Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1408179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119288

RESUMEN

Introduction: Hypervirulent Klebsiella pneumoniae (hvKp) and carbapenem-resistant K. pneumoniae (CR-Kp) are rapidly emerging as opportunistic pathogens that have a global impact leading to a significant increase in mortality rates among clinical patients. Anti-virulence strategies that target bacterial behavior, such as adhesion and biofilm formation, have been proposed as alternatives to biocidal antibiotic treatments to reduce the rapid emergence of bacterial resistance. The main objective of this study was to examine the efficacy of fatty acid-enriched extract (AWME3) derived from the fat of Black Soldier Fly larvae (Hermetia illucens) in fighting against biofilms of multi-drug resistant (MDR) and highly virulent Klebsiella pneumoniae (hvKp) pathogens. Additionally, the study also aimed to investigate the potential mechanisms underlying this effect. Methods: Crystal violet (CV) and ethidium bromide (EtBr) assays show how AWME3 affects the formation of mixed and mature biofilms by the KP ATCC BAA-2473, KPi1627, and KPM9 strains. AWME3 has shown exceptional efficacy in combating the hypermucoviscosity (HMV) virulent factors of KPi1627 and KPM9 strains when tested using the string assay. The rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains was detected through swimming, swarming, and twitching assays. The cell wall membrane disturbances induced by AWME3 were detected by light and scanning electron microscopy and further validated by an increase in the bacterial cell wall permeability and Lewis acid-base/van der Waals characteristics of K. pneumoniae strains tested by MATS (microbial adhesion to solvents) method. Results: After being exposed to 0.5 MIC (0.125 mg/ml) of AWME3, a significant reduction in the rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains, whereas the treated bacterial strains exhibited motility between 4.23 ± 0.25 and 4.47 ± 0.25 mm, while the non-treated control groups showed significantly higher motility ranging from 8.5 ± 0.5 to 10.5 ± 0.5 mm. Conclusion: In conclusion, this study demonstrates the exceptional capability of the natural AWME3 extract enriched with a unique combination of fatty acids to effectively eliminate the biofilms formed by the highly drug-resistant and highly virulent K. pneumoniae (hvKp) pathogens. Our results highlight the opportunity to control and minimize the rapid emergence of bacterial resistance through the treatment using AWME3 of biofilm-associated infections caused by hvKp and CRKp pathogens.


Asunto(s)
Antibacterianos , Biopelículas , Dípteros , Farmacorresistencia Bacteriana Múltiple , Ácidos Grasos , Klebsiella pneumoniae , Larva , Factores de Virulencia , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Animales , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Ácidos Grasos/metabolismo , Factores de Virulencia/metabolismo , Dípteros/microbiología , Larva/microbiología , Larva/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Virulencia/efectos de los fármacos , Infecciones por Klebsiella/microbiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo
2.
Microb Ecol ; 87(1): 91, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960913

RESUMEN

Coelopidae (Diptera), known as kelp flies, exhibit an ecological association with beached kelp and other rotting seaweeds. This unique trophic specialization necessitates significant adaptations to overcome the limitations of an algal diet. We aimed to investigate whether the flies' microbiome could be one of these adaptive mechanisms. Our analysis focused on assessing composition and diversity of adult and larval microbiota of the kelp fly Coelopa frigida. Feeding habits of the larvae of this species have been subject of numerous studies, with debates whether they directly consume kelp or primarily feed on associated bacteria. By using a 16S rRNA metabarcoding approach, we found that the larval microbiota displayed considerably less diversity than adults, heavily dominated by only four operational taxonomic units (OTUs). Phylogenetic placement recovered the most dominant OTU of the larval microbiome, which is the source of more than half of all metabarcoding sequence reads, as an undescribed genus of Orbaceae (Gammaproteobacteria). Interestingly, this OTU is barely found among the 15 most abundant taxa of the adult microbiome, where it is responsible for less than 2% of the metabarcoding sequence reads. The other three OTUs dominating the larval microbiome have been assigned as Psychrobacter (Gammaproteobacteria), Wohlfahrtiimonas (Gammaproteobacteria), and Cetobacterium (Fusobacteriota). Moreover, we also uncovered a distinct shift in the functional composition between the larval and adult stages, where our taxonomic profiling suggests a significant decrease in functional diversity in larval samples. Our study offers insights into the microbiome dynamics and functional composition of Coelopa frigida.


Asunto(s)
Bacterias , Dípteros , Larva , Microbiota , Filogenia , ARN Ribosómico 16S , Animales , Dípteros/microbiología , Larva/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Código de Barras del ADN Taxonómico , Kelp/microbiología
3.
Waste Manag ; 186: 259-270, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943817

RESUMEN

In a world with a population exceeding 8 billion people and continuing to grow, pollution from food and plastic waste is causing long-term issues in ecosystems. Potential solutions may be found by exploiting insect-based bioconversion. In this context, we investigated the impact of polyvinyl chloride microparticles (PVC-MPs) on the development of Hermetia illucens (black soldier fly; BSF) and its midgut bacterial and fungal microbiota. The impact of PVC-MPs was evaluated feeding BSF larvae with a PVC-MPs-supplemented diet. The larvae exposed to different PVC-MPs concentrations (2.5%, 5%, 10% and 20% w/w) developed into adults with no significant increase in pupal mortality. Faster development and smaller pupae were observed when 20% PVC-MPs was provided. The BSF larvae ingest PVC-MPs, resulting in a reduction in MPs size. Larvae exposed to PVC-MPs did not exhibit differences in gut morphology. Regarding the impact of PVC-MPs on the structure of both bacterial and fungal communities, the overall alpha- and beta-diversity did not exhibit significant changes. However, the presence of PVC-MPs significantly affected the relative abundances of Enterobacteriaceae and Paenibacillaceae among the bacteria and of Dipodascaceae and Plectospharellaceae among the fungi (including yeast and filamentous life forms), suggesting that PVC-MP contamination has a taxa-dependent impact. These results indicate that BSF larvae can tolerate PVC-MPs in their diet, supporting the potential use of these insects in organic waste management, even in the presence of high levels of PVC-MP contamination.


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Larva , Microplásticos , Animales , Larva/microbiología , Dípteros/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Cloruro de Polivinilo , Hongos/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Dieta , Micobioma
4.
Parasitol Res ; 123(6): 255, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922514

RESUMEN

Hyperparasitism is defined as the interaction where one parasite is infected by another parasite. In bat flies (Streblidae and Nycteribiidae), both hyperparasites and microparasites (bacteria, viruses, fungi, and arthropods such as mites) have been documented. Fungi belonging to the order Laboulbeniales are microscopic parasites of a wide diversity of arthropod hosts. Three genera exclusively target bat flies: Arthrorhynchus, which parasitizes species within Nycteribiidae in the Eastern Hemisphere, while genus Gloeandromyces and Nycteromyces parasitize Streblidae in the Western Hemisphere. Among the hyperparasitic arthropods, mites of family Neothrombidiidae, particularly the monospecific genus Monunguis, are known to parasitize bat flies. Here we present the first records of the hyperparasites Monunguis streblida and Gloeandromyces pageanus f. polymorphus parasitizing Streblidae bat flies in Colombia and a summary of these hyperparasitic interactions in the Neotropics. We detected fungi and mites parasitizing bat flies that were collected in the Magdalena River Basin, Colombia, in field expeditions in 2018, 2022, and 2023. We identified 17 bat flies and two species of hyperparasites, specifically M. streblida and the fungi Gloeandromyces. Our search for reports of these interactions in the Neotropics revealed that seven species of Trichobius (Streblidae) are parasitized by M. streblida, whereas Paratrichobius longicrus (Streblidae) is parasitized by Gloeandromyces pageanus f. polymorphus. These interactions have been reported in 11 countries, but our records are the first of M. streblida and Laboulbeniales fungi parasitizing bat flies in Colombia. So far, a total of 14 species of fungi and one species of mite have been associated with 19 species of bat flies, which in turn, are linked to 15 species of Neotropical bats.


Asunto(s)
Quirópteros , Dípteros , Animales , Dípteros/microbiología , Dípteros/parasitología , Quirópteros/parasitología , Colombia , Ácaros/microbiología , Ácaros/fisiología , Interacciones Huésped-Parásitos
5.
BMC Infect Dis ; 24(1): 569, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849747

RESUMEN

BACKGROUND: Flies are acknowledged as vectors of diseases transmitted through mechanical means and represent a significant risk to human health. The study aimed to determine the prevalence of enteropathogens carried by flies in Pudong New Area to inform strategies for preventing and controlling flies. METHODS: Samples were collected from various locations in the area using cage trapping techniques between April and November 2021, encompassing various habitats such as parks, residential areas, restaurants, and farmers' markets. The main fly species were identified using cryomicrography and taxonomic enumeration, with 20 samples per tube collected from different habitats. Twenty-five enteropathogens were screened using GI_Trial v3 TaqManTM microbial arrays. RESULTS: A total of 3,875 flies were collected from 6,400 placements, resulting in an average fly density of 0.61 flies per cage. M. domestica were the most common species at 39.85%, followed by L. sericata at 16.57% and B. peregrina at 13.14%. Out of 189 samples, 93 tested positive for enteropathogens, with nine different pathogens being found. 12.70% of samples exclusively had parasites, a higher percentage than those with only bacteria or viruses. The study found that M. domestica had fewer enteropathogens than L. sericata and B. peregrina, which primarily harbored B. hominis instead of bacteria and viruses such as E. coli, Astrovirus, and Sapovirus. During spring testing, all three fly species exhibited low rates of detecting enteropathogens. M. domestica were found in residential areas with the highest number of pathogen species, totaling six. In contrast, L. sericata and B. peregrina were identified in farmers' markets with the highest number of pathogen species, totaling six and seven, respectively. CONCLUSIONS: Flies have the potential to serve as vectors for the transmission of enteropathogens, thereby posing a substantial risk to public health.


Asunto(s)
Insectos Vectores , Animales , Humanos , Insectos Vectores/microbiología , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , China/epidemiología , Dípteros/microbiología , Virus/aislamiento & purificación , Virus/clasificación , Virus/genética , Muscidae/microbiología
6.
mSphere ; 9(7): e0033624, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920390

RESUMEN

Hematophagous Stomoxys (stable) fly populations in dairy barns are sustained by a constant availability of cattle hosts and manure, which serve as major reservoirs of both zoonotic and opportunistic bacterial pathogens. However, the composition of the Stomoxys fly microbiota, the mechanisms by which flies acquire their microbiome, and the ability of potentially pathogenic bacteria to colonize and persist in fly hosts remain to be investigated. Here, we longitudinally collected fly and manure samples from two connected dairy facilities. High throughput 16S rRNA gene amplicon sequencing was then used to characterize and compare bacterial communities present on or within flies and in manure collected from the same facility, while culture-dependent methods were used to verify the viability of clinically relevant bacteria. Bacterial alpha diversity was overall higher in manure samples as compared to fly samples, with manure-associated bacterial communities being dominated by members of the Bacteroidales, Eubacteriales, and Oscillospirales. In contrast, flies harbored relatively low-complexity communities dominated by members of the Enterobacterales, Staphylococcales, and Lactobacillales. Clinically relevant bacterial strains, including Escherichia spp. and other taxa associated with mastitic cows housed in the same facilities, were detected in paired fly and manure samples but exhibited dramatically elevated abundances in fly samples as compared to manure samples. Viable colonies of Escherichia, Klebsiella, and Staphylococcus spp. were also readily isolated from fly samples, confirming that flies harbor culturable mastitis-associated bacteria. This study identifies biting flies as bona fide carriers of opportunistically pathogenic bacterial taxa on dairy farms. IMPORTANCE: Disease prevention on dairy farms has significant implications for cattle health, food security, and zoonosis. Of particular importance is the control of bovine mastitis, which can be caused by diverse bacteria, including Klebsiella, Escherichia coli, Streptococcus, and Staphylococcus spp. Despite being one of the most significant and costly cattle diseases worldwide, the epidemiology of bovine mastitis is not well understood. This study provides parallel culture-independent and culture-dependent evidence to support the carriage of opportunistically pathogenic bacteria by Stomoxys flies on dairy farms. We further show that the fly microbiota is enriched in clinically relevant taxa-the vast majority of which can be traced to the manure habitats in which flies breed. Altogether, our results identify biting flies as underrecognized carriers of bacterial taxa associated with environmental bovine mastitis and other opportunistic infections in vertebrates and offer important insights into mechanisms of microbial acquisition by these and other medically important insects.


Asunto(s)
Bacterias , Estiércol , Mastitis Bovina , Microbiota , ARN Ribosómico 16S , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bovinos , Femenino , Estiércol/microbiología , ARN Ribosómico 16S/genética , Mastitis Bovina/microbiología , Microbiota/genética , Dípteros/microbiología , Muscidae/microbiología
7.
PLoS One ; 19(5): e0301274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776328

RESUMEN

Wolbachia is a maternally inherited intracellular bacterium that is considered to be the most plentiful endosymbiont found in arthropods. It reproductively manipulates its host to increase the chances of being transmitted to the insect progeny; and it is currently used as a means of suppressing disease vector populations or controlling vector-borne diseases. Studies of the dissemination and prevalence of Wolbachia among its arthropod hosts are important for its possible use as a biological control agent. The molecular identification of Wolbachia relies on different primers sets due to Wolbachia strain variation. Here, we screened for the presence of Wolbachia in a broad range of Brachycera fly species (Diptera), collected from different regions of Iran, using nine genetic markers (wsp, ftsZ, fbpA, gatB, CoxA, gltA, GroEL dnaA, and 16s rRNA), for detecting, assessing the sensitivity of primers for detection, and phylogeny of this bacterium. The overall incidence of Wolbachia among 22 species from six families was 27.3%. The most commonly positive fly species were Pollenia sp. and Hydrotaea armipes. However, the bacterium was not found in the most medically important flies or in potential human disease vectors, including Musca domestica, Sarcophaga spp., Calliphora vicinia, Lucilia sericata, and Chrysomya albiceps. The primer sets of 16s rRNA with 53.0% and gatB with 52.0% were the most sensitive primers for detecting Wolbachia. Blast search, phylogenetic, and MLST analysis of the different locus sequences of Wolbachia show that all the six distantly related fly species likely belonging to supergroup A. Our study showed some primer sets generated false negatives in many of the samples, emphasizing the importance of using different loci in detecting Wolbachia. The study provides the groundwork for future studies of a Wolbachia-based program for control of flies.


Asunto(s)
Dípteros , Filogenia , Wolbachia , Wolbachia/genética , Wolbachia/aislamiento & purificación , Animales , Irán , Dípteros/microbiología , ARN Ribosómico 16S/genética
8.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732070

RESUMEN

Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).


Asunto(s)
Genoma Bacteriano , Filogenia , Simbiosis , Wolbachia , Wolbachia/genética , Wolbachia/clasificación , Simbiosis/genética , Animales , Asia , América del Norte , Hemípteros/microbiología , Hemípteros/genética , Dípteros/microbiología , Dípteros/genética , Polimorfismo de Nucleótido Simple
9.
Curr Opin Insect Sci ; 64: 101208, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821141

RESUMEN

Insects are frequently infected with heritable bacterial endosymbionts. Some of them confer resistance to parasitoids. Such defensive symbionts are sensitive to variation in temperature. Drawing predominantly from the literature on aphids and flies, we show that temperature can affect the reliability of maternal transmission and the strength of protection provided by defensive symbionts. Costs of infection with defensive symbionts can also be temperature-dependent and may even turn into benefits under extreme temperatures, for example, when defensive symbionts increase heat tolerance. Alone or in combination, these mechanisms can drive temperature-associated (latitudinal) clines of infection prevalence with defensive symbionts. This has important consequences for host-parasitoid coevolution, as the relative importance of host-encoded vs. symbiont-provided defenses will shift along such clines.


Asunto(s)
Simbiosis , Temperatura , Animales , Insectos/fisiología , Insectos/microbiología , Insectos/parasitología , Interacciones Huésped-Parásitos , Áfidos/fisiología , Áfidos/microbiología , Áfidos/parasitología , Dípteros/fisiología , Dípteros/microbiología
10.
Sci Rep ; 14(1): 9903, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688964

RESUMEN

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Asunto(s)
Agaricales , Microbioma Gastrointestinal , Larva , Pleurotus , Animales , Larva/microbiología , Pleurotus/metabolismo , Agaricales/metabolismo , Agaricales/genética , Biodegradación Ambiental , Dípteros/microbiología , Dípteros/metabolismo , Flammulina/metabolismo , Flammulina/genética , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
11.
Open Vet J ; 14(3): 902-912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38682129

RESUMEN

Background: Aeromonas hydrophila (A. hydrophila) is a bacterium with zoonotic potential and is multidrug-resistant. It utilizes hemolysin and aerolysin to spread infection. Black soldier flies (BSFs) can be antibacterial because of the fatty acids it contains. Aims: This study aimed to investigate and compare the fatty acid profiles of BSF prepupae grown in fermented and nonfermented media using bioinformatics tools and assess their potential as antibacterial agents against A. hydrophila. Methods: The study used BSF prepupae reared on various organic substrates. BSF prepupae grown in fermented or nonfermented substrate were observed against fatty acid. The fatty acid analysis was performed using GC-MS. Fatty acids were analyzed statistically using the one-way ANOVA test with a 95% confidence level. Fatty acid bioactivity was predicted using the online PASS-two-way drug program. Molecular docking on BSF fatty acid compounds was analyzed with PyMol 2.2 and discovery Studio version 21.1.1. Results: The molecular docking test showed the strongest bond was oleic acid with aerolysin and linoleic acid with hemolysin. BSF prepupae grown on fermented media showed higher crude fat and saturated fatty acids (SFAs) but lower unsaturated fatty acids than nonfermented media. Conclusion: Black soldier fly prepupae, particularly those grown on fermented media, possess antibacterial activity against A. hydrophila through potential fatty acid-mediated inhibition of crucial virulence factors.


Asunto(s)
Aeromonas hydrophila , Ácidos Grasos , Fermentación , Aeromonas hydrophila/efectos de los fármacos , Animales , Ácidos Grasos/metabolismo , Biología Computacional , Antibacterianos/farmacología , Dípteros/microbiología , Proteínas Hemolisinas/metabolismo , Larva/microbiología , Simulación del Acoplamiento Molecular
12.
Sci Total Environ ; 924: 171674, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479533

RESUMEN

Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.


Asunto(s)
Dípteros , Microplásticos , Ácidos Ftálicos , Animales , Larva , Plásticos , Plastificantes , Dípteros/microbiología , Ésteres
13.
Vet Med Sci ; 10(3): e1417, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38516829

RESUMEN

BACKGROUND: Hippoboscid flies are bloodsucking arthropods that can transmit pathogenic microorganisms and are therefore potential vectors for pathogens such as Bartonella spp. These Gram-negative bacteria can cause mild-to-severe clinical signs in humans and animals; therefore, monitoring Bartonella spp. prevalence in louse fly populations appears to be a useful prerequisite for zoonotic risk assessment. METHODS: Using convenience sampling, we collected 103 adult louse flies from four ked species (Lipoptena cervi, n = 22; Lipoptena fortisetosa, n = 61; Melophagus ovinus, n = 12; Hippobosca equina, n = 8) and the pupae of M. ovinus (n = 10) in the federal state of Saxony, Germany. All the samples were screened by polymerase chain reaction (PCR) for Bartonella spp. DNA, targeting the citrate synthase gene (gltA). Subsequently, PCRs targeting five more genes (16S, ftsZ, nuoG, ribC and rpoB) were performed for representatives of revealed gltA genotypes, and all the PCR products were sequenced to identify the Bartonella (sub)species accurately. RESULTS AND CONCLUSIONS: The overall detection rates for Bartonella spp. were 100.0%, 59.1%, 24.6% and 75.0% in M. ovinus, L. cervi, L. fortisetosa and H. equina, respectively. All the identified bartonellae belong to the Bartonella schoenbuchensis complex. Our data support the proposed reclassification of the (sub)species status of this group, and thus we conclude that several genotypes of B. schoenbuchensis were detected, including Bartonella schoenbuchensis subsp. melophagi and Bartonella schoenbuchensis subsp. schoenbuchensis, both of which have previously validated zoonotic potential. The extensive PCR analysis revealed the necessity of multiple PCR approach for proper identification of the ruminant-associated bartonellae.


Asunto(s)
Bartonella , Dípteros , Phthiraptera , Humanos , Animales , Dípteros/genética , Dípteros/microbiología , Phthiraptera/genética , ADN Bacteriano/genética , Bartonella/genética , Rumiantes/genética , ADN , Alemania/epidemiología , Reacción en Cadena de la Polimerasa/veterinaria
14.
BMC Microbiol ; 24(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172653

RESUMEN

The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.


Asunto(s)
Dípteros , Gammaproteobacteria , Animales , Humanos , Gammaproteobacteria/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Dípteros/microbiología , Genómica , Larva
15.
BMC Microbiol ; 23(1): 378, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036998

RESUMEN

BACKGROUND: There is a global need to develop new therapies to treat infectious diseases and tackle the rise in antimicrobial resistance. To date, the larvae of the Black Solider Fly, Hermetia illucens, have the largest repertoire of antimicrobial peptides derived from insects. Antimicrobial peptides are of particular interest in the exploration of alternative antimicrobials due to their potent action and reduced propensity to induce resistance compared with more traditional antibiotics. RESULTS: The predicted attacin from H. illucens, Hill_BB_C10074, was first identified in the transcriptome of H. illucens populations that had been fed a plant-oil based diet. In this study, recombinant Hill_BB_C10074 (500 µg/mL), was found to possess potent antimicrobial activity against the serious Gram-negative pathogen, Pseudomonas aeruginosa. Sequence and structural homology modelling predicted that Hill_BB_C10074 formed a homotrimeric complex that may form pores in the Gram-negative bacterial outer membrane. In vitro experiments defined the antimicrobial action of Hill_BB_C10074 against P. aeruginosa and transmission electron microscopy and electrochemical impedance spectroscopy confirmed the outer membrane disruptive power of Hill_BB_C10074 which was greater than the clinically relevant antibiotic, polymyxin B. CONCLUSIONS: Combining predictive tools with in vitro approaches, we have characterised Hill_BB_C10074 as an important insect antimicrobial peptide and promising candidate for the future development of clinical antimicrobials.


Asunto(s)
Antiinfecciosos , Dípteros , Animales , Pseudomonas aeruginosa , Péptidos Antimicrobianos , Dípteros/microbiología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química
16.
mSystems ; 8(5): e0070623, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37750682

RESUMEN

IMPORTANCE: Insects that live exclusively on vertebrate blood utilize symbiotic bacteria as a source of essential compounds, e.g., B vitamins. In louse flies, the most frequent symbiont originated in genus Arsenophonus, known from a wide range of insects. Here, we analyze genomic traits, phylogenetic origins, and metabolic capacities of 11 Arsenophonus strains associated with louse flies. We show that in louse flies, Arsenophonus established symbiosis in at least four independent events, reaching different stages of symbiogenesis. This allowed for comparative genomic analysis, including convergence of metabolic capacities. The significance of the results is twofold. First, based on a comparison of independently originated Arsenophonus symbioses, it determines the importance of individual B vitamins for the insect host. This expands our theoretical insight into insect-bacteria symbiosis. The second outcome is of methodological significance. We show that the comparative approach reveals artifacts that would be difficult to identify based on a single-genome analysis.


Asunto(s)
Anoplura , Dípteros , Gammaproteobacteria , Complejo Vitamínico B , Animales , Dípteros/microbiología , Filogenia , Enterobacteriaceae , Simbiosis , Gammaproteobacteria/genética , Insectos , Bacterias
17.
Sci Total Environ ; 904: 166488, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611705

RESUMEN

The black soldier fly (BSF) rearing technology has been a promising bioconversion method for food waste (FW) disposal. However, when used independently, it currently only achieves low efficiency and biomass transformation rates (BTR). This study screened and identified two strains of gut beneficial bacteria, Bacillus cereus and Bacterium YC-LK-LKJ45. The efficiency of a complex culture formulated by these strains was investigated, focusing on enhancing FW reduction and high-value biomass production during the rearing of BSF larvae. The coculture agent group (G1-10%, with two strains in 1:1 volume ratio at a 10 % dosage) exhibited higher larval yield (627.67 g·kg-1), BTR (47.90 %), FW reduction efficiency (80.67 %), and total protein and fat yield (261.99 g·kg-1and 46.24 g·kg-1) compared to the control and the monoculture agent group (which added a single gut beneficial bacteria agent, either Bacillus cereus or Bacterium YC-LK-LKJ45). The bacterial agent altered the richness and diversity of the gut microbial community of BSF, increasing the relative abundance of beneficial bacteria such as Bacillus, Oceano bacillus, and Akkermansia, while decreasing pathogenic bacteria, such as Acinetobacter and Escherichia-Shigella. Structural equation model quantification revealed that α-diversity (λ = 0.897, p < 0.001) and BTR (λ = 0.747, p < 0.001) are crucial drivers for enhancing high-value biomass during bioaugmentation rearing. This investigation provides a theoretical framework for the effective management of food waste using BSF, enhancing its decomposition and transformation into higher-value biomass.


Asunto(s)
Bacillus , Dípteros , Microbioma Gastrointestinal , Eliminación de Residuos , Animales , Alimentos , Biomasa , Dípteros/microbiología , Larva/metabolismo , Bacterias
18.
J Med Entomol ; 60(6): 1388-1397, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37612042

RESUMEN

House flies (Musca domestica Linnaeus) are vectors of human and animal pathogens at livestock operations. Microbial communities in flies are acquired from, and correlate with, their local environment. However, variation among microbial communities carried by flies from farms in different geographical areas is not well understood. We characterized bacterial communities of female house flies collected from beef and dairy farms in Oklahoma, Kansas, and Nebraska using 16S rDNA amplicon sequencing and PCR. Bacterial community composition in house flies was affected by farm type and location. While the shared number of taxa between flies from beef or dairy farms was low, those taxa accounted >97% of the total bacterial community abundance. Bacterial species richness was 4% greater in flies collected from beef than in those collected from dairy farms and varied by farm type within states. Several potential pathogenic taxa were highly prevalent, comprising a core bacterial community in house flies from cattle farms. Prevalence of the pathogens Moraxella bovis and Moraxella bovoculi was greater in flies from beef farms relative to those collected on dairy cattle farms. House flies also carried bacteria with multiple tetracycline and florfenicol resistance genes. This study suggests that the house flies are significant reservoirs and disseminators of microbial threats to human and cattle health.


Asunto(s)
Dípteros , Moscas Domésticas , Muscidae , Humanos , Bovinos , Femenino , Animales , Dípteros/microbiología , Moscas Domésticas/microbiología , Granjas , Antibacterianos/farmacología , Prevalencia , Bacterias/genética , Farmacorresistencia Microbiana
19.
Med Vet Entomol ; 37(4): 865-870, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37341627

RESUMEN

Melophagus ovinus is a hematophagous insect that is distributed worldwide and plays a crucial role in transmitting disease-causing pathogens. From June 2021 to March 2022, a total of 370 M. ovinus were collected from 11 sampling points in southern Xinjiang, China. The specimens were identified using morphological and molecular analyses. Rickettsia spp. and Anaplasma ovis were detected from all the samples using seven Rickettsia-specific genetic markers and the msp-4 gene of A. ovis. Approximately 11% of the M. ovinus specimens were positive for Rickettsia spp., and Candidatus Rickettsia barbariae was the most predominant species (35/41; 85.4%), while R. massiliae was least prevalent (6/41; 14.6%). Approximately 10.5% (39/370) of the M. ovinus specimens were positive for A. ovis of genotype III, which was co-detected with Candidatus R. barbariae in M. ovinus (3/370; 0.8%). To the best of our knowledge, this is the first report of the detection of R. massiliae and Candidatus R. barbariae in M. ovinus globally. The detection and control of insect-borne diseases originating from M. ovinus should be strengthened in southern Xinjiang, an area important to animal husbandry and production.


Asunto(s)
Anaplasma ovis , Dípteros , Rickettsia , Animales , Ovinos , Rickettsia/genética , Filogenia , Dípteros/microbiología , China , Anaplasma
20.
Artículo en Inglés | MEDLINE | ID: mdl-37047972

RESUMEN

Bacteria inhabiting chronic wounds form a biofilm that prolongs and slows down the healing process. Increasingly common antibiotic resistance requires clinicians to search for effective and alternative treatment methods. Defensins are the most common antimicrobial peptides capable of eradicating pathogens. Their discovery in maggot secretions allowed for a broader understanding of the healing mechanisms, and approving the use of Lucilia sericata fly larvae in the treatment of infected wounds resulted in an effective and safe procedure. The aim of the study was to present the possibility of biofilm elimination in a chronic wound by means of medical maggots (Lucilia sericata) with the example of three selected clinical cases. The observation included three women who met the inclusion criterion of having venous insufficiency ulcers with inhibited regeneration processes. Medical maggots were applied in a biobag for three days, and observation was conducted for 21 consecutive days. In 2 cases, a significant elimination of necrotic tissue from the wound bed with local granulation tissue was observed 72 h after application of a larvae colony on the wounds. In 1 case, the application of the larvae accelerated the repair process by reducing the wound area by approximately 40% at the time of observation. The formation of biofilm in a chronic wound is one of the main causes of disturbances in its effective healing. Combining procedures (scraping, antiseptic compresses, MDT, NPWT) related to wound debridement increases the effectiveness of biofilm elimination. The use of medical maggots is a safe and effective method of choice, and it enhances the processes of debridement. However, confirmed indisputable data on their effectiveness and frequency of use in the process of stimulating healing processes are still not available in the literature.


Asunto(s)
Dípteros , Úlcera Varicosa , Animales , Femenino , Larva , Cicatrización de Heridas , Desbridamiento/métodos , Dípteros/microbiología , Defensinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA