radicals, and nitric oxide were enhanced significantly in the presence of PVA. PVA at 250 µg/mL also significantly enhanced the cytotoxic activity of curcumin against both HCT 116 colon cancer and INT 407 (HeLa-derived) embryonic intestinal cells by reducing the IC50 from 16 to 11 µM and 25 to 15 µM, respectively. PVA improved the cellular uptake of curcumin in a concentration-dependent manner in INT 407 cells; it increased the cellular levels more effectively at lower curcumin treatment concentrations. The present results indicate that PVA improves the solubility and stability of curcumin, and changes in these chemical behaviors of curcumin in aqueous systems by PVA could enhance the bioavailability and pharmacological efficacy of curcumin.


Asunto(s)
Curcumina , Alcohol Polivinílico , Solubilidad , Curcumina/farmacología , Curcumina/química , Alcohol Polivinílico/química , Humanos , Estabilidad de Medicamentos , Células HCT116 , Células HeLa , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Supervivencia Celular/efectos de los fármacos
8.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893567

RESUMEN

Curcumin (Cur) is a phytochemical with various beneficial properties, including antioxidant, anti-inflammatory, and anticancer activities. However, its hydrophobicity, poor bioavailability, and stability limit its application in many biological approaches. In this study, a novel amphiphilic chitosan wall material was synthesized. The process was carried out via grafting chitosan with succinic anhydride (SA) as a hydrophilic group and deoxycholic acid (DA) as a hydrophobic group; 1H-NMR, FTIR, and XRD were employed to characterize the amphiphilic chitosan (CS-SA-DA). Using a low-cost, inorganic solvent-based procedure, CS-SA-DA was self-assembled to load Cur nanomicelles. This amphiphilic polymer formed self-assembled micelles with a core-shell structure and a critical micelle concentration (CMC) of 0.093 mg·mL-1. Cur-loaded nanomicelles were prepared by self-assembly and characterized by the Nano Particle Size Potential Analyzer and transmission electron microscopy (TEM). The mean particle size of the spherical Cur-loaded micelles was 770 nm. The drug entrapment efficiency and loading capacities were up to 80.80 ± 0.99% and 19.02 ± 0.46%, respectively. The in vitro release profiles of curcumin from micelles showed a constant release of the active drug molecule. Cytotoxicity studies and toxicity tests for zebrafish exhibited the comparable efficacy and safety of this delivery system. Moreover, the results showed that the entrapment of curcumin in micelles improves its stability, antioxidant, and anti-inflammatory activity.


Asunto(s)
Antioxidantes , Quitosano , Curcumina , Micelas , Curcumina/farmacología , Curcumina/química , Quitosano/química , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Animales , Pez Cebra , Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Tensoactivos/química
9.
Int J Nanomedicine ; 19: 5721-5737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895153

RESUMEN

Purpose: Curcumin nanocrystals (Cur-NCs) were prepared by hot melt extrusion (HME) technology to improve the dissolution and bioavailability of curcumin (Cur). Methods: Cur-NCs with different drug-carrier ratios were prepared by one-step extrusion process with Eudragit® EPO (EEP) as the carrier. The dispersed size and solid state of Cur in extruded samples were characterized by dynamic light scattering (DLS), scanning electron microscope (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The thermal stability of Cur was analyzed by thermogravimetric analysis (TGA) and high performance liquid chromatography (HPLC). Dissolution and pharmacokinetics were studied to evaluate the improvement of dissolution and absorption of Cur by nano-preparation. Results: Cur-NCs with particle sizes in the range of 50~150 nm were successfully prepared by using drug-carrier ratios of 1:1, 2:1 and 4:1, and the crystal form of Cur was Form 1 both before and after HME. The extrudate powders showed very efficient dissolution with the cumulative dissolution percentage of 80% in less than 2 min, and the intrinsic dissolution rates of them were 13.68 ± 1.20 mg/min/cm2, 11.78 ± 0.57 mg/min/cm2 and 4.35 ± 0.20 mg/min/cm2, respectively, whereas that of pure Cur was only 0.04 ± 0.00 mg/min/cm2. The TGA data demonstrated that the degradation temperature of Cur was about 250 °C, while the HPLC results showed Cur was degraded when extruded at the temperature over 150 °C. Pharmacokinetic experiment showed a significant improvement in the absorption of Cur. The Cmax of Cur in the Cur-NC group was 1.68 times that of pure Cur group, and the Cmax and area under the curve (AUC0-∞) of metabolites were 2.79 and 4.07 times compared with pure Cur group. Conclusion: Cur-NCs can be prepared by HME technology in one step, which significantly improves the dissolution and bioavailability of Cur. Such a novel method for preparing insoluble drug nanocrystals has broad application prospects.


Asunto(s)
Disponibilidad Biológica , Curcumina , Tecnología de Extrusión de Fusión en Caliente , Nanopartículas , Tamaño de la Partícula , Solubilidad , Curcumina/farmacocinética , Curcumina/química , Curcumina/administración & dosificación , Nanopartículas/química , Animales , Tecnología de Extrusión de Fusión en Caliente/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Masculino , Rastreo Diferencial de Calorimetría , Estabilidad de Medicamentos , Liberación de Fármacos , Difracción de Rayos X , Ácidos Polimetacrílicos
10.
Anal Methods ; 16(24): 3983-3992, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38853673

RESUMEN

Edible oil-based switchable-hydrophilicity solvent liquid-liquid microextraction was coupled with smartphone digital image colorimetry for the determination of total curcuminoids. Images of the colored extracts were captured in a laboratory-made colorimetric box, which were then split into their red-green-blue channels. Optimum extraction conditions were achieved using 550 µL of almond oil as the extraction solvent and 0.40 M sodium hydroxide for hydrolysis of the oil to the salt of its fatty acid. Phosphoric acid (2.0 mL, 4.0 M) was used as the hydrophilicity-switching trigger, while pH of the sample solution adjusted to 5.50 and extraction time of 1.0 min, were found to be optimum. Optimum detection conditions were achieved at a distance of 7.0 cm from the detection camera, a region of interest of 175 px2, a detection wavelength of 420 nm and 50.0% brightness of the light source. The limit of detection was found to be 0.020 µg mL-1. A good linearity was achieved as indicated by coefficients of determination above 0.9965. The proposed method was used for the determination of total curcuminoids in tea and turmeric samples with percentage relative recoveries of 95.0-105.0% and percentage relative standard deviations below 8.7%.


Asunto(s)
Colorimetría , Microextracción en Fase Líquida , Aceites de Plantas , Teléfono Inteligente , Microextracción en Fase Líquida/métodos , Colorimetría/métodos , Aceites de Plantas/química , Interacciones Hidrofóbicas e Hidrofílicas , Curcumina/análisis , Curcumina/química , Análisis de los Alimentos/métodos , Solventes/química , Límite de Detección
11.
ACS Appl Mater Interfaces ; 16(24): 30997-31010, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38838270

RESUMEN

The importance of amyloid nanofibrils made from food proteins is rising in diverse fields, such as biomedicine and food science. These protein nanofibrils (PNFs) serve as versatile and sustainable building blocks for biomaterials, characterized by their high ß-sheet content and an ordered hydrogen bond network. These properties offer both stability and flexibility, along with an extreme aspect ratio and reactive functional groups. Plant-derived amyloid nanofibrils, such as soy protein isolate (SPI) PNFs, are increasingly favored due to their affordability and sustainability compared with animal proteins. This study aimed to explore the formation and application of SPI amyloid-like aggregates (SPIA) and their nanoencapsulation of curcumin (Cur) for biomedical purposes, particularly in wound healing. Under specific conditions of low pH and high temperature, SPIA formed, exhibited an amyloid nature, and successfully encapsulated Cur, thereby enhancing its stability and availability. Spectroscopic and microscopic analyses confirmed structural changes in SPIA upon the incorporation of Cur and the fabrication of SPIA@Cur. The obtained results indicate that in the presence of Cur, SPIA forms faster, attributed to accelerated SPI denaturation, an increased nucleation rate, and enhanced self-assembly facilitated by Cur's hydrophobic interactions and π-π stacking with SPI peptides. In vitro studies demonstrated the biocompatibility, biodegradability, and antioxidant properties of SPIA@Cur along with controlled release behavior. In vivo experiments in male Wistar rats revealed that both SPIA and SPIA@Cur significantly accelerate wound closure compared with untreated wounds, with SPIA@Cur showing slightly better efficacy. The histological analysis supported enhanced wound healing, indicating the potential of SPIA@Cur for biomedical applications.


Asunto(s)
Amiloide , Curcumina , Proteínas de Soja , Cicatrización de Heridas , Curcumina/química , Curcumina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Proteínas de Soja/química , Proteínas de Soja/farmacología , Animales , Amiloide/química , Amiloide/metabolismo , Ratas , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Nanofibras/química
12.
J Mol Model ; 30(7): 219, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896158

RESUMEN

CONTEXT: The rapid growth and diversification of drug delivery systems have been significantly supported by advancements in micro- and nano-technologies, alongside the adoption of biodegradable polymeric materials like poly(lactic-co-glycolic acid) (PLGA) as microcarriers. These developments aim to reduce toxicity and enhance target specificity in drug delivery. The use of in silico methods, particularly molecular dynamics (MD) simulations, has emerged as a pivotal tool for predicting the dynamics of species within these systems. This approach aids in investigating drug delivery mechanisms, thereby reducing the costs associated with design and prototyping. In this study, we focus on elucidating the diffusion mechanisms in curcumin-loaded PLGA particles, which are critical for optimizing drug release and efficacy in therapeutic applications. METHODS: We utilized MD to explore the diffusion behavior of curcumin in PLGA drug delivery systems. The simulations, executed with GROMACS, modeled curcumin molecules in a representative volume element of PLGA chains and water, referencing molecular structures from the Protein Data Bank and employing the CHARMM force field. We generated PLGA chains of varying lengths using the Polymer Modeler tool and arranged them in a bulk-like environment with Packmol. The simulation protocol included steps for energy minimization, T and p equilibration, and calculation of the isotropic diffusion coefficient from the mean square displacement. The Taguchi method was applied to assess the effects of hydration level, PLGA chain length, and density on diffusion. RESULTS: Our results provide insight into the influence of PLGA chain length, hydration level, and polymer density on the diffusion coefficient of curcumin, offering a mechanistic understanding for the design of efficient drug delivery systems. The sensitivity analysis obtained through the Taguchi method identified hydration level and PLGA density as the most significant input parameters affecting curcumin diffusion, while the effect of PLGA chain length was negligible within the simulated range. We provided a regression equation capable to accurately fit MD results. The regression equation suggests that increases in hydration level and PLGA density result in a decrease in the diffusion coefficient.


Asunto(s)
Curcumina , Portadores de Fármacos , Simulación de Dinámica Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Curcumina/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Portadores de Fármacos/química , Difusión , Sistemas de Liberación de Medicamentos/métodos
13.
Cell Biochem Funct ; 42(4): e4070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845544

RESUMEN

In this study, we report the cardioprotective effect of the glycerol monooleate (GMO) based nanocurcumin in both in vitro and in vivo conditions under a hyperthyroid state. The heart is one of the primary target organs sensitive to the action of thyroid hormone, and slight variations in the thyroid hormone serum concentrations result in measurable changes in cardiac performance. Hyperthyroidism-induced hypermetabolism is associated with oxidative stress and is an important mechanism responsible for the progression of heart failure. Curcumin has been known to play a protective role against oxidative stress-related diseases like Alzheimer's, asthma, and aging due to its antioxidant properties. Nevertheless, its potent biological activity has been hindered due to its poor bioavailability. To overcome this drawback, a GMO-based biodegradable nanoparticle (NP) formulation loaded with curcumin has been developed, and the protective effect of curcumin-loaded NPs was compared against the native drug. Oxidative stress parameters like reactive oxygen species (ROS) release, change in mitochondrial membrane permeability, lipid peroxidation (LPx), lactate dehydrogenase (LDH) release, and the activity and protein expression of the endogenous antioxidant enzymes like superoxide dismutase, catalase (CAT) and glutathione peroxidase were evaluated. The results from in vitro showed that curcumin-loaded NPs showed better DPPH and NO radical scavenging activity than native curcumin in a concentrations range of 2.5-20 µM. It was also observed that the nanoparticulate curcumin was comparatively more effective than native curcumin in protecting against ROS-induced membrane damage by reducing LPx and LDH leakage at low concentrations of 5-10 µM. Further, curcumin NPs performed better in facilitating the activities of antioxidant enzymes under in vitro and in vivo conditions with respect to time and concentrations, resulting in reduced cellular ROS levels. In this scenario, we anticipate that curcumin-loaded NPs can serve as a better antioxidant than its native counterpart in protecting the heart from oxidative stress-related diseases.


Asunto(s)
Curcumina , Nanopartículas , Estrés Oxidativo , Ratas Wistar , Curcumina/farmacología , Curcumina/química , Animales , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/química , Ratas , Masculino , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Miocardio/metabolismo , Miocardio/patología , Corazón/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos
14.
Carbohydr Polym ; 340: 122328, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857995

RESUMEN

This article presents a novel approach to treating prostate cancer using a nanocarrier composed of folic acid (FA), ß-cyclodextrin (ß-CD), and magnetic graphene oxide (MGO) as a theranostic agent. The carrier is designed to improve the solubility and bioavailability of curcumin, a potential therapeutic substance against prostate cancer. Folic acid receptors overexpressed on the surface of solid tumors, including prostate cancer, may facilitate targeted drug delivery to tumor cells while avoiding nonspecific effects on healthy tissues. The anticancer efficacy of Folic acid-curcumin@ß-CD-MGO in vitro was also examined on LNCaP (an androgen-dependent) and PC3 (an androgen-independent) prostate cancer cells. The relaxivity of nanoparticles in MRI images was also investigated as a diagnostic factor. The results showed a concentration-dependent inhibitory effect on cell proliferation, induction of oxidative damage, and apoptotic effects. Also, nanoparticle relaxometry shows that this agent can be used as a negative contrast agent in MRI images. Overall, this study represents a promising theranostic agent to improve the delivery and trace of curcumin and enhance its therapeutic potential in the treatment of prostate cancer.


Asunto(s)
Proliferación Celular , Curcumina , Ácido Fólico , Grafito , Neoplasias de la Próstata , Nanomedicina Teranóstica , beta-Ciclodextrinas , Curcumina/química , Curcumina/farmacología , Masculino , Grafito/química , Grafito/farmacología , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , beta-Ciclodextrinas/química , Nanomedicina Teranóstica/métodos , Ácido Fólico/química , Ácido Fólico/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Receptores de Folato Anclados a GPI/metabolismo , Liberación de Fármacos , Nanopartículas de Magnetita/química
15.
Int J Biol Macromol ; 272(Pt 2): 132830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825264

RESUMEN

Artificial graft serves as the primary grafts used in the clinical management of sports-related injuries. Until now, optimizing its graft-host integration remains a great challenge due to the excessive inflammatory response during the inflammatory phase, coupled with an absence of tissue-inductive capacity during the regeneration phase. Here, a multi-layered regenerated silk fibroin (RSF) coating loaded with curcumin (Cur) and Zn2+ on the surface of the PET grafts (Cur@Zn2+@PET) was designed and fabricated for providing time-matched regulation specifically tailored to address issues arising at both inflammatory and regeneration phases, respectively. The release of Cur and Zn2+ from the Cur@Zn2+@PET followed a time-programmed pattern in vitro. Specifically, cellular assays revealed that Cur@Zn2+@PET initially released Cur during the inflammatory phase, thereby markedly inhibit the expression of inflammatory cytokines TNF-a and IL-1ß. Meanwhile, a significant release of Zn2+ was major part during the regeneration phase, serving to induce the osteogenic differentiation of rBMSC. Furthermore, rat model of anterior cruciate ligament reconstruction (ACLR) showed that through time-programmed drug release, Cur@Zn2+@PET could suppress the formation of fibrous interface (FI) caused by inflammatory response, combined with significant new bone (NB) formation during regeneration phase. Consequently, the implementation of the Cur@Zn2+@PET characterized by its time-programmed release patterns hold considerable promise for improving graft-host integration for sports-related injuries.


Asunto(s)
Curcumina , Fibroínas , Zinc , Curcumina/farmacología , Curcumina/química , Animales , Zinc/química , Zinc/farmacología , Ratas , Fibroínas/química , Fibroínas/farmacología , Liberación de Fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Masculino , Osteogénesis/efectos de los fármacos , Ratas Sprague-Dawley
16.
Food Res Int ; 188: 114531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823850

RESUMEN

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Asunto(s)
Carboximetilcelulosa de Sodio , Curcumina , Digestión , Emulsiones , Geles , Interacciones Hidrofóbicas e Hidrofílicas , Reología , Curcumina/química , Emulsiones/química , Carboximetilcelulosa de Sodio/química , Geles/química , Proteínas Musculares , Aceite de Soja/química , Viscosidad , Tamaño de la Partícula , Miofibrillas/química , Miofibrillas/metabolismo , Ondas Ultrasónicas
17.
Food Res Int ; 188: 114492, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823875

RESUMEN

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Asunto(s)
Curcumina , Conservación de Alimentos , Perciformes , Dióxido de Silicio , Curcumina/farmacología , Curcumina/química , Animales , Dióxido de Silicio/química , Conservación de Alimentos/métodos , Nanopartículas , Alimentos Marinos , Solubilidad , Oxígeno Singlete , Fotólisis , Humanos
18.
Mikrochim Acta ; 191(6): 337, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777890

RESUMEN

A ratiometric fluorescence method comprising carbon dots (CDs) and rhodamine 6G (Rh-6G) encapsulated in the microcubes of metal-organic framework (MOF-5) is introduced for the sensitive detection of curcumin (Cur) in condiments. CDs@MOF-5@Rh-6G, synthesized by the adsorption of Rh-6G on MOF-5 embedded with CDs, showed two distinct emission peaks at 435 and 560 nm under excitation at 335 nm, and could be used for Cur detection by ratiometric fluorescence. In the presence of Cur, the fluorescence of the CDs at 435 nm (F435) was quenched by Cur owing to internal filtering and dynamic quenching effects, whereas the emission of Rh-6G at 560 nm (F560) remained unchanged (335 nm is the excitation wavelength, 435 and 560 nm are the emission wavelengths, in which F435/F560 values are used as the output results). Under optimal conditions, a linear relationship was observed between the Cur concentration (in the range 0.1-5 µmol/L) and F435/F560 value for CDs@MOF-5@Rh-6G, with a detection limit of 15 nmol/L. Notably, the proposed method could accurately detect Cur in mustard, curry, and red pepper powders. Therefore, this study could improve the quality control of food and facilitate the development of sensitive ratiometric fluorescence probes.


Asunto(s)
Carbono , Curcumina , Colorantes Fluorescentes , Límite de Detección , Estructuras Metalorgánicas , Puntos Cuánticos , Rodaminas , Espectrometría de Fluorescencia , Curcumina/química , Rodaminas/química , Carbono/química , Estructuras Metalorgánicas/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química
19.
Biomater Sci ; 12(12): 3163-3174, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38726643

RESUMEN

The current treatment for venous thrombosis during pregnancy is ineffective, primarily, due to the unique physiology of pregnant women. Most clinical medications have fetal side effects when they circulate in the body. We first synthesized nanomaterials (Cur-PFP@PC) using poly lactic-co-glycolic acid (PLGA) as the base material, with curcumin (Cur) and perfluoropentane (PFP) as core components. Subsequently, we encapsulated Cur-PFP@PC into the platelet membrane to synthesize P-Cur-PFP@PC. Under ultrasound guidance, in combination with low-intensity focused ultrasound (LIFU), PFP underwent a phase change, resulting in thrombolysis. The generated microbubbles enhanced the signal impact of ultrasound, and P-Cur-PFP@PC showed better performance than Cur-PFP@PC. P-Cur-PFP@PC can target thrombosis treatment, achieve visually and precisely controlled drug release, and repair damaged blood vessels, thus avoiding the adverse effects associated with traditional long-term drug administration.


Asunto(s)
Plaquetas , Curcumina , Curcumina/administración & dosificación , Curcumina/farmacología , Curcumina/química , Femenino , Embarazo , Humanos , Plaquetas/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Terapia Trombolítica , Animales , Fibrinolíticos/administración & dosificación , Fibrinolíticos/farmacología , Fibrinolíticos/química , Nanoestructuras/química , Nanoestructuras/administración & dosificación , Fluorocarburos/química , Fluorocarburos/farmacología , Fluorocarburos/administración & dosificación , Trombosis/tratamiento farmacológico , Liberación de Fármacos
20.
ACS Appl Mater Interfaces ; 16(21): 27177-27186, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38753304

RESUMEN

Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.


Asunto(s)
Curcumina , Dasatinib , Portadores de Fármacos , Elipticinas , Muramidasa , Nanopartículas , Muramidasa/química , Muramidasa/metabolismo , Nanopartículas/química , Curcumina/química , Curcumina/farmacología , Animales , Humanos , Ratones , Portadores de Fármacos/química , Dasatinib/química , Dasatinib/farmacología , Elipticinas/química , Elipticinas/farmacología , Células RAW 264.7 , Células MCF-7 , Tamaño de la Partícula , Fructosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...