Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.464
Filtrar
1.
J Vis Exp ; (208)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39007568

RESUMEN

Maternal nutrition during pregnancy and lactation plays an important role in the neurodevelopment of offspring. One-carbon (1C) metabolism, which centers around folic acid and choline, as well as other B vitamins, plays a key role during the closure of the neural tube of the developing fetus. However, the impact of these maternal nutritional deficiencies during pregnancy on offspring health outcomes after birth remains relatively undefined. Furthermore, maternal dietary deficiencies in folic acid or choline may impact other health outcomes in offspring - making this a valuable model. This protocol aims to outline the procedure for inducing a deficiency in 1C metabolism in female mice through dietary modifications. Females are placed on diets at weaning, up to 2 months of age, for 4-6 weeks prior to mating and remain on diet throughout pregnancy and lactation. Offspring from these females can be evaluated for health outcomes. Females can be used multiple times to generate offspring, and tissues from females can be collected to measure for 1C metabolite measurements. This protocol provides an overview of how to induce maternal dietary deficiencies in folic acid or choline to study offspring health outcomes.


Asunto(s)
Colina , Ácido Fólico , Animales , Femenino , Ácido Fólico/administración & dosificación , Ácido Fólico/metabolismo , Ratones , Colina/administración & dosificación , Colina/metabolismo , Embarazo , Deficiencia de Ácido Fólico/metabolismo , Dieta/métodos , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Deficiencia de Colina/metabolismo
2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892381

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. Some patients with MAFLD develop metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver fibrosis. However, the molecular mechanisms underlying this progression remain unknown, and no effective treatment for MASH has been developed so far. In this study, we performed a longitudinal detailed analysis of mitochondria in the livers of choline-deficient, methionine-defined, high-fat-diet (CDAHFD)-fed mice, which exhibited a MASH-like pathology. We found that FoF1-ATPase activity began to decrease in the mitochondria of CDAHFD-fed mice prior to alterations in the activity of mitochondrial respiratory chain complex, almost at the time of onset of liver fibrosis. In addition, the decrease in FoF1-ATPase activity coincided with the accelerated opening of the mitochondrial permeability transition pore (PTP), for which FoF1-ATPase might be a major component or regulator. As fibrosis progressed, mitochondrial permeability transition (PT) induced in CDAHFD-fed mice became less sensitive to cyclosporine A, a specific PT inhibitor. These results suggest that episodes of fibrosis might be related to the disruption of mitochondrial function via PTP opening, which is triggered by functional changes in FoF1-ATPase. These novel findings could help elucidate the pathogenesis of MASH and lead to the development of new therapeutic strategies.


Asunto(s)
Deficiencia de Colina , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Deficiencia de Colina/metabolismo , Deficiencia de Colina/complicaciones , Masculino , Hígado Graso/metabolismo , Hígado Graso/etiología , Hígado Graso/patología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Colina/metabolismo , Ratones Endogámicos C57BL , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Aminoácidos/metabolismo , Mitocondrias/metabolismo , Metionina/deficiencia , Metionina/metabolismo
3.
Hepatol Commun ; 8(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38934719

RESUMEN

BACKGROUND: MASH is a common clinical disease that can lead to advanced liver conditions, but no approved pharmacotherapies are available due to an incomplete understanding of its pathogenesis. Damaged DNA binding protein 1 (DDB1) participates in lipid metabolism. Nevertheless, the function of DDB1 in MASH is unclear. METHODS: Clinical liver samples were obtained from patients with MASH and control individuals by liver biopsy. Hepatocyte-specific Ddb1-knockout mice and liver Hmgb1 knockdown mice were fed with a methionine-and choline-deficient diet to induce MASH. RESULTS: We found that the expression of DDB1 in the liver was significantly decreased in MASH models. Hepatocyte-specific ablation of DDB1 markedly alleviated methionine-and choline-deficient diet-induced liver steatosis but unexpectedly exacerbated inflammation and fibrosis. Mechanistically, DDB1 deficiency attenuated hepatic steatosis by downregulating the expression of lipid synthesis and uptake genes. We identified high-mobility group box 1 as a key candidate target for DDB1-mediated liver injury. DDB1 deficiency upregulated the expression and extracellular release of high-mobility group box 1, which further increased macrophage infiltration and activated HSCs, ultimately leading to the exacerbation of liver inflammation and fibrosis. CONCLUSIONS: These data demonstrate the independent regulation of hepatic steatosis and injury in MASH. These findings have considerable clinical implications for the development of therapeutic strategies for MASH.


Asunto(s)
Proteínas de Unión al ADN , Hígado Graso , Proteína HMGB1 , Hepatocitos , Cirrosis Hepática , Ratones Noqueados , Animales , Ratones , Hepatocitos/metabolismo , Hepatocitos/patología , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Hígado Graso/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Masculino , Deficiencia de Colina/complicaciones , Modelos Animales de Enfermedad , Metionina/deficiencia , Hígado/patología , Hígado/metabolismo , Metabolismo de los Lípidos
4.
Nutrients ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931230

RESUMEN

Choline is an essential nutrient, with high requirements during fetal and postnatal growth. Tissue concentrations of total choline are tightly regulated, requiring an increase in its pool size proportional to growth. Phosphatidylcholine and sphingomyelin, containing a choline headgroup, are constitutive membrane phospholipids, accounting for >85% of total choline, indicating that choline requirements are particularly high during growth. Daily phosphatidylcholine secretion via bile for lipid digestion and very low-density lipoproteins for plasma transport of arachidonic and docosahexaenoic acid to other organs exceed 50% of its hepatic pool. Moreover, phosphatidylcholine is required for converting pro-apoptotic ceramides to sphingomyelin, while choline is the source of betaine as a methyl donor for creatine synthesis, DNA methylation/repair and kidney function. Interrupted choline supply, as during current total parenteral nutrition (TPN), causes a rapid drop in plasma choline concentration and accumulating deficit. The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) defined choline as critical to all infants requiring TPN, claiming its inclusion in parenteral feeding regimes. We performed a systematic literature search in Pubmed with the terms "choline" and "parenteral nutrition", resulting in 47 relevant publications. Their results, together with cross-references, are discussed. While studies on parenteral choline administration in neonates and older children are lacking, preclinical and observational studies, as well as small randomized controlled trials in adults, suggest choline deficiency as a major contributor to acute and chronic TPN-associated liver disease, and the safety and efficacy of parenteral choline administration for its prevention. Hence, we call for choline formulations suitable to be added to TPN solutions and clinical trials to study their efficacy, particularly in growing children including preterm infants.


Asunto(s)
Colina , Suplementos Dietéticos , Nutrición Parenteral , Colina/administración & dosificación , Humanos , Recién Nacido , Lactante , Deficiencia de Colina , Niño , Nutrición Parenteral Total , Preescolar
5.
Clin Nutr ; 43(6): 1503-1515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729079

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is related to muscle loss, but the precise mechanism underlying this association remains unclear. The aim of the present study was thus to determine the influence of maternal fatty liver and dietary choline deficiency during pregnancy and/or lactation periods on the skeletal muscle gene expression profile among 24-day-old male rat offspring. METHODS: Histological examination of skeletal muscle tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global transcriptome pattern was assessed using a microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time PCR (qPCR). RESULTS: Morphological differences in fat accumulation in skeletal muscle related to choline supply were observed. The global gene expression profile was consistent with abnormal morphological changes. Mettl21c gene was overexpressed in all choline-deficient groups compared to the NN group, while two genes, Cdkn1a and S100a4, were downregulated. Processes of protein biosynthesis were upregulated, and processes related to cell proliferation and lipid metabolism were inhibited in DD, DN, and ND groups compared to the NN group. CONCLUSIONS: Prenatal and early postnatal exposure to fatty liver and dietary choline deficiency leads to changes in the transcriptome profile in skeletal muscle of 24-day old male rat offspring and is associated with muscle damage, but the mechanism of it seems to be different at different developmental stages of life. Adequate choline intake during pregnancy and lactation can prevent severe muscle disturbance in the progeny of females suffering from fatty liver.


Asunto(s)
Deficiencia de Colina , Colina , Lactancia , Músculo Esquelético , Efectos Tardíos de la Exposición Prenatal , Transcriptoma , Animales , Femenino , Embarazo , Músculo Esquelético/metabolismo , Masculino , Ratas , Colina/administración & dosificación , Fenómenos Fisiologicos Nutricionales Maternos , Ratas Wistar , Dieta , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología
6.
PLoS One ; 19(5): e0303296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753743

RESUMEN

AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS: CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION: S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.


Asunto(s)
Hígado Graso , Células Estrelladas Hepáticas , Cirrosis Hepática , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/etiología , Ratones , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Pirazoles , Piridinas
7.
Am J Pathol ; 194(7): 1218-1229, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588852

RESUMEN

Hepatocyte nuclear factor 4 alpha (HNF4α) is a nuclear factor essential for liver function that regulates the expression of cMyc and plays an important role during liver regeneration. This study investigated the role of the HNF4α-cMyc interaction in regulating liver injury and regeneration using the choline-deficient and ethionine-supplemented (CDE) diet model. Wild-type (WT), hepatocyte-specific HNF4α-knockout (KO), cMyc-KO, and HNF4α-cMyc double KO (DKO) mice were fed a CDE diet for 1 week to induce subacute liver injury. To study regeneration, normal chow diet was fed for 1 week after CDE diet. WT mice exhibited significant liver injury and decreased HNF4α mRNA and protein expression after CDE diet. HNF4α deletion resulted in significantly higher injury with increased inflammation, fibrosis, proliferation, and hepatic progenitor cell activation compared with WT mice after CDE diet but indicated similar recovery. Deletion of cMyc lowered liver injury with activation of inflammatory genes compared with WT and HNF4α-KO mice after CDE diet. DKO mice had a phenotype comparable to that of the HNF4α-KO mice after CDE diet and a complete recovery. DKO mice exhibited a significant increase in hepatic progenitor cell markers both after injury and recovery phase. Taken together, these data show that HNF4α protects against inflammatory and fibrotic changes after CDE diet-induced injury, which is driven by cMyc.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Regeneración Hepática , Ratones Noqueados , Animales , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Regeneración Hepática/fisiología , Ratones , Etionina , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Hígado/metabolismo , Hígado/patología , Dieta/efectos adversos , Masculino , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/patología , Deficiencia de Colina/complicaciones
8.
Toxicol Lett ; 396: 36-47, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663832

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRß, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.


Asunto(s)
Deficiencia de Colina , Sistema Enzimático del Citocromo P-450 , Hígado , Enfermedad del Hígado Graso no Alcohólico , Ratas Sprague-Dawley , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/enzimología , Masculino , Hígado/metabolismo , Hígado/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Deficiencia de Colina/complicaciones , Modelos Animales de Enfermedad , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metionina/metabolismo , Ratas , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Regulación Enzimológica de la Expresión Génica
9.
J Ethnopharmacol ; 329: 118127, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583728

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY: We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS: The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1ß, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS: Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1ß were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION: SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.


Asunto(s)
Apoptosis , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Transducción de Señal/efectos de los fármacos , Deficiencia de Colina/complicaciones , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Modelos Animales de Enfermedad , Farmacología en Red , Antiinflamatorios/farmacología , Metabolismo de los Lípidos/efectos de los fármacos
10.
Curr Nutr Rep ; 13(2): 152-165, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38427291

RESUMEN

PURPOSE OF REVIEW: Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS: Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.


Asunto(s)
Enfermedades Cardiovasculares , Colina , Dieta , Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Humanos , Enfermedades Cardiovasculares/prevención & control , Enfermedad del Hígado Graso no Alcohólico , Deficiencia de Colina/complicaciones , Metilaminas/metabolismo
11.
Metab Syndr Relat Disord ; 22(5): 394-401, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498801

RESUMEN

Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.


Asunto(s)
Dieta Alta en Grasa , Modelos Animales de Enfermedad , Vesículas Extracelulares , Ratas Sprague-Dawley , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Animales , Masculino , Ratas , Hígado/metabolismo , Hígado/patología , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Hígado Graso/patología , Hígado Graso/metabolismo , Hígado Graso/etiología , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Inflamación/patología , Inflamación/metabolismo , Deficiencia de Colina/complicaciones
12.
Biochem Biophys Res Commun ; 701: 149589, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309152

RESUMEN

OBJECTIVE: To evaluate the role of PRDX2 in nonalcoholic steatohepatitis (NASH). METHODS: NASH was induced in wild-type (WT) mice and liver-specific PRDX2 knockout (PRDX2 LKO) mice that were fed a methionine-choline deficient diet (MCD) for 5 weeks. Assessments of PRDX2 LKO's impact on the pathogenesis of NASH include histological analyses, quantitative PCR (q-PCR), western blotting (WB), and RNA sequencing (RNA-Seq). RESULTS: PRDX2 LKO mice exhibited a significant increase in hepatic lipid accumulation and inflammation compared to WT mice after MCD feeding. PRDX2 KO markedly elevated circulating levels of aspartate aminotransferase (AST) and the pro-inflammatory signaling pathways within the liver. There was a notable increase in the activities of signal transducer and activator of transcription 1 (STAT1) and nuclear factor kappa B (NF-кB). We also found that PRDX2 KO significantly increased the extent of lipid peroxidation in the liver, most likely owing to the impaired peroxidase activity of PRDX2. Of interest, these findings were observed only in MCD-fed female mice, suggesting the sexual dimorphism of PRDX2 KO in MCD-induced NASH. CONCLUSION: PRDX2 deficiency increases MCD-induced NASH in female mice, suggesting a protective role for PRDX2.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Femenino , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Colina/metabolismo , Metionina/metabolismo , Deficiencia de Colina/metabolismo , Hígado/metabolismo , Racemetionina/metabolismo , Dieta , Ratones Noqueados , Ratones Endogámicos C57BL
13.
Biochem Pharmacol ; 222: 116073, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395263

RESUMEN

Stem cells from the apical papilla(SCAPs) exhibit remarkable tissue repair capabilities, demonstrate anti-inflammatory and pro-angiogenic effects, positioning them as promising assets in the realm of regenerative medicine. Recently, the focus has shifted towards exosomes derived from stem cells, perceived as safer alternatives while retaining comparable physiological functions. This study delves into the therapeutic implications of exosomes derived from SCAPs in the methionine-choline-deficient (MCD) diet-induced mice non-alcoholic steatohepatitis (NASH) model. We extracted exosomes from SCAPs. During the last two weeks of the MCD diet, mice were intravenously administered SCAPs-derived exosomes at two distinct concentrations (50 µg/mouse and 100 µg/mouse) biweekly. Thorough examinations of physiological and biochemical indicators were performed to meticulously evaluate the impact of exosomes derived from SCAPs on the advancement of NASH in mice induced by MCD diet. This findings revealed significant reductions in body weight loss and liver damage induced by the MCD diet following exosomes treatment. Moreover, hepatic fat accumulation was notably alleviated. Mechanistically, the treatment with exosomes led to an upregulation of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) levels in the liver, enhancing hepatic fatty acid oxidation and transporter gene expression while inhibiting genes associated with fatty acid synthesis. Additionally, exosomes treatment increased the transcription levels of key liver mitochondrial marker proteins and the essential mitochondrial biogenesis factor. Furthermore, the levels of serum inflammatory factors and hepatic tissue inflammatory factor mRNA expression were significantly reduced, likely due to the anti-inflammatory phenotype induced by exosomes in macrophages. The above conclusion suggests that SCAPs-exosomes can improve NASH.


Asunto(s)
Deficiencia de Colina , Exosomas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Metionina/metabolismo , Colina/metabolismo , Metabolismo de los Lípidos , Exosomas/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/tratamiento farmacológico , Deficiencia de Colina/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacología , Antiinflamatorios/farmacología , Dieta , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL
14.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338668

RESUMEN

Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metionina/metabolismo , Colina/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Hígado/metabolismo , Racemetionina/metabolismo , Dieta , Inflamación/metabolismo , Quimiocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
15.
Food Funct ; 15(6): 2982-2995, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38411344

RESUMEN

Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of a cluster of conditions associated with lipid metabolism disorders. Ideal animal models mimicking the human NASH need to be explored to better understand the pathogenesis. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has recently been used to induce the NASH model, but the advantages are not established. NASH models were induced using the well-known traditional methionine- and choline-deficient (MCD) diet for 5 weeks and the recently used CDAHFD for 3 weeks. Liver phenotypes were analyzed to evaluate the differences in markers related to NASH. Lipidomics and metabolism analyses were used to investigate the effects of dietary regimens on the lipidome of the liver. The CDAHFD induced stronger NASH responses than the MCD, including lipid deposition, liver injury, inflammation, bile acid overload and hepatocyte proliferation. A significant difference in the hepatic lipidome was revealed between the CDAHFD and MCD-induced NASH models. In particular, the CDAHFD reduced the hepatic levels of phosphatidylcholines (PCs) and acylcarnitines (ACs), which was supported by the metabolism analysis and in line with the tendency of human NASH. Pathologically, the CDAHFD could effectively induce a more human-like NASH model over the traditional MCD. The hepatic PCs, ACs and their metabolism in CDAHFD-treated mice were down-regulated, similar to those in human NASH.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Deficiencia de Colina/complicaciones , Colina , Dieta Alta en Grasa/efectos adversos , Metionina , Modelos Animales de Enfermedad
16.
Mol Nutr Food Res ; 68(4): e2300561, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38234006

RESUMEN

SCOPE: Gut microbiota (GM) is involved in nonalcoholic steatohepatitis (NASH) development. Phytochemicals soyasaponins can prevent NASH possibly by modulating GM. This study aims to investigate the preventive bioactivities of soyasaponin monomers (SS-A1 and SS-Bb) against NASH and explores the mechanisms by targeting GM. METHODS AND RESULTS: Male C57BL/6 mice are fed with methionine and choline deficient (MCD) diet containing SS-A1 , SS-Bb, or not for 16 weeks. Antibiotics-treated pseudo germ-free (PGF) mice are fed with MCD diet containing SS-A1 , SS-Bb, or not for 8 weeks. GM is determined by 16S rRNA amplicon sequencing. Bile acids (BAs) are measured by UPLC-MS/MS. In NASH mice, SS-A1 and SS-Bb alleviate steatohepatitis and fibrosis, reduce ALT, AST, and LPS in serum, decrease TNF-α, IL-6, α-SMA, triglycerides, and cholesterol in liver. SS-A1 and SS-Bb decrease Firmicutes, Erysipelotrichaceae, unidentified-Clostridiales, Eggerthellaceae, Atopobiaceae, Aerococcus, Jeotgalicoccus, Gemella, Rikenella, increase Proteobacteria, Verrucomicrobia, Akkermansiaceae, Romboutsia, and Roseburia. SS-A1 and SS-Bb alter BAs composition in liver, serum, and feces, activate farnesoid X receptor (FXR) in liver and ileum, increase occludin and ZO-1 in intestine. However, GM clearance abrogates the preventive bioactivities of SS-A1 and SS-Bb against NASH. CONCLUSION: GM plays essential roles in soyasaponin's preventive bioactivities against steatohepatitis in MCD diet-induced NASH mice.


Asunto(s)
Deficiencia de Colina , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/microbiología , Metionina , Colina , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S , Cromatografía Liquida , Deficiencia de Colina/complicaciones , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Hígado , Dieta , Racemetionina
17.
Am J Clin Nutr ; 119(1): 117-126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176775

RESUMEN

BACKGROUND: Choline is essential for healthy cognitive development. Single nucleotide polymorphisms (SNPs; rs3199966(G), rs2771040(G)) within the choline transporter SLC44A1 increase risk for choline deficiency. In a choline intervention trial of children who experienced prenatal alcohol exposure (PAE), these alleles are associated with improved cognition. OBJECTIVE: This study aimed to determine if SNPs within SLC44A1 are differentially associated with cognition in children with PAE compared with normotypic controls (genotype × exposure). A secondary objective tested for an association of these SNPs and cognition in controls (genotype-only). DESIGN: This is a secondary analysis of data from the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Participants (163 normotypic controls, 162 PAE) underwent psychological assessments and were genotyped within SLC44A1. Choline status was not assessed. Association analysis between genotype × exposure was performed using an additive genetic model and linear regression to identify the allelic effect. The primary outcome was the interaction between SLC44A1 genotype × exposure status with respect to cognition. The secondary outcome was the cognitive-genotype association in normotypic controls. RESULTS: Genotype × exposure analysis identified 7 SNPs in SLC44A1, including rs3199966(G) and rs2771040(G), and in strong linkage (D' ≥ 0.87), that were associated (adjusted P ≤ 0.05) with reduced performance in measures of general cognition, nonverbal and quantitative reasoning, memory, and executive function (ß, 1.92-3.91). In controls, carriers of rs3199966(GT or GG) had worsened cognitive performance than rs3199966(TT) carriers (ß, 0.46-0.83; P < 0.0001), whereas cognitive performance did not differ by rs3199966 genotype in those with PAE. CONCLUSIONS: Two functional alleles that increase vulnerability to choline deficiency, rs3199966(G) (Ser644Ala) and rs2771040(G) (3' untranslated region), are associated with worsened cognition in otherwise normotypic children. These alleles were previously associated with greater cognitive improvement in children with PAE who received supplemental choline. The findings endorse that choline benefits cognitive development in normotypic children and those with PAE.


Asunto(s)
Deficiencia de Colina , Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Niño , Humanos , Embarazo , Femenino , Efectos Tardíos de la Exposición Prenatal/genética , Colina , Cognición , Antígenos CD , Proteínas de Transporte de Catión Orgánico
18.
PLoS One ; 19(1): e0296950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285666

RESUMEN

Nonalcoholic steatohepatitis (NASH) occurs worldwide and is characterized by lipid accumulation in hepatocytes, hepatic inflammation, fibrosis, and an increased risk of cirrhosis. Although a major proportion of NASH patients exhibit obesity and insulin resistance, 20% lack a high body mass and are categorized as "non-obese NASH". Time-restricted feeding (TRF), limiting daily food intake within certain hours, improves obesity, lipid metabolism, and liver inflammation. Here, we determined whether TRF affects NASH pathology induced by a choline-deficient high-fat diet (CDAHFD), which does not involve obesity. TRF ameliorated the increase in epididymal white adipose tissue and plasma alanine transaminase and aspartate transaminase levels after 8 weeks of a CDAHFD. Although gene expression of TNF alpha in the liver was suppressed by TRF, it did not exhibit a suppressive effect on hepatic lipid accumulation, gene expression of cytokines and macrophage markers (Mcp1, IL1b, F4/80), or fibrosis, as evaluated by Sirius red staining and western blot analysis of alpha-smooth muscle actin. A CDAHFD-induced increase in gene expression related to fibrogenesis (Collagen 1a1 and TGFß) was neither suppressed by TRF nor that of alpha-smooth muscle actin but was increased by TRF. Our results indicated that TRF has a limited suppressive effect on CDAHFD-induced NASH pathology.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Colina/metabolismo , Dieta Alta en Grasa/efectos adversos , Actinas/metabolismo , Deficiencia de Colina/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Inflamación/patología , Fibrosis , Obesidad/complicaciones , Lípidos/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
19.
Magn Reson Med ; 91(4): 1625-1636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38115605

RESUMEN

PURPOSE: Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS: Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS: Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION: HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Metionina/metabolismo , Colina/metabolismo , Ácido Pirúvico/metabolismo , Ácido Aspártico/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología , Ratas Wistar , Hígado/metabolismo , Racemetionina/metabolismo , Dieta , Triglicéridos , Alanina/metabolismo , Lactatos/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
20.
Free Radic Biol Med ; 212: 34-48, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104741

RESUMEN

Aldehyde dehydrogenase 2 (ALDH2), an acetaldehyde dehydrogenase in mitochondria, is primarily responsible for metabolizing alcohol-derived acetaldehyde and other endogenous aldehydes. Inactivating ALDH2 rs671 polymorphism is found in up to 8 % of the global population and 40 % of the East Asian population. Recent studies have shown that rs671 SNP mutation in the human ALDH2 gene is associated with an increased risk of metabolic dysfunction-associated steatotic liver diseases (MASLD), but the mechanism remains unclear. Here, we identify the role of ALDH2 in MASLD. Firstly, ALDH2 activity was lower in MASLD patients and the methionine-choline deficiency (MCD) diet induced MASLD model. Secondly, activation of ALDH2 activity with Alda-1 (ALDH2 agonist) attenuated MCD-diet induced hepatic triglyceride (TG) accumulation and steatosis, whereas the opposite result was observed with cyanamide (CYA, ALDH2 inhibitor). Furthermore, ALDH2 deficiency exacerbated hepatic steatosis, inflammation, and fibrosis in the MCD-diet induced mice. RNA sequencing (RNA-seq) revealed that oxysterol 7-α hydroxylase (Cyp7b1) and the related metabolic pathway significantly changed in the MCD-diet challenged ALDH2-/- mice. In ALDH2-/- mice, the expression of Cyp7b1 was downregulated and FXR/SHP signaling was inhibited, reducing the alternative bile acid (BA) synthetic pathway. In our in vitro experiments, knockdown of ALDH2 exacerbated TG accumulation in hepatocytes, whereas the opposite result was observed with overexpression of ALDH2. Moreover, chenodeoxycholic acid (CDCA) rescued ALDH2 downregulation induced TG accumulation in hepatocytes. Our study reveals that ALDH2 attenuates hepatocyte steatosis by regulating the alternative BA synthesis pathway, and ALDH2 may serve as a potential target for the treatment of MASLD.


Asunto(s)
Deficiencia de Colina , Hígado Graso , Humanos , Ratones , Animales , Metionina , Hígado Graso/etiología , Racemetionina , Dieta , Ácidos y Sales Biliares , Aldehído Deshidrogenasa Mitocondrial/genética , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...