RESUMEN
Metabolic adaptations are central for carcinogenesis and response to therapy, but little is known about the contribution of mitochondrial dynamics to the response of glioma cells to the standard treatment with temozolomide (TMZ). Glioma cells responded to TMZ with mitochondrial mass increased and the production of round structures of dysfunctional mitochondria. At single-cell level, asymmetric mitosis contributed to the heterogeneity of mitochondrial levels. It affected the fitness of cells in control and treated condition, indicating that the mitochondrial levels are relevant for glioma cell fitness in the presence of TMZ.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Dacarbazina/farmacología , Dacarbazina/metabolismo , Dacarbazina/uso terapéutico , Apoptosis , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/metabolismo , Mitocondrias/metabolismo , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Resistencia a AntineoplásicosRESUMEN
Dacarbazine (DTIC) is a chemotherapeutic drug currently used for the systemic treatment of melanomas. Considering the easy access to these tumors, a topical route of drug administration could provide a more comfortable and less toxic treatment. However, DTIC quantification aiming at the design of topical formulations is challenging, pondering all the interferents present in the drug samples recovered from the skin. Hence, this work intended to validate a selective chromatographic method for DTIC determination in skin permeation studies. A reversed-phase C18 column was used as a stationary phase, and gradient elution of a mobile phase consisting of methanol and pH 6.5 sodium phosphate monohydrate buffer (0.01 mol/L) at a flow rate of 1.0 mL/min was implemented. DTIC was detected at 364 nm. The method was selective against skin interferents, linear (r = 0.9995) in a concentration range of 1.0-15.0 µg/mL, precise with an overall variation coefficient lower than 3.8%, accurate achieving recovery from the skin layers within 91-112%, and sensitive for the proposed application (detection limit = 0.10 µg/ mL, quantification limit = 0.30 µg/mL). Furthermore, the analytical method was successfully tested in in vitro skin permeation studies. In conclusion, the developed method is appropriate for DTIC analysis from the skin sample matrix.
Asunto(s)
Dacarbazina , Melanoma , Humanos , Dacarbazina/análisis , Dacarbazina/metabolismo , Piel/metabolismo , Absorción Cutánea , Cromatografía Líquida de Alta Presión/métodosRESUMEN
Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.