Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.341
Filtrar
1.
PLoS One ; 19(5): e0301761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718025

RESUMEN

Tracking small extracellular vesicles (sEVs), such as exosomes, requires staining them with dyes that penetrate their lipid bilayer, a process that leaves excess dye that needs to be mopped up to achieve high specificity. Current methods to remove superfluous dye have limitations, among them that they are time-intensive, carry the risk of losing sample and can require specialized equipment and materials. Here we present a fast, easy-to-use, and cost-free protocol for cleaning excess dye from stained sEV samples by adding their parental cells to the mixture to absorb the extra dye much like sponges do. Since sEVs are considered a next-generation drug delivery system, we further show the success of our approach at removing excess chemotherapeutic drug, daunorubicin, from the sEV solution.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Daunorrubicina/economía , Colorantes/química , Coloración y Etiquetado/métodos , Coloración y Etiquetado/economía
2.
Int J Oncol ; 64(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38757343

RESUMEN

Daunorubicin, also known as daunomycin, is a DNA­targeting anticancer drug that is used as chemotherapy, mainly for patients with leukemia. It has also been shown to have anticancer effects in monotherapy or combination therapy in solid tumors, but at present it has not been adequately studied in colorectal cancer (CRC). In the present study, from a screening using an FDA­approved drug library, it was found that daunorubicin suppresses GLI­dependent luciferase reporter activity. Daunorubicin also increased p53 levels, which contributed to both GLI1 suppression and apoptosis. The current detailed investigation showed that daunorubicin promoted the ß­TrCP­mediated ubiquitination and proteasomal degradation of GLI1. Moreover, a competition experiment using BODIPY­cyclopamine, a well­known Smo inhibitor, suggested that daunorubicin does not bind to Smo in HCT116 cells. Administration of daunorubicin (2 mg/kg, ip, qod, 15 days) into HCT116 xenograft mice profoundly suppressed tumor progress and the GLI1 level in tumor tissues. Taken together, the present results revealed that daunorubicin suppresses canonical Hedgehog pathways in CRC. Ultimately, the present study discloses a new mechanism of daunorubicin's anticancer effect and might provide a rationale for expanding the clinical application of daunorubicin.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Daunorrubicina , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína con Dedos de Zinc GLI1 , Humanos , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Daunorrubicina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Animales , Ratones , Apoptosis/efectos de los fármacos , Células HCT116 , Receptor Smoothened/metabolismo , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
3.
Int J Biol Macromol ; 268(Pt 1): 131590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621563

RESUMEN

This work aimed to prepare a new system for daunorubicin (DNR) delivery to improve therapeutic efficiency and decrease unwanted side effects. Typically, at first, a carboxylic acid functional group containing metal-organic framework (UiO-66-COOH) was synthesized in a simple way. Then, a third generation of citric acid dendrimer (CAD G3) was grown on it (UiO-66-COOH-CAD G3). Finally, the system was functionalized with pre-modified hyaluronic acid (UiO-66-COOH-CAD-HA). SEM analysis displayed that the synthesized particles have a spherical shape with an average particle size ranging from 260 to 280 nm. An increase in hydrodynamic diameter from 223 nm for UiO-66-COOH to 481 nm for UiO-66-COOH-CAD-HA is a sign of success in the performed reactions. Also, the average pore size was calculated at about 4.04 nm. The DNR loading efficiency of UiO-66-COOH-CAD-HA was evaluated at ∼74 % (DNR@UiO-66-COOH-CAD-HA). It was observed that the drug release rate at a lower pH is more than higher pH. The maximum hemolysis of <3 % means that the UiO-66-COOH-CAD-HA is hemocompatible. The use of DNR-loaded UiO-66-COOH-CAD-HA led to cell-killing of 77.9 % for MDA-MB 231. These results specified the great potential of UiO-66-COOH-CAD-HA for tumor drug delivery, so it could be proposed as a new carrier for anticancer agents to minimize adverse effects and improve therapeutic efficacy.


Asunto(s)
Ácido Cítrico , Daunorrubicina , Dendrímeros , Portadores de Fármacos , Liberación de Fármacos , Ácido Hialurónico , Daunorrubicina/química , Daunorrubicina/farmacología , Ácido Hialurónico/química , Ácido Cítrico/química , Dendrímeros/química , Humanos , Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Hemólisis/efectos de los fármacos , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Línea Celular Tumoral , Animales , Concentración de Iones de Hidrógeno , Ácidos Ftálicos
4.
Proc Natl Acad Sci U S A ; 121(12): e2307780121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466855

RESUMEN

Coevolution is common and frequently governs host-pathogen interaction outcomes. Phenotypes underlying these interactions often manifest as the combined products of the genomes of interacting species, yet traditional quantitative trait mapping approaches ignore these intergenomic interactions. Devil facial tumor disease (DFTD), an infectious cancer afflicting Tasmanian devils (Sarcophilus harrisii), has decimated devil populations due to universal host susceptibility and a fatality rate approaching 100%. Here, we used a recently developed joint genome-wide association study (i.e., co-GWAS) approach, 15 y of mark-recapture data, and 960 genomes to identify intergenomic signatures of coevolution between devils and DFTD. Using a traditional GWA approach, we found that both devil and DFTD genomes explained a substantial proportion of variance in how quickly susceptible devils became infected, although genomic architectures differed across devils and DFTD; the devil genome had fewer loci of large effect whereas the DFTD genome had a more polygenic architecture. Using a co-GWA approach, devil-DFTD intergenomic interactions explained ~3× more variation in how quickly susceptible devils became infected than either genome alone, and the top genotype-by-genotype interactions were significantly enriched for cancer genes and signatures of selection. A devil regulatory mutation was associated with differential expression of a candidate cancer gene and showed putative allele matching effects with two DFTD coding sequence variants. Our results highlight the need to account for intergenomic interactions when investigating host-pathogen (co)evolution and emphasize the importance of such interactions when considering devil management strategies.


Asunto(s)
Enfermedades Transmisibles , Daunorrubicina/análogos & derivados , Neoplasias Faciales , Marsupiales , Animales , Neoplasias Faciales/genética , Neoplasias Faciales/veterinaria , Estudio de Asociación del Genoma Completo , Marsupiales/genética
5.
Front Immunol ; 15: 1286352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515744

RESUMEN

The world's largest extant carnivorous marsupial, the Tasmanian devil, is challenged by Devil Facial Tumor Disease (DFTD), a fatal, clonally transmitted cancer. In two decades, DFTD has spread across 95% of the species distributional range. A previous study has shown that factors such as season, geographic location, and infection with DFTD can impact the expression of immune genes in Tasmanian devils. To date, no study has investigated within-individual immune gene expression changes prior to and throughout the course of DFTD infection. To explore possible changes in immune response, we investigated four locations across Tasmania that differed in DFTD exposure history, ranging between 2 and >30 years. Our study demonstrated considerable complexity in the immune responses to DFTD. The same factors (sex, age, season, location and DFTD infection) affected immune gene expression both across and within devils, although seasonal and location specific variations were diminished in DFTD affected devils. We also found that expression of both adaptive and innate immune genes starts to alter early in DFTD infection and continues to change as DFTD progresses. A novel finding was that the lower expression of immune genes MHC-II, NKG2D and CD8 may predict susceptibility to earlier DFTD infection. A case study of a single devil with regressed tumor showed opposite/contrasting immune gene expression patterns compared to the general trends observed across devils with DFTD infection. Our study highlights the complexity of DFTD's interactions with the host immune system and the need for long-term studies to fully understand how DFTD alters the evolutionary trajectory of devil immunity.


Asunto(s)
Daunorrubicina/análogos & derivados , Neoplasias Faciales , Marsupiales , Animales , Neoplasias Faciales/genética , Neoplasias Faciales/veterinaria , Sistema Inmunológico/patología , Expresión Génica , Marsupiales/genética
6.
Biomed Pharmacother ; 173: 116293, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430628

RESUMEN

Pancreatic adenocarcinoma is one of the tumours with the worst prognosis, with a 5-year survival rate of 5-10%. Our aim was to find and optimise peptide-based drug conjugates with daunorubicin (Dau) as the cytotoxic antitumour agent. When conjugated with targeting peptides, the side effect profile and pharmacokinetics of Dau can be improved. The targeting peptide sequences (e.g. GSSEQLYL) we studied were originally selected by phage display. By Ala-scan technique, we identified that position 6 in the parental sequence (Dau=Aoa-LRRY-GSSEQLYL-NH2, ConjA) could be modified without the loss of antitumour activity (Dau=Aoa-LRRY-GSSEQAYL-NH2, Conj03: 14. 9% viability). Our results showed that the incorporation of p-chloro-phenylalanine (Dau=Aoa-LRRY-GSSEQF(pCl)YL-NH2, Conj16) further increased the antitumour potency (10-5 M: 9.7% viability) on pancreatic adenocarcinoma cells (PANC-1). We found that conjugates containing modified GSSEQLYL sequences could be internalised to PANC-1 cells and induce cellular senescence in the short term and subsequent apoptotic cell death. Furthermore, the cardiotoxic effect of Dau was markedly reduced in the form of peptide conjugates. In conclusion, Conj16 had the most effective antitumor activity on PANC-1 cells, which makes this conjugate promising for developing new targeted therapies without cardiotoxic effects.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Humanos , Daunorrubicina/farmacología , Daunorrubicina/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química , Péptidos/farmacología , Péptidos/química , Línea Celular Tumoral
8.
Leukemia ; 38(4): 762-768, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378841

RESUMEN

Molecularly defined secondary acute myeloid leukemia is associated with a prior myeloid neoplasm and confers a worse prognosis. We compared outcomes of molecularly defined secondary AML patients (n = 395) treated with daunorubicin and cytarabine (7 + 3, n = 167), liposomal daunorubicin and cytarabine (CPX-351, n = 66) or hypomethylating agents (HMA) + venetoclax (VEN) (n = 162). Median overall survival (OS) was comparable between treatment groups among patients aged >60 years. In a multivariable model HMA + VEN vs. 7 + 3 was associated with better OS (hazard ratio [HR] 0.64 [95% confidence interval (CI) 0.42-0.98, p = 0.041]), whereas CPX-351 vs. 7 + 3 was not (HR 0.79 [CI 95% 0.50-1.25, p = 0.31]). Allogeneic hematopoietic stem cell transplantation, BCOR and IDH mutations were associated with improved OS; older age, prior myeloid disease, NRAS/KRAS mutations, EZH2 mutation, and monosomal karyotype were associated with worse OS. When analyzed in each treatment separately, the IDH co-mutations benefit was seen with 7 + 3 and the detrimental effect of NRAS/KRAS co-mutations with HMA + VEN and CPX-351. In pairwise comparisons adjusted for age, HMA + VEN was associated with improved OS vs. 7 + 3 in patients with SF3B1 mutation and improved OS vs. CPX-351 in those with RNA splicing factor mutations. In molecularly defined secondary AML treatment with HMA + VEN might be preferred but could further be guided by co-mutations.


Asunto(s)
Leucemia Mieloide Aguda , Neoplasias Primarias Secundarias , Sulfonamidas , Humanos , Quimioterapia de Inducción , Proteínas Proto-Oncogénicas p21(ras) , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Citarabina/uso terapéutico , Daunorrubicina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Neoplasias Primarias Secundarias/etiología , Estudios Retrospectivos
9.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339141

RESUMEN

Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Daunorrubicina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Oximas/uso terapéutico , Péptidos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo
10.
Arch Microbiol ; 206(2): 88, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305873

RESUMEN

The COVID-19 pandemic caused unprecedented damage to humanity, and while vaccines have been developed, they are not fully effective against the SARS-CoV-2 virus. Limited targeted drugs, such as Remdesivir and Paxlovid, are available against the virus. Hence, there is an urgent need to explore and develop new drugs to combat COVID-19. This study focuses on exploring microbial natural products from soil-isolated bacteria Streptomyces sp. strain 196 and RI.24 as a potential source of new targeted drugs against SARS-CoV-2. Molecular docking studies were performed on holoRdRp and nsp13, two key factors responsible for virus replication factor. Our in silico studies, K-252-C aglycone indolocarbazole alkaloid (K252C) and daunorubicin were found to have better binding affinities than the respective control drugs, with K252C exhibiting binding energy of - 9.1 kcal/mol with holoRdRp and - 9.2 kcal/mol with nsp13, and daunorubicin showing binding energy at - 8.1 kcal/mol with holoRdRp and - 9.3 kcal/mol with nsp13. ADMET analysis, MD simulation, and MM/GBSA studies indicated that K252C and daunorubicin have the potential to be developed as targeted drugs against SARS-CoV-2. The study concludes that K252C and daunorubicin are potential lead compounds that might suppress the inhibition of SARS-CoV-2 replication among the tested microbial compounds and could be developed as targeted drugs against COVID-19. In the future, further in vitro studies are required to validate these findings.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Productos Biológicos/farmacología , Simulación del Acoplamiento Molecular , Pandemias , Daunorrubicina/farmacología , Inhibidores de Proteasas
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 45-51, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387898

RESUMEN

OBJECTIVE: To investigate the effect of tripipartite motif 59 (TRIM59) expression interference on the chemosensitivity of daunorubicin (DNR) in chronic myeloid leukemia (CML) K562 cells and the related molecular mechanism. METHODS: The expressions of TRIM59 mRNA in bone marrow tissues of patients with CML and K562 cells were detected by RT-qPCR. Liposome-based transfection technology was used to transfect TRIM59-specific siRNA (si-TRIM59) into K562 cells which then were treated with DNR. The proliferation and apoptosis of cells were detected by CCK-8 assay and flow cytometry, respectively, and the expressions of apoptosis-related protein and Wnt/ß-catenin signaling pathway-related protein were detected by Western blot. RESULTS: Compared with the bone marrow tissue of CML patients at the time of initial treatment, the expression of TRIM59 mRNA in bone marrow tissue of CML patients at the time of chemotherapy resistance was significantly increased (P <0.05). Compared with control group, the cell proliferation inhibition rate and apoptosis rate in si-TRIM59 group and DNR group were significantly increased (P <0.05), the expression of Bax, Caspase3 and Cleaved-Caspase3 protein were significantly increased (P <0.05), while the expressions of Bcl-2, Wnt3α, GSK-3ß protein and the ratio of p-ß-catenin/ß-catenin were significantly decreased (P <0.05). Compared with si-TRIM59 group and DNR group, the proliferation inhibition rate and apoptosis rate of si-TRIM59+DNR group were significantly increased (P <0.05), the expression of Bax, Caspase3 and Cleaved-Caspase3 protein were significantly increased, while the expression of Bcl-2, Wnt3α, GSK-3ß protein and the ratio of p-ß-catenin/ß-catenin were significantly decreased (P <0.05). CONCLUSION: TRIM59 expression interference may enhance the chemosensitivity of K562 cells to DNR, and its mechanism may be related to the regulation of Wnt/ß-catenin signaling pathway.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Glucógeno Sintasa Quinasa 3 beta , beta Catenina , Células K562 , Proteína X Asociada a bcl-2 , Daunorrubicina/farmacología , ARN Mensajero , Proteínas de Motivos Tripartitos , Péptidos y Proteínas de Señalización Intracelular
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 33-38, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387896

RESUMEN

OBJECTIVE: To explore the role of bone marrow mesenchymal stem cells (BMSC),an essential element of the bone marrow microenvironment, in multidrug resistance(MDR) of K562 cells, as well as the reversal effect of tetrandrine (TET) on BMSC-mediated MDR and its potential mechanism. METHODS: A mixed co-culture system and a transwell co-culture system for BMSC and K562 cells were established, and the cells were divided into different groups and treated with daunorubicin (DNR) alone or combined with TET and DNR. The CCK-8 assay was used to detect the proliferation of K562 cells in each group, and the cell inhibition rate was calculated. Cytometric bead array (CBA) was used to detect the expression levels of IFN, IL-2, IL-6 and IL-10 in the supernatant of different groups. RT-qPCR and Western blot were used to detected the expression of STAT3 at mRNA and protein levels, respectively. RESULTS: Compared with K562+DNR group, the inhibition rate of DNR on K562 cell proliferation in K562+BMSC+DNR group was significantly decreased (P < 0.05), while the levels of IL-6 in the culture supernatant and phosphorylated STAT3 in K562 cells were significantly increased (P < 0.05). Compared with K562+BMSC+DNR group, the inhibition rate of DNR on K562 cell proliferation in K562+BMSC+DNR+TET group was significantly increased (P < 0.05), while the level of IL-6 and phosphorylated STAT3 was significantly decreased (P < 0.05). CONCLUSION: BMSC can promote the drug resistance of leukemia cells, and TET may reverse the BMSC-mediated drug resistance via inhibiting IL-6/STAT3 signaling pathway.


Asunto(s)
Bencilisoquinolinas , Leucemia , Humanos , Interleucina-6 , Resistencia a Antineoplásicos , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Daunorrubicina/farmacología , Células K562 , Leucemia/tratamiento farmacológico , Microambiente Tumoral
13.
Hematol Oncol ; 42(2): e3260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38415873

RESUMEN

Venetoclax plus 3 + 7 daunorubicin and cytarabine chemotherapy (DAV) has shown safety and efficacy in eligible patients with newly diagnosed acute myeloid leukemia (AML). However, there are no direct comparisons between DAV and 3 + 7 daunorubicin and cytarabine chemotherapy (DA) alone. We performed a propensity score-matched analysis to compare the outcomes of DAV group with historical DA group and identify the clinical and molecular characteristics of patients who might benefit from the DAV regimen. The DAV group had a higher Complete remission (CR) rate than the DA group (90% vs. 55%, p = 0.008). 25 (96%) patients in the DAV group had a higher MRD-negative CRc rate compared with 13 (62%) patients in the DA group (p = 0.006). After a median follow-up duration of 19.15 (IQR 17.13-21.67) months, the DAV group had an improved overall survival (p = 0.001) and event-free survival (p = 0.069), but not disease-free survival (p = 0.136). Collectively, DAV regimen induced high CR rates and deep MRD-negative CRc rates after one cycle of induction therapy, as well as prolonged the overall survival, in young adult patients with AML who were eligible for intensive chemotherapy. The addition of venetoclax to intensive chemotherapy should be considered in the future to achieve better survival advantages in eligible AML patients.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Sulfonamidas , Adulto Joven , Humanos , Puntaje de Propensión , Leucemia Mieloide Aguda/tratamiento farmacológico , Daunorrubicina , Citarabina , Respuesta Patológica Completa
14.
Radiol Oncol ; 58(1): 133-144, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38378030

RESUMEN

BACKGROUND: Flow cytometry plays is important in the diagnosis of acute lymphoblastic leukaemia (ALL) and when antigen-specific immunotherapy is indicated. We have investigated the effects of prednisolone, vincristine, daunorubicin, asparaginase and methotrexate on the antigen expression on blast cells that could influence the planning of antigen-specific therapy as well as risk-based treatment assignment. PATIENTS AND METHODS: Patients aged ≤ 17 years with de novo B-cell ALL (B-ALL) were enrolled in the study. Blast cells were isolated and exposed in vitro to 5 individual cytotoxic drugs in logarithmically increasing concentrations. Then, the expression of CD10, CD19, CD20, CD27, CD34, CD45, CD58, CD66c and CD137 antigens was determined by quantitative flow cytometry. RESULTS: Cytotoxic drugs caused dose-dependent or dose-independent modulation of antigen expression. Daunorubicin caused a dose-dependent down-modulation of CD10, CD19, CD34, CD45 and CD58 and an up-modulation of CD137. Vincristine caused a dose-dependent down-modulation of CD19 and CD58 and an up-modulation of CD45. Daunorubicin also caused dose-independent down-modulation of CD27 and prednisolone down-modulation of CD10, CD19, CD27, CD34 and CD58. Down-modulation of CD20 was detected only in relation to the specific dose of daunorubicin. CONCLUSIONS: The results of the study have shown that cytotoxic drugs can alter the expression of antigens that are important for immunotherapy. Importantly, daunorubicin, prednisolone and vincristine caused down-modulation of CD19 and CD58, suggesting that these drugs are better avoided during bridging therapy prior to bispecific antibodies or CAR-T cell therapy. In addition, immunophenotypic changes on blast cells induced by different drugs could also influence risk-based treatment assignment.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Vincristina/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Daunorrubicina/farmacología , Daunorrubicina/uso terapéutico , Prednisolona/farmacología , Prednisolona/uso terapéutico
15.
PLoS Genet ; 20(2): e1011164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416769

RESUMEN

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Humanos , Femenino , Antraciclinas/efectos adversos , Antraciclinas/metabolismo , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/metabolismo , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/metabolismo , Mitoxantrona/efectos adversos , Mitoxantrona/metabolismo , Miocitos Cardíacos/metabolismo , Daunorrubicina/metabolismo , Daunorrubicina/farmacología , Epirrubicina/metabolismo , Epirrubicina/farmacología , ADN-Topoisomerasas de Tipo II/genética , Expresión Génica
16.
Toxicol Sci ; 198(2): 288-302, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38290791

RESUMEN

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIß has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIß selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and ß) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.


Asunto(s)
Antraciclinas , Quinoxalinas , Inhibidores de Topoisomerasa II , Ratas , Animales , Conejos , Inhibidores de Topoisomerasa II/toxicidad , Inhibidores de Topoisomerasa II/uso terapéutico , Antraciclinas/toxicidad , Antraciclinas/uso terapéutico , Cardiotoxicidad , Daunorrubicina/toxicidad , Daunorrubicina/uso terapéutico , Doxorrubicina/toxicidad , Antibióticos Antineoplásicos/toxicidad , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/uso terapéutico , Daño del ADN
17.
Blood ; 143(16): 1628-1645, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38227935

RESUMEN

ABSTRACT: CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.


Asunto(s)
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Adulto , Humanos , Antifúngicos/uso terapéutico , Disbiosis/etiología , Daunorrubicina , Leucemia Mieloide Aguda/tratamiento farmacológico , Citarabina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Homeostasis
18.
Blood Adv ; 8(5): 1281-1294, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38170760

RESUMEN

ABSTRACT: Transformation of BCR::ABL1-negative myeloproliferative neoplasms (MPN) to an accelerated or blast phase is associated with poor outcomes. The efficacy of acute myeloid leukemia (AML)-type intensive and nonintensive hypomethylating agent-based regimens is not well studied. We therefore performed a retrospective analysis of patients with MPN-AP/BP (N = 138) treated with intensive (N = 81) and nonintensive (N = 57) blast-reduction strategies. We used clinically relatable response criteria developed at the Princess Margaret Cancer Centre. The overall best response, comprising complete remission (CR), complete remission with incomplete hematologic recovery (CRi), and reversion to chronic phase MPN (cMPN), in the intensive and nonintensive groups was 77% (62 of 81) and 39% (21 of 54), respectively. Similar overall best response rates were observed in patients receiving induction with daunorubicin combined with cytarabine arabinoside (daunorubicin + ara-C) (74% [23 of 31]) or FLAG-IDA/NOVE-HiDAC (78% [39 of 50], P = .78). However, patients receiving daunorubicin + ara-C more often required second inductions (29% [9 of 31] vs 4% [2 of 50], P = .002). Most responses in the entire cohort were reversions to cMPN (55 of 83 [66%]). CR and CRi comprised 30% (25 of 83) and 4% (3 of 83) of responses, respectively. Mutations in TP53 (overall response [OR] 8.2 [95% confidence interval [CI] 2.01, 37.1], P = .004) and RAS pathway (OR 5.1 [95%CI 1.2, 23.7], P = .03) were associated with inferior treatment response for intensively treated patients, and poorer performance status (Eastern Cooperative Oncology Group) was associated with inferior treatment response in both intensively (OR 10.4 [95% CI 2.0, 78.5], P = .009) and nonintensively treated groups (OR 12 [95% CI 2.04, 230.3], P = .02). In patients with paired samples before and after therapy (N = 26), there was a significant residual mutation burden remaining irrespective of response to blast-reduction therapy.


Asunto(s)
Trastornos Mieloproliferativos , Humanos , Resultado del Tratamiento , Estudios Retrospectivos , Trastornos Mieloproliferativos/genética , Citarabina/uso terapéutico , Daunorrubicina
19.
Appl Microbiol Biotechnol ; 108(1): 107, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38217253

RESUMEN

Streptomyces peucetius ATCC 27952 is known to produce a variety of secondary metabolites, including two important antitumor anthracyclines: daunorubicin and doxorubicin. Identification of peucemycin and 25-hydroxy peucemycin (peucemycin A), as well as their biosynthetic pathway, has expanded its biosynthetic potential. In this study, we isolated a new peucemycin derivative and identified it as 19-hydroxy peucemycin (peucemycin B). Its antibacterial activity was lower than those of peucemycin and peucemycin A. On the other hand, this newly identified peucemycin derivative had higher anticancer activity than the other two compounds for MKN45, NCI-H1650, and MDA-MB-231 cancer cell lines with IC50 values of 76.97 µM, 99.68 µM, and 135.2 µM, respectively. Peucemycin biosynthetic gene cluster revealed the presence of a SARP regulator named PeuR whose role was unknown. The presence of the TTA codon in the peuR and the absence of global regulator BldA in S. peucetius reduced its ability to regulate the peucemycin biosynthetic gene cluster. Hence, different mutants harboring these genes were prepared. S. peucetius bldA25 harboring bldA produced 1.75 times and 1.77 times more peucemycin A (11.8 mg/L) and peucemycin B (21.2 mg/L), respectively, than the wild type. On the other hand, S. peucetius R25 harboring peuR produced 1.86 and 1.79 times more peucemycin A (12.5 mg/L) and peucemycin B (21.5 mg/L), respectively, than the wild type. Finally, strain S. peucetius bldAR25 carrying bldA and peuR produced roughly 3.52 and 2.63 times more peucemycin A (23.8 mg/L) and peucemycin B (31.5 mg/L), respectively, than the wild type. KEY POINTS: • This study identifies a new peucemycin derivative, 19-hydroxy peucemycin (peucemycin B). • The SARP regulator (PeuR) acts as a positive regulator of the peucemycin biosynthetic gene cluster. • The overexpression of peuR and heterologous expression of bldA increase the production of peucemycin derivatives.


Asunto(s)
Daunorrubicina , Doxorrubicina , Streptomyces , Antraciclinas/metabolismo , Antibióticos Antineoplásicos/farmacología
20.
Arch Toxicol ; 98(3): 807-820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38175295

RESUMEN

The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo-keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.


Asunto(s)
Cardiotoxicidad , Daunorrubicina/análogos & derivados , Idarrubicina , Pirazinas , Compuestos de Espiro , Humanos , Idarrubicina/toxicidad , Idarrubicina/metabolismo , Aldo-Ceto Reductasas , Células HEK293 , Aldehído Reductasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...