Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
EMBO J ; 40(19): e107260, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410010

RESUMEN

The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc-EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc-EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington's disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.


Asunto(s)
Envejecimiento/metabolismo , Susceptibilidad a Enfermedades , Genes Reporteros , Ratones Transgénicos , Neuronas/metabolismo , Proteostasis , Envejecimiento/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad de Huntington/etiología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Agregación Patológica de Proteínas , Pliegue de Proteína , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Tauopatías/etiología , Tauopatías/metabolismo , Tauopatías/patología
2.
Yakugaku Zasshi ; 141(6): 835-842, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34078791

RESUMEN

Dementia has no cure and is an international health crisis. In addition to the immeasurable loss of QOL caused by dementia, the global economic cost is predicted to reach $2 trillion (USD) by 2030. Although much remains unknown about the biochemical pathways driving cognitive decline and memory loss during dementia, metals have been implicated in neurodegenerative disease. For example, total levels of Fe and Cu increase, which has been proposed to drive oxidative stress; and Fe, Cu, and Zn can bind amyloid-ß, catalysing aggregation and formation of amyloid plaques. Unfortunately, despite these known facets through which metal ions may induce pathology, studies in greater detail have been hampered by a lack of microscopy methods to directly visualise metal ions, and their chemical form, within brain cells. Herein we report the use of synchrotron X-ray fluorescence microscopy to simultaneously image Fe, Cu, and Zn within neurons in ex vivo brain tissue sections. Using animal models of dementia, we now demonstrate for the first time that despite global increases in brain metal content and metal ion accumulation within amyloid plaques, key brain regions may also become metal ion deficient. Such deficiency could contribute to cognitive decline because of the essential roles metal ions play in neurotransmitter synthesis and energy metabolism. These recent findings are discussed in the context of memory loss, and the impact that metal ion dis-homeostasis may have on diagnostic and therapeutic development.


Asunto(s)
Demencia/etiología , Demencia/metabolismo , Hipocampo/metabolismo , Metales/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Cobre/metabolismo , Demencia/psicología , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Iones , Hierro/metabolismo , Memoria , Ratones , Microscopía Fluorescente , Neurotransmisores/metabolismo , Unión Proteica , Deficiencias en la Proteostasis/etiología , Zinc/metabolismo
3.
Biochemistry (Mosc) ; 86(3): 275-289, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33838629

RESUMEN

Aging is a prime systemic cause of various age-related diseases, in particular, proteinopathies. In fact, most diseases associated with protein misfolding are sporadic, and their incidence increases with aging. This review examines the process of protein aggregate formation, the toxicity of such aggregates, the organization of cellular systems involved in proteostasis, and the impact of protein aggregates on important cellular processes leading to proteinopathies. We also analyze how manifestations of aging (mitochondrial dysfunction, dysfunction of signaling systems, changes in the genome and epigenome) facilitate pathogenesis of various proteinopathies either directly, by increasing the propensity of key proteins for aggregation, or indirectly, through dysregulation of stress responses. Such analysis might help in outlining approaches for treating proteinopathies and extending healthy longevity.


Asunto(s)
Envejecimiento , Agregación Patológica de Proteínas , Deficiencias en la Proteostasis/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Proteostasis , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/fisiopatología
4.
Cell Physiol Biochem ; 55(1): 91-116, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33543862

RESUMEN

BACKGROUND/AIMS: Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS: Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS: Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are ß-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by ß-hydroxymethyl-butyrate treatment. CONCLUSION: An innovative multiomics approach followed by experimental validation showed that ß-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.


Asunto(s)
Etanol/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Hidroxibutiratos/farmacología , Hepatopatías Alcohólicas , Deficiencias en la Proteostasis , Sarcopenia , Transducción de Señal/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Etanol/farmacología , Femenino , Genómica , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Deficiencias en la Proteostasis/dietoterapia , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Sarcopenia/tratamiento farmacológico , Sarcopenia/etiología , Sarcopenia/metabolismo , Sarcopenia/patología
5.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276458

RESUMEN

Age-dependent alterations in the proteostasis network are crucial in the progress of prevalent neurodegenerative diseases, such as Alzheimer's, Parkinson's, or amyotrophic lateral sclerosis, which are characterized by the presence of insoluble protein deposits in degenerating neurons. Because molecular chaperones deter misfolded protein aggregation, regulate functional phase separation, and even dissolve noxious aggregates, they are considered major sentinels impeding the molecular processes that lead to cell damage in the course of these diseases. Indeed, members of the chaperome, such as molecular chaperones and co-chaperones, are increasingly recognized as therapeutic targets for the development of treatments against degenerative proteinopathies. Chaperones must recognize diverse toxic clients of different orders (soluble proteins, biomolecular condensates, organized protein aggregates). It is therefore critical to understand the basis of the selective chaperone recognition to discern the mechanisms of action of chaperones in protein conformational diseases. This review aimed to define the selective interplay between chaperones and toxic client proteins and the basis for the protective role of these interactions. The presence and availability of chaperone recognition motifs in soluble proteins and in insoluble aggregates, both functional and pathogenic, are discussed. Finally, the formation of aberrant (pro-toxic) chaperone complexes will also be disclosed.


Asunto(s)
Susceptibilidad a Enfermedades , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Amiloide/metabolismo , Animales , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/aislamiento & purificación , Agregación Patológica de Proteínas , Unión Proteica , Relación Estructura-Actividad
6.
PLoS One ; 15(12): e0243419, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33270781

RESUMEN

The proteostasis network comprises the biochemical pathways that together maintain and regulate proper protein synthesis, transport, folding, and degradation. Many neurodegenerative diseases are characterized by a failure of the proteostasis network to sustain the health of the proteome, resulting in protein misfolding, aggregation, and, often, neurotoxicity. Although important advances have been made in recent years to identify genetic risk factors for neurodegenerative diseases, we still know relatively little about environmental risk factors such as air pollution. Exposure to nano-sized particulate air pollution, referred to herein as nanoparticulate matter (nPM), has been shown to trigger the accumulation of misfolded and oligomerized amyloid beta in mice. This suggests that the ability to maintain proteostasis is likely compromised in Alzheimer 's disease (AD) pathogenesis upon exposure to nPM. We aim to determine whether this aspect of the environment interacts with proteostasis network machinery to trigger protein misfolding. This could at least partially explain how air pollution exacerbates the symptoms of neurodegenerative diseases of aging, such as AD. We hypothesize that nPM challenges the buffering capacity of the proteostasis network by reducing the efficiency of folding for metastable proteins, thereby disrupting what has proven to be a very delicate proteostasis balance. We will test this hypothesis using C. elegans as our model system. Specifically, we will determine the impact of particulate air pollution on the aggregation and toxicity of disease-associated reporters of proteostasis and on transcriptional responses to stress.


Asunto(s)
Contaminación del Aire/efectos adversos , Caenorhabditis elegans/efectos de los fármacos , Nanopartículas/efectos adversos , Material Particulado/efectos adversos , Proteostasis/efectos de los fármacos , Enfermedad de Alzheimer/etiología , Animales , Caenorhabditis elegans/fisiología , Modelos Animales de Enfermedad , Humanos , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteostasis/fisiología , Deficiencias en la Proteostasis/etiología , Transcripción Genética/efectos de los fármacos
7.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899160

RESUMEN

Neurodegenerative proteinopathies are complex diseases that share some pathogenetic processes. One of these is the failure of the proteostasis network (PN), which includes all components involved in the synthesis, folding, and degradation of proteins, thus leading to the aberrant accumulation of toxic protein aggregates in neurons. The single components that belong to the three main modules of the PN are highly interconnected and can be considered as part of a single giant network. Several pharmacological strategies have been proposed to ameliorate neurodegeneration by targeting PN components. Nevertheless, effective disease-modifying therapies are still lacking. In this review article, after a general description of the PN and its failure in proteinopathies, we will focus on the available pharmacological tools to target proteostasis. In this context, we will discuss the main advantages of systems-based pharmacology in contrast to the classical targeted approach, by focusing on network pharmacology as a strategy to innovate rational drug design.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Agregación Patológica de Proteínas/complicaciones , Proteínas/metabolismo , Deficiencias en la Proteostasis/patología , Proteostasis , Animales , Homeostasis , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Deficiencias en la Proteostasis/etiología
8.
Biomolecules ; 10(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854212

RESUMEN

Neurodegenerative diseases are characterized by the accumulation of disease-related misfolded proteins. It is now widely understood that the characteristic self-amplifying (i.e., seeding) capacity once only attributed to the prions of transmissible spongiform encephalopathy diseases is a feature of other misfolded proteins of neurodegenerative diseases, including tau, Aß, and αSynuclein (αSyn). Ultrasensitive diagnostic assays, known as real-time quaking-induced conversion (RT-QuIC) assays, exploit these seeding capabilities in order to exponentially amplify protein seeds from various biospecimens. To date, RT-QuIC assays have been developed for the detection of protein seeds related to known prion diseases of mammals, the αSyn aggregates of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, and the tau aggregates of Alzheimer's disease, chronic traumatic encephalopathy, and other tauopathies including progressive supranuclear palsy. Application of these assays to premortem human biospecimens shows promise for diagnosis of neurodegenerative disease and is an area of active investigation. RT-QuIC assays are also powerful experimental tools that can be used to dissect seeding networks within and between tissues and to evaluate how protein seed distribution and quantity correlate to disease-related outcomes in a host. As well, RT-QuIC application may help characterize molecular pathways influencing protein seed accumulation, transmission, and clearance. In this review we discuss the application of RT-QuIC assays as diagnostic, experimental, and structural tools for detection and discrimination of PrP prions, tau, and αSyn protein seeds.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Biomarcadores/química , Biomarcadores/metabolismo , Encéfalo/metabolismo , Sistemas de Computación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Modelos Neurológicos , Proteínas del Tejido Nervioso/química , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/etiología , Priones/química , Priones/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-30834843

RESUMEN

BACKGROUND: Diabetes mellitus is a metabolic disorder that is characterized by impaired glucose tolerance resulting from defects in insulin secretion, insulin action, or both. Epigenetic modifications, which are defined as inherited changes in gene expression that occur without changes in gene sequence, are involved in the etiology of diabetes. METHODS: In this review, we focused on the role of DNA methylation and protein misfolding and their contribution to the development of both type 1 and type 2 diabetes mellitus. RESULTS: Changes in DNA methylation in particular are highly associated with the development of diabetes. Protein function is dependent on their proper folding in the endoplasmic reticulum. Defective protein folding and consequently their functions have also been reported to play a role. Early treatment of diabetes has proven to be of great benefit, as even transient hyperglycemia may lead to pathological effects and complications later on. This has been explained by the theory of the development of a metabolic memory in diabetes. The basis for this metabolic memory was attributed to oxidative stress, chronic inflammation, non-enzymatic glycation of proteins and importantly, epigenetic changes. This highlights the importance of linking new therapeutics targeting epigenetic mechanisms with traditional antidiabetic drugs. CONCLUSION: Although new data is evolving on the relation between DNA methylation, protein misfolding, and the etiology of diabetes, more studies are required for developing new relevant diagnostics and therapeutics.


Asunto(s)
Metilación de ADN/fisiología , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Pliegue de Proteína , Respuesta de Proteína Desplegada/fisiología , Animales , Epigénesis Genética/fisiología , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/genética , Hiperglucemia/metabolismo , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo
10.
Lab Invest ; 99(7): 929-942, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30918326

RESUMEN

More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.


Asunto(s)
Repeticiones de Microsatélite , Enfermedades del Sistema Nervioso/genética , Deficiencias en la Proteostasis/etiología , Animales , Expresión Génica , Humanos , Deficiencias en la Proteostasis/terapia
11.
Methods Mol Biol ; 1948: 35-44, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30771168

RESUMEN

Here, we describe a detailed protocol to set up the αS-PMCA assay using αS synthetic aggregates in buffer and to accurately detect endogenous αS aggregates from human CSF samples. Given the amplificative nature of the technique, minute amounts of misfolded protein aggregates circulating in human bodily fluids can be multiplied and thereafter detected by more conventional methods, such as immune assays or fluorescence. Following these principles, αS-PMCA was standardized for the highly sensitive and specific detection of αS misfolded aggregates in cerebrospinal fluid (CSF) of patients with synucleinopathies.


Asunto(s)
Pliegue de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Análisis de Datos , Humanos , Agregado de Proteínas , Agregación Patológica de Proteínas , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , alfa-Sinucleína/líquido cefalorraquídeo
12.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30791416

RESUMEN

The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the "self-defense" equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers' clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential.


Asunto(s)
Autofagia/efectos de los fármacos , Descubrimiento de Drogas , Neuroprotección/efectos de los fármacos , Animales , Autofagia/genética , Biomarcadores , Descubrimiento de Drogas/métodos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/genética , Lisosomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Relación Estructura-Actividad
13.
J Math Biol ; 78(1-2): 465-495, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30116882

RESUMEN

Prions are proteins capable of adopting misfolded conformations and transmitting these conformations to other normally folded proteins. Prions are most commonly known for causing fatal neurodegenerative diseases in mammals but are also associated with several harmless phenotypes in yeast. A distinct feature of prion propagation is the existence of different phenotypical variants, called strains. It is widely accepted that these strains correspond to different conformational states of the protein, but the mechanisms driving their interactions remain poorly understood. This study uses mathematical modeling to provide insight into this problem. We show that the classical model of prion dynamics allows at most one conformational strain to stably propagate. In order to conform to biological observations of strain coexistence and co-stability, we develop an extension of the classical model by introducing a novel prion species consistent with biological studies. Qualitative analysis of this model reveals a new variety of behavior. Indeed, it allows for stable coexistence of different strains in a wide parameter range, and it also introduces intricate initial condition dependency. These new behaviors are consistent with experimental observations of prions in both mammals and yeast. As such, our model provides a valuable tool for investigating the underlying mechanisms of prion propagation and the link between prion strains and strain specific phenotypes. The consideration of a novel prion species brings a change in perspective on prion biology and we use our model to generate hypotheses about prion infectivity.


Asunto(s)
Modelos Biológicos , Priones/química , Priones/metabolismo , Animales , Biología Computacional , Simulación por Computador , Humanos , Cinética , Conceptos Matemáticos , Modelos Moleculares , Fenotipo , Enfermedades por Prión/etiología , Enfermedades por Prión/metabolismo , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo
14.
Methods Mol Biol ; 1873: 109-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30341606

RESUMEN

Many proteins and peptides are able to self-assemble in solution in vitro and in vivo to form amyloid-like fibrils. These fibrils share common structural characteristics. In order for a fibril to be characterized as amyloid, it is expected to fit certain criteria including the composition of cross-ß. Here we describe how the formation of amyloid fibrils can be characterized in vitro using a variety of methods including circular dichroism and intrinsic tyrosine/tryptophan fluoresence to follow conformational changes; Thioflavin and/or ThS assembly to monitor nucleation and growth; transmission electron microscopy to visualize fibrillar morphology and X-ray fiber diffraction to examine cross-ß structure.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Modelos Moleculares , Conformación Proteica , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Benzotiazoles/química , Benzotiazoles/metabolismo , Dicroismo Circular , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Relación Estructura-Actividad Cuantitativa , Difracción de Rayos X
15.
Int J Mol Sci ; 19(10)2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304819

RESUMEN

The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal ß-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-ß and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.


Asunto(s)
Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Proteínas Priónicas/metabolismo , Pliegue de Proteína , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Membrana Celular/metabolismo , Susceptibilidad a Enfermedades , Retículo Endoplásmico/metabolismo , Variación Genética , Aparato de Golgi/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Transducción de Señal
16.
Lasers Surg Med ; 50(5): 491-498, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29512168

RESUMEN

The insult delivered by photodynamic therapy (PDT) in treated cells is oxidative stress. The main burden threatening survival of PDT-treated cells is proteotoxic damage that jeopardizes proteostasis in these cells. For dealing with this type of proteostasis impairment, cells have developed protection mechanisms operating by signaling networks. This review will outline various components of signaling networks that can be engaged in stressed cells with highlighting the emerging aspects relevant to response to PDT. It will be also shown how the well known inflammatory/immune response associated with PDT is also based on the activity of these stress signaling networks. Lasers Surg. Med. 50:491-498, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Muerte Celular , Estrés Oxidativo , Fotoquimioterapia , Deficiencias en la Proteostasis/etiología , Transducción de Señal/fisiología , Humanos
17.
Curr Opin Clin Nutr Metab Care ; 21(1): 30-36, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29035972

RESUMEN

PURPOSE OF REVIEW: Skeletal muscle loss or sarcopenia is a frequent complication of cirrhosis that adversely affects clinical outcomes. As skeletal muscle is the largest store of proteins in the body, proteostasis or protein homeostasis is required for maintenance of muscle mass. This review will focus on disordered skeletal muscle proteostasis in liver disease. RECENT FINDINGS: Increased skeletal muscle uptake of ammonia initiates responses that result in disordered proteostasis including impaired protein synthesis and increased autophagy. The cellular response to the stress of hyperammonemia (hyperammonemic stress response, HASR) involves the coordinated action of diverse signaling pathways targeting the molecular mechanisms of regulation of protein synthesis. Transcriptional upregulation of myostatin, a TGFß superfamily member, results in impaired mTORC1 signaling. Phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) also relates to decreased global protein synthesis rates and mTORC1 signaling. Ammonia also causes mitochondrial and bioenergetic dysfunction because of cataplerosis of α-ketoglutarate. Lowering ammonia, targeting components of HASR and regulating cellular amino acid levels can potentially restore proteostasis. SUMMARY: Signaling via myostatin and eIF2α phosphorylation causes decreases in protein synthesis and mTORC1 activity with a parallel mitochondrial dysfunction and increased autophagy contributing to proteostasis perturbations during skeletal muscle hyperammonemia of liver disease.


Asunto(s)
Fibrosis/fisiopatología , Hiperamonemia/etiología , Hígado/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Deficiencias en la Proteostasis/etiología , Sarcopenia/etiología , Animales , Autofagia , Metabolismo Energético , Fibrosis/metabolismo , Humanos , Hígado/fisiopatología , Músculo Esquelético/fisiopatología
18.
Handb Exp Pharmacol ; 245: 313-343, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29071511

RESUMEN

Protein misfolding is becoming one of the main mechanisms underlying inherited enzymatic deficits. This review is focused on primary hyperoxalurias, a group of disorders of glyoxylate detoxification associated with massive calcium oxalate deposition mainly in the kidneys. The most common and severe form, primary hyperoxaluria Type I, is due to the deficit of liver peroxisomal alanine/glyoxylate aminotransferase (AGT). Various studies performed in the last decade clearly evidence that many pathogenic missense mutations prevent the AGT correct folding, leading to various downstream effects including aggregation, increased degradation or mistargeting to mitochondria. Primary hyperoxaluria Type II and primary hyperoxaluria Type III are due to the deficit of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) and 4-hydroxy-2-oxoglutarate aldolase (HOGA1), respectively. Although the molecular features of pathogenic variants of GRHPR and HOGA1 have not been investigated in detail, the data available suggest that some of them display folding defects. Thus, primary hyperoxalurias can be ranked among protein misfolding disorders, because in most cases the enzymatic deficit is due to the inability of each enzyme to reach its native and functional conformation. It follows that molecules able to improve the folding yield of the enzymes involved in each disease form could represent new therapeutic strategies.


Asunto(s)
Hiperoxaluria Primaria/etiología , Deficiencias en la Proteostasis/etiología , Animales , Humanos , Hidroxipiruvato Reductasa/genética , Chaperonas Moleculares/uso terapéutico , Oxo-Ácido-Liasas/genética , Pliegue de Proteína , Transaminasas/química , Transaminasas/genética
19.
Clin Genet ; 93(3): 450-458, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28671287

RESUMEN

Protein misfolding has been linked to numerous inherited diseases. Loss- and gain-of-function mutations (common features of genetic diseases) may cause the destabilization of proteins, leading to alterations in their properties and/or cellular location, resulting in their incorrect functioning. Misfolded proteins can, however, be rescued via the use of proteostasis regulators and/or pharmacological chaperones, suggesting that treatments with small molecules might be developed for a range of genetic diseases. This work describes the potential of these small molecules in this respect, including for the treatment of congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG).


Asunto(s)
Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/etiología , Animales , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Predisposición Genética a la Enfermedad , Glicosilación/efectos de los fármacos , Humanos , Mitocondrias , Mutación , Deficiencias en la Proteostasis/diagnóstico , Deficiencias en la Proteostasis/metabolismo
20.
Curr Top Microbiol Immunol ; 414: 131-157, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28864830

RESUMEN

The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Enfermedades Neurodegenerativas/etiología , Enfermedad de Alzheimer/etiología , Esclerosis Amiotrófica Lateral/etiología , Animales , Humanos , Enfermedad de Huntington/etiología , Enfermedad de Parkinson/etiología , Deficiencias en la Proteostasis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA