Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Biotechnol Bioeng ; 120(12): 3557-3569, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37650151

RESUMEN

D-Amino acid oxidase (DAAO) selectively catalyzes the oxidative deamination of  D-amino acids, making it one of the most promising routes for synthesizing optically pure  L-amino acids, including  L-phosphinothricin ( L-PPT), a chiral herbicide with significant market potential. However, the native DAAOs that have been reported have low activity against unnatural acid substrate  D-PPT. Herein, we designed and screened a DAAO from Rhodotorula taiwanensis (RtwDAAO), and improved its catalytic potential toward  D-PPT through protein engineering. A semirational design approach was employed to create a mutation library based on the tunnel-pocket engineering. After three rounds of iterative saturation mutagenesis, the optimal variant M3rd -SHVG was obtained, exhibiting a >2000-fold increase in relative activity. The kinetic parameters showed that M3rd -SHVG improved the substrate binding affinity and turnover number. This is the optimal parameter reported so far. Further, molecular dynamics simulation revealed that the M3rd -SHVG reshapes the tunnel-pocket and corrects the direction of enzyme-substrate binding, allowing efficiently catalyze unnatural substrates. Our strategy demonstrates that the redesign of tunnel-pockets is effective in improving the activity and kinetic efficiency of DAAO, which provides a valuable reference for enzymatic catalysis. With the M3rd -SHVG as biocatalyst, 500 mM D, L-PPT was completely converted and the yield reached 98%. The results laid the foundation for further industrial production.


Asunto(s)
Aminoácidos , Ingeniería de Proteínas , Especificidad por Sustrato , Aminoácidos/metabolismo , Unión Proteica , Oxidorreductasas/metabolismo , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Cinética
2.
Nanomedicine ; 36: 102424, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174417

RESUMEN

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antineoplásicos , Citotoxinas , D-Aminoácido Oxidasa , Fibronectinas , Proteínas de Neoplasias , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citotoxinas/química , Citotoxinas/farmacología , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/farmacología , Fibronectinas/antagonistas & inhibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología
3.
Anal Bioanal Chem ; 413(27): 6793-6802, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33791826

RESUMEN

Challenges facing enzyme-based electrochemical sensors include substrate specificity, batch to batch reproducibility, and lack of quantitative metrics related to the effect of enzyme immobilization. We present a quick, simple, and general approach for measuring the effect of immobilization and cross-linking on enzyme activity and substrate specificity. The method can be generalized for electrochemical biosensors using an enzyme that releases hydrogen peroxide during its catalytic cycle. Using as proof of concept RgDAAO-based electrochemical biosensors, we found that the Michaelis-Menten constant (Km) decreases post immobilization, hinting at alterations in the enzyme kinetic properties and thus substrate specificity. We confirm the decrease in Km electrochemically by characterizing the substrate specificity of the immobilized RgDAAO using chronoamperometry. Our results demonstrate that enzyme immobilization affects enzyme substrate specificity and this must be carefully evaluated during biosensor development.


Asunto(s)
D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Técnicas Electroquímicas/métodos , Alanina/metabolismo , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Catálisis , D-Aminoácido Oxidasa/genética , Técnicas Electroquímicas/instrumentación , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Cinética , Microelectrodos , Fenilendiaminas/química , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Serina/metabolismo , Especificidad por Sustrato
4.
Cell Mol Life Sci ; 78(7): 3607-3620, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33484270

RESUMEN

The flavoenzyme D-amino acid oxidase (DAAO) is deputed to the degradation of D-enantiomers of amino acids. DAAO plays various relevant physiological roles in different organisms and tissues. Thus, it has been recently suggested that the goblet cells of the mucosal epithelia secrete into the lumen of intestine, a processed and active form of DAAO that uses the intestinal D-amino acids to generate hydrogen peroxide (H2O2), an immune messenger that helps fighting gut pathogens, and by doing so controls the homeostasis of gut microbiota. Here, we show that the DAAO form lacking the 1-16 amino acid residues (the putative secretion signal) is unstable and inactive, and that DAAO is present in the epithelial layer and the mucosa of mouse gut, where it is largely proteolyzed. In silico predicted DAAO-derived antimicrobial peptides show activity against various Gram-positive and Gram-negative bacteria but not on Lactobacilli species, which represent the commensal microbiota. Peptidomic analysis reveals the presence of such peptides in the mucosal fraction. Collectively, we identify a novel mechanism for gut microbiota selection implying DAAO-derived antimicrobial peptides which are generated by intestinal proteases and that are secreted in the gut lumen. In conclusion, we herein report an additional, ancillary role for mammalian DAAO, unrelated to its enzymatic activity.


Asunto(s)
Antibacterianos/farmacología , D-Aminoácido Oxidasa/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , Femenino , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conformación Proteica , Ratas , Ratas Wistar , Homología de Secuencia
5.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 517-523, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135670

RESUMEN

D-Amino-acid oxidases (DAAOs) catalyze the oxidative deamination of neutral and basic D-amino acids. The DAAO from the thermophilic fungus Rasamsonia emersonii strain YA (ReDAAO) has a high thermal stability and a unique broad substrate specificity that includes the acidic D-amino acid D-Glu as well as various neutral and basic D-amino acids. In this study, ReDAAO was crystallized by the hanging-drop vapor-diffusion method and its crystal structure was determined at a resolution of 2.00 Å. The crystal structure of the enzyme revealed that unlike other DAAOs, ReDAAO forms a homotetramer and contains an intramolecular disulfide bond (Cys230-Cys285), suggesting that this disulfide bond is involved in the higher thermal stability of ReDAAO. Moreover, the structure of the active site and its vicinity in ReDAAO indicates that Arg97, Lys99, Lys114 and Ser231 are candidates for recognizing the side chain of D-Glu.


Asunto(s)
D-Aminoácido Oxidasa/química , Eurotiales/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Disulfuros/química , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Glutámico/metabolismo , Modelos Moleculares , Conformación Proteica
6.
Enzymes ; 47: 117-136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32951821

RESUMEN

An R-stereoselective amine oxidase and variants with markedly altered substrate specificity toward (R)-amines were generated from porcine d-amino acid oxidase (pkDAO), based on the X-ray crystallographic analysis of the wild-type enzyme. The new R-amine oxidase, a pkDAO variant (Y228L/R283G), acted on α-MBA and its derivatives, α-ethylbenzylamine, alkylamine, and cyclic secondary amines, totally losing the activities toward the original substrates, d-amino acids. The variant is enantiocomplementary to the flavin-type S-stereoselective amine oxidase variant from Aspergillus niger. Moreover, we solved the structure of pkDAO variants and successfully applied the obtained information to generate more variants through rational protein engineering, and used them in the synthesis of pharmaceutically attractive chiral compounds. The pkDAO variant Y228L/R283G and a variant I230A/R283G were used to synthesize (S)-amine and (R)-4-CBHA through deracemization, from racemic α-methylbenzylamine and benzhydrylamine, respectively, by selective oxidation of one of the enantiomers in the presence of a chemical reductant such as NaBH4. From a mechanistic point of view, we speculated that the imine intermediate, synthesized by oxidases or dehydrogenases, could be converted into primary α-aminonitrile by nucleophilic addition of cyanide in aqueous solutions. Nitriles and some unnatural amino acids were synthesized through a cascade reaction by oxidative cyanation reaction with the variant and a wide substrate specificity nitrilase.


Asunto(s)
D-Aminoácido Oxidasa/química , Riñón/enzimología , Ingeniería de Proteínas , Aminoácidos , Animales , Especificidad por Sustrato , Porcinos
7.
J Biochem ; 168(5): 557-567, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32730563

RESUMEN

Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at Position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared with wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7-0.9 µM) compared with wild-type (1.2-2.0 µM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. This study provides new insights into the structure-function relationship of human DAO.


Asunto(s)
Cristalografía por Rayos X/métodos , D-Aminoácido Oxidasa/metabolismo , Enfermedades Neurodegenerativas/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Catálisis , Dominio Catalítico , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/aislamiento & purificación , Humanos , Ligandos , Modelos Moleculares , Enfermedades Neurodegenerativas/patología , Conformación Proteica , Relación Estructura-Actividad
8.
Talanta ; 216: 120963, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32456898

RESUMEN

A porous polymer membrane-based d-amino acid oxidase (DAAO) reactor was developed that mimicked enzymatic activity in a renal ischemia model. Using glycidyl methacrylate as a biocompatible reactive monomer, poly(styrene-glycidyl methacrylate) was synthesized via a reversible addition fragment chain transfer polymerization technique. The prepared porous polymer membrane was used as a support to effectively immobilize DAAO. Compared to DAAO modified on nonporous polymer membrane and free DAAO in solution, the constructed porous polymer membrane-based DAAO enzyme reactor displayed 3-fold and 19-fold increase in enzymolysis efficiency, respectively. In addition, a chiral ligand exchange capillary electrophoresis system for DAAO was used to study DAAO enzymatic kinetics with d,l-methionine as the substrate. The proposed porous polymer membrane-based enzyme reactor showed excellent performance both on reproducibility and stability. Moreover, the enzyme reactor was successfully applied to mimic DAAO activity in a renal ischemia model. These results demonstrated that the enzyme could be efficiently immobilized onto a porous polymer membrane as an enzyme reactor and has great potential in mimicking the enzymatic activity in kidney.


Asunto(s)
Reactores Biológicos , D-Aminoácido Oxidasa/metabolismo , Compuestos Epoxi/metabolismo , Riñones Artificiales , Metacrilatos/metabolismo , Modelos Biológicos , Ácidos Polimetacrílicos/metabolismo , D-Aminoácido Oxidasa/sangre , D-Aminoácido Oxidasa/química , Compuestos Epoxi/sangre , Compuestos Epoxi/química , Voluntarios Sanos , Humanos , Cinética , Metacrilatos/química , Tamaño de la Partícula , Ácidos Polimetacrílicos/química , Porosidad , Propiedades de Superficie
9.
J Biosci Bioeng ; 130(3): 247-252, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32451245

RESUMEN

A gene encoding a dye-linked d-amino acid dehydrogenase (Dye-DADH) homologue was found in a hyperthermophilic archaeon, Sulfurisphaera tokodaii. The predicted amino acid sequence suggested that the gene product is a membrane-bound type enzyme. The gene was overexpressed in Escherichia coli, but the recombinant protein was exclusively produced as an inclusion body. In order to avoid production of the inclusion body, an expression system using the thermoacidophilic archaeon Sulfolobus acidocaldarius instead of E. coli as the host cell was constructed. The gene was successfully expressed in Sulfolobus acidocaldarius, and its product was purified to homogeneity and characterized. The purified enzyme catalyzed the dehydrogenation of various d-amino acids, with d-phenylalanine being the most preferred substrate. The enzyme retained its full activity after incubation at 90 °C for 30 min and after incubation at pH 4.0-11.0 for 30 min at 50 °C. This is the first report on membrane-bound Dye-DADH from thermophilic archaea that was successfully expressed in an archaeal host.


Asunto(s)
Archaea/genética , D-Aminoácido Oxidasa/metabolismo , Proteínas Recombinantes/metabolismo , Sulfolobus/enzimología , Secuencia de Aminoácidos , Clonación Molecular , D-Aminoácido Oxidasa/química , Expresión Génica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sulfolobus/genética
10.
Biomolecules ; 10(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028649

RESUMEN

D-amino acid oxidase (DAAO) catalyzes the oxidation of D-amino acids generating hydrogen peroxide, a potential producer of reactive oxygen species. In this study, we used a CLytA-DAAO chimera, both free and bound to magnetic nanoparticles, against colon carcinoma, pancreatic adenocarcinoma, and glioblastoma cell lines. We found that the enzyme induces cell death in most of the cell lines tested and its efficiency increases significantly when it is immobilized in nanoparticles. We also tested this enzyme therapy in non-tumor cells, and we found that there is not cell death induction, or it is significantly lower than in tumor cells. The mechanism triggering cell death is apparently a classical apoptosis pathway in the glioblastoma cell lines, while in colon and pancreatic carcinoma cell lines, CLytA-DAAO-induced cell death is a necrosis. Our results constitute a proof of concept that an enzymatic therapy, based on magnetic nanoparticles-delivering CLytA-DAAO, could constitute a useful therapy against cancer and besides it could be used as an enhancer of other treatments such as epigenetic therapy, radiotherapy, and treatments based on DNA repair.


Asunto(s)
Apoptosis , Colina/química , D-Aminoácido Oxidasa/química , Nanopartículas de Magnetita/química , N-Acetil Muramoil-L-Alanina Amidasa/química , Necrosis , Células 3T3-L1 , Adenocarcinoma/patología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon/patología , Daño del ADN , Reparación del ADN , Glioblastoma/patología , Humanos , Concentración 50 Inhibidora , Ratones , Neoplasias Pancreáticas/patología , Especies Reactivas de Oxígeno/química
11.
Biosens Bioelectron ; 151: 111971, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868610

RESUMEN

For D-amino acid (DAA) electrochemical biosensors, it is necessary to achieve chiral recognition in racemic solutions or mixtures. However, common chiral recognition is only performed in a single isomer solution. Here, D-amino acid oxidase (DAAO) was used as a chiral selector, and carbon nanotubes (CNTs) as a signal amplifier to construct a non-mediator-style DAA biosensor. The biosensor showed high performance against enantiomer interference: in alanine (Ala) enantiomer mixtures, accurate quantification of D-Ala was achieved when the concentration ratio of L-Ala to D-Ala was 100. In Ala racemic solutions, the linear equation slope was almost consistent with that of standard D-Ala. This high performance was due to the combination of stereoselectivity (enzyme protein) and a catalytic reaction (redox center). The mechanism for the electrical signal change of the biosensor was explored and verified by cyclic voltammetry (CV). The results showed that (i) flavin adenine dinucleotide (FAD, redox center of DAAO) was a direct electroactive substance that produced a reduction peak current; in the presence of O2, the amount of FAD increased leading to an increase of the reduction peak current. (ii) In the presence of DAA, the chemical reaction FAD+DAA â†’ imino acids+ FADH2 occurred and consumed FAD, which resulted in its decrease; thus, the reduction peak current also decreased. Under the same oxygen concentration, the linear decrease of the reduction peak current in the presence of DAA was due to FAD consumption. The biosensor was used for practical analyses in milk and urine samples with satisfactory results.


Asunto(s)
Alanina/análisis , D-Aminoácido Oxidasa/química , Enzimas Inmovilizadas/química , Técnicas Biosensibles , Catálisis , Técnicas Electroquímicas , Electrodos , Flavina-Adenina Dinucleótido/química , Nanotubos de Carbono/química , Oxidación-Reducción , Estereoisomerismo , Propiedades de Superficie
12.
Nanomedicine ; 24: 102122, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31706037

RESUMEN

The flavoenzyme D-amino acid oxidase (DAAO) represents a potentially good option for cancer enzyme prodrug therapy as it produces H2O2 using D-amino acids as substrates, compounds present at low concentration in vivo and that can be safely administered to regulate H2O2 production. We optimized the cytotoxicity of the treatment by: i) using an efficient enzyme variant active at low O2 and D-alanine concentrations (mDAAO); ii) improving the stability and half-life of mDAAO and the enhanced permeability and retention effect by PEGylation; and iii) inhibiting the antioxidant cellular system by a heme oxygenase-1 inhibitor (ZnPP). A very low amount of PEG-mDAAO (10 mU, 50 ng of enzyme) induces cytotoxicity on various tumor cell lines. Notably, PEG-mDAAO seems well suited for in vivo evaluation as it shows the same cytotoxicity at air saturation (21%) and 2.5% O2, a condition resembling the microenvironment found in the central part of tumors.


Asunto(s)
Basidiomycota/enzimología , D-Aminoácido Oxidasa , Proteínas Fúngicas , Polietilenglicoles , Ingeniería de Proteínas , Animales , Basidiomycota/genética , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Neoplasias/metabolismo , Neoplasias/patología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
13.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500317

RESUMEN

d-amino acid oxidase (DAAO, EC 1.4.3.3) is used in many biotechnological processes. The main industrial application of DAAO is biocatalytic production of 7-aminocephalosporanic acid from cephalosporin C with a two enzymes system. DAAO from the yeast Trigonopsis variabilis (TvDAAO) shows the best catalytic parameters with cephalosporin C among all known DAAOs. We prepared and characterized multipoint TvDAAO mutants to improve their activity towards cephalosporin C and increase stability. All TvDAAO mutants showed better properties in comparison with the wild-type enzyme. The best mutant was TvDAAO with amino acid changes E32R/F33D/F54S/C108F/M156L/C298N. Compared to wild-type TvDAAO, the mutant enzyme exhibits a 4 times higher catalytic constant for cephalosporin C oxidation and 8- and 20-fold better stability against hydrogen peroxide inactivation and thermal denaturation, respectively. This makes this mutant promising for use in biotechnology. The paper also presents the comparison of TvDAAO catalytic properties with cephalosporin C reported by others.


Asunto(s)
Sustitución de Aminoácidos , Cefalosporinas/metabolismo , D-Aminoácido Oxidasa/genética , Saccharomycetales/enzimología , Biocatálisis , D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/farmacología , Mutación Puntual , Saccharomycetales/genética , Termodinámica
14.
Org Biomol Chem ; 17(34): 7973-7984, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31407761

RESUMEN

d-Amino acid oxidase (DAAO) is a flavoenzyme whose inhibition is expected to have therapeutic potential in schizophrenia. DAAO catalyses hydride transfer from the substrate to the flavin in the reductive half-reaction, and the flavin is reoxidized by O2 in the oxidative half-reaction. Quantum mechanical/molecular mechanical calculations were performed and their results together with available experimental information were used to elucidate the detailed mechanism of the oxidative half-reaction. The reaction starts with a single electron transfer from FAD to O2, followed by triplet-singlet transition. FAD oxidation is completed by a proton coupled electron transfer to the oxygen species and the reaction terminates with H2O2 formation by proton transfer from the oxidized substrate to the oxygen species via a chain of water molecules. The substrate plays a double role by facilitating the first electron transfer and by providing a proton in the last step. The mechanism differs from the oxidative half-reaction of other oxidases.


Asunto(s)
D-Aminoácido Oxidasa/química , Flavina-Adenina Dinucleótido/química , Basidiomycota/enzimología , Teoría Funcional de la Densidad , Humanos , Modelos Químicos , Oxidación-Reducción , Oxígeno/química
15.
Sci Rep ; 9(1): 11948, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420577

RESUMEN

D-Amino acid oxidase (DAAO) is a valuable flavoenzyme capable of being used in various practical applications, such as in determining D-amino acids and producing a material for semisynthetic cephalosporins, requiring higher thermal stability, higher catalytic activity, and broad substrate specificity. In this study, we isolated the thermophilic fungus Rasamsonia emersonii strain YA, which can grow on several D-amino acids as the sole nitrogen source, from a compost and characterized DAAO (ReDAAO) of the fungus. ReDAAO expressed in Escherichia coli exhibited significant oxidase activity against various neutral and basic D-amino acids, in particular hydrophobic D-amino acids. In addition, the enzyme also significantly acted on cephalosporin C, a starting material for semisynthetic antibiotics, and D-Glu, a general substrate for D-aspartate oxidase but not for DAAO, showing its unique and practically useful substrate specificity. The apparent kcat and Km values of the enzyme toward good substrates were comparable to those of higher catalytic fungal DAAOs, and the thermal stability (T50 value of ~60 °C) was comparable to that of a thermophilic bacterial DAAO and significantly higher than that of other eukaryotic DAAOs. These results highlight the great potential of ReDAAO for use in practical applications.


Asunto(s)
Ascomicetos/enzimología , Cefalosporinas/química , D-Aminoácido Oxidasa/química , Proteínas Fúngicas/química , Secuencia de Aminoácidos , Ascomicetos/química , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dominio Catalítico , Cefalosporinas/metabolismo , Clonación Molecular , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/aislamiento & purificación , D-Aminoácido Oxidasa/metabolismo , Pruebas de Enzimas , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
16.
J Photochem Photobiol B ; 198: 111546, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31351309

RESUMEN

Fluorescence dynamics of human d-amino acid oxidase (hDAAO) and its five inhibitors have been studied in the picoseconds time domain, and compared with one in d-amino acid oxidase from porcine kidney (pkDAAO) reported. The fluorescence lifetimes were identified as 47 ps in the dimer, 235 ps in the monomer, which are compared with those of pkDAAO (45 ps-185 ps). The fluorescence lifetimes of the hDAAO did not change upon the inhibitor bindings despite of modifications in the absorption spectra. This indicates that the lifetimes of the complexes are too short to detect with the picosecond lifetime instrument. Numbers of the aromatic amino acids are similar between the both DAAOs. The fluorescence lifetimes of hDAAO were analysed with an ET theory using the crystal structure. The difference in the lifetimes of the dimer and monomer was well described in terms of difference in the electron affinity of the excited isoalloxazine (Iso*) between the two forms of the protein, though it is not known whether the structure of the monomer is different from the dimer. Three fastest ET donors were Tyr314, Trp52 and Tyr224 in the dimer, while Tyr314, Tyr224 and Tyr55 in the monomer, which are compared to those in pkDAAO, Tyr314, Tyr224 and Tyr228 in the dimer, and Tyr224, Tyr314 and Tyr228 in the monomer. The ET rate from Trp55 in hDAAO dimer was much faster compared to the rate in pkDAAO dimer. A rise component with negative pre-exponential factor was not observed in hDAAO, which are found in pkDAAO.


Asunto(s)
Aminoácidos Aromáticos/química , D-Aminoácido Oxidasa/química , Flavinas/química , Riñón/enzimología , Animales , D-Aminoácido Oxidasa/metabolismo , Dimerización , Transporte de Electrón , Humanos , Enlace de Hidrógeno , Espectrometría de Fluorescencia , Electricidad Estática , Porcinos
17.
Molecules ; 24(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646619

RESUMEN

Most of the known inhibitors of D-amino acid oxidase (DAAO) are small polar molecules recognized by the active site of the enzyme. More recently a new class of DAAO inhibitors has been disclosed that interacts with loop 218-224 at the top of the binding pocket. These compounds have a significantly larger size and more beneficial physicochemical properties than most reported DAAO inhibitors, however, their structure-activity relationship is poorly explored. Here we report the synthesis and evaluation of this type of DAAO inhibitors that open the lid over the active site of DAAO. In order to collect relevant SAR data we varied two distinct parts of the inhibitors. A systematic variation of the pendant aromatic substituents according to the Topliss scheme resulted in DAAO inhibitors with low nanomolar activity. The activity showed low sensitivity to the substituents investigated. The variation of the linker connecting the pendant aromatic moiety and the acidic headgroup revealed that the interactions of the linker with the enzyme were crucial for achieving significant inhibitory activity. Structures and activities were analyzed based on available X-ray structures of the complexes. Our findings might support the design of drug-like DAAO inhibitors with advantageous physicochemical properties and ADME profile.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Dominio Catalítico , Activación Enzimática , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad
18.
Curr Opin Chem Biol ; 49: 76-83, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30448541

RESUMEN

Amino acid oxidases are an important class of enzymes that mostly participate in the oxidation of amino acids using FAD as a cofactor. Many of them function in the catabolism of amino acids with wider substrate specificities. On the other hand, based on the recent, successful use of the enzymes for diagnoses with new cofactor and mechanism, highly selective enzymes have been screened from Nature, and many new enzymes have been discovered and further characterized by X-ray crystallography. As a result of the screening for amino acid oxidases with biosynthetic or antibiotic functions, l-Trp oxidase, l-Lys oxidases, and Gly oxidase have been found. The pyridoxal phosphate-dependent l-Arg oxidase has the intriguing new activity of hydroxylating unactivated CC bonds. A new amine oxidase was created by the protein engineering of d-amino acid oxidase. Recent developments in the characterization of amino acid oxidases and their applications are summarized.


Asunto(s)
D-Aminoácido Oxidasa/metabolismo , Aminoácidos/metabolismo , Cristalografía por Rayos X , D-Aminoácido Oxidasa/química , Oxidación-Reducción , Ingeniería de Proteínas , Especificidad por Sustrato
19.
J Chem Inf Model ; 58(11): 2255-2265, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30339750

RESUMEN

Traditionally, a drug potency is expressed in terms of thermodynamic quantities, mostly Kd, and empirical IC50 values. Although binding affinity as an estimate of drug activity remains relevant, it is increasingly clear that it is also important to include (un)binding kinetic parameters in the characterization of potential drug-like molecules. Herein, we used standard in silico screening to identify a series of structurally related inhibitors of hDAAO, a flavoprotein involved in schizophrenia and neuropathic pain. We applied a novel methodology, based on scaled molecular dynamics, to rank them according to their residence times. Notably, we challenged the application in a prospective fashion for the first time. The good agreement between experimental residence times and the predicted residence times highlighted the procedure's reliability in both predictive and refinement scenarios. Additionally, through further inspection of the performed simulations, we substantiated a previous hypothesis on the involvement of a protein loop during ligand unbinding.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , D-Aminoácido Oxidasa/química , Humanos , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Termodinámica
20.
PLoS One ; 13(6): e0198990, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29906280

RESUMEN

D-amino acid oxidase (DAAO) degrades D-amino acids to produce α-ketoacids, hydrogen peroxide and ammonia. DAAO has often been investigated and engineered for industrial and clinical applications. We combined information from literature with a detailed analysis of the structure to engineer mammalian DAAOs. The structural analysis was complemented with molecular dynamics simulations to characterize solvent accessibility and product release mechanisms. We identified non-obvious residues located on the loops on the border between the active site and the secondary binding pocket essential for pig and human DAAO substrate specificity and activity. We engineered DAAOs by mutating such critical residues and characterised the biochemical activity of the resulting variants. The results highlight the importance of the selected residues in modulating substrate specificity, product egress and enzyme activity, suggesting further steps of DAAO re-engineering towards desired clinical and industrial applications.


Asunto(s)
Sitios de Unión/genética , D-Aminoácido Oxidasa/química , Mutagénesis Sitio-Dirigida , Solventes/química , Biotecnología/métodos , D-Aminoácido Oxidasa/genética , Pruebas de Enzimas/métodos , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...