Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Environ Sci Technol ; 58(1): 63-74, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112512

RESUMEN

The detrimental effects of bisphenol (BP) exposure are a concern for vulnerable species, Indo-Pacific humpback dolphins (Sousa chinensis). To investigate the characteristics of BP profiles and their adverse impact on humpback dolphins, we assessed the concentrations of six BPs, including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol P (BPP) in blubber (n = 26) and kidney (n = 12) of humpback dolphins stranded in the Pearl River Estuary, China. BPS accounted for the largest proportion of the total bisphenols (∑BPs) in blubber (55%) and kidney (69%). The concentration of ∑BP in blubber was significantly higher than that in the kidney and liver. The EC50 values of five BPA alternatives were lower than those of BPA in humpback dolphin skin fibroblasts (ScSF) and human skin fibroblasts (HSF). ScSF was more sensitive to BPS, BPAF, BPB, and BPP than HSF. The enrichment pathway of BPA was found to be associated with inflammation and immune dysregulation, while BPP and BPS demonstrated a preference for genotoxicity. BPA, BPP, and BPS, which had risk quotients (RQs) > 1, were found to contribute to subhealth and chronic disease in humpback dolphins. According to the EC50-based risk assessment, BPS poses a higher health risk than BPA for humpback dolphins. This study successfully evaluated the risks of bisphenols in rare and endangered cetacean cell lines using a noninvasive method. More in vivo and in field observations are necessary to know whether the BPA alternatives are likely to be regrettable substitutions.


Asunto(s)
Delfines , Contaminantes Químicos del Agua , Animales , Humanos , Delfines/metabolismo , Contaminantes Químicos del Agua/toxicidad , China , Compuestos de Bencidrilo/toxicidad
2.
Chemosphere ; 338: 139496, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451642

RESUMEN

Mercury is a metal of toxicological importance that occurs naturally. However, its concentration can be affected by anthropogenic activities and has the potential to bioaccumulate and biomagnify in food webs. Thus, knowing how its concentration varies along the trophic levels allows us to understand its potential risks to the biota. The present study aimed to investigate mercury transfer through the Stenella frontalis food web in Ilha Grande Bay (IGB), Rio de Janeiro state, Brazil. Samples of muscle and liver of S. frontalis were obtained from carcasses (n = 8) found stranded in the IGB, and its potential prey species were collected in fishing landings in the same Bay (n = 145). Total mercury (THg) concentrations were determined by atomic absorption spectrometry, and the δ15N was determined by an isotope ratio mass spectrometer. To investigate how trophic transfer affects mercury contamination in biota, six linear models were applied between THg logarithmic concentrations and δ15N or trophic position (TP). The trophic magnification factor (TMF) was calculated from each model to estimate the trophic transfer. Mean THg concentration in S. frontalis was higher in the liver than in muscle, but no correlation was found with age and δ15N values. Instead, the hepatic and muscular THg concentrations positively correlated with the trophic position. In the summer, THg concentration, TP, and δ15N values in prey species varied significantly, as well as in the winter, except for THg concentration. All trophic transfer models were significant in both seasons, and the TMF >1. The present study showed that trophic transfer is an essential factor in mercury biomagnification in both seasons but is not the unique driver. Both δ15N and TP could explain mercury trophic transfer, but TP better integrates metabolic diversity and seasonality.


Asunto(s)
Delfines , Mercurio , Stenella , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Stenella/metabolismo , Bioacumulación , Delfines/metabolismo , Brasil , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Peces/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37510576

RESUMEN

Organochlorine pesticides (OCP) are legacy anthropogenic compounds known to persist for several years in the environment. The continuous use of some OCP, such as DDT, after restrictions in developing countries are cause of concern, due to their deleterious effects to marine life and humans. Studies assessing OCP contamination in coastal environments are still scarce in South America and there is a need to understand the impacts from trophic chain accumulation of these pollutants in marine life. In this study, we have assessed OCP levels in muscle and liver and estimated the biomagnification factor in several upwelling system trophic chain members, including fish, squid, and marine mammal from Southeastern Brazil. DDT degradation product DDE was the OCP detected in the highest concentrations in Franciscana dolphins (Pontoporia blainvillei), 86.4 ng·g-1 wet weight, and fish muscle and liver. In general, higher OCP levels were found in liver than in muscle, except for croaker. Biomagnification factors (BMF) of OCP in the top predator P. blainvillei and the carnivorous cutlass fish (Trichiurus lepturus) were on average between 0.2 and 1.8. Continued OCP monitoring in this region is warranted to better understand the distribution and fate of these compounds over time, with the goal to establish strategies for the conservation of local dolphin species and to assess human health risks from local coastal region populations.


Asunto(s)
Delfines , Hidrocarburos Clorados , Perciformes , Plaguicidas , Contaminantes Químicos del Agua , Animales , Humanos , DDT , Brasil , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Delfines/metabolismo , Peces/metabolismo , Perciformes/metabolismo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
Environ Sci Technol ; 57(25): 9298-9308, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37295780

RESUMEN

Halogenated flame retardants (HFRs) are a large class of chemical additives intended to meet flammability safety requirements, and at present, they are ubiquitous in the environment. Herein, we conducted the target analysis and suspect screening of legacy and novel HFRs and their metabolites in the blubber of finless porpoises (Neophocaena phocaenoides; n = 70) and Indo-Pacific humpback dolphins (Sousa chinensis; n = 35) stranded in Hong Kong, a coastal city in the South China Sea, between 2013 and 2020. The average concentrations of total target HFRs (ΣHFRs) were 6.48 × 103 ± 1.01 × 104 and 1.40 × 104 ± 1.51 × 104 ng/g lipid weight in porpoises and dolphins, respectively. Significant decreasing temporal trends were observed in the concentrations of tetra-/penta-/hexa-bromodiphenyl ethers (tetra-/penta-/hexa-BDEs) in adult porpoises stranded from 2013-2015 to 2016-2020 (p < 0.05), probably because of their phasing out in China. No significant difference was found for the concentrations of decabromodiphenyl ether and hexabromocyclododecane, possibly due to their exemption from the ban in China until 2025 and 2021, respectively. Eight brominated compounds were additionally identified via suspect screening. A positive correlation was found between the concentrations of tetra-BDE and methyl-methoxy-tetra-BDE (Me-MeO-tetra-BDE) (p < 0.05), indicating that the metabolism of tetra-BDE may be a potential source of Me-MeO-tetra-BDE in marine mammals.


Asunto(s)
Delfines , Retardadores de Llama , Marsopas , Animales , Hong Kong , Retardadores de Llama/análisis , Marsopas/metabolismo , Delfines/metabolismo , China , Éteres Difenilos Halogenados/análisis , Monitoreo del Ambiente/métodos
5.
Environ Pollut ; 333: 121935, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263561

RESUMEN

There is a need to understand the links between metals and nutrition for apex marine predators, which may be subject to different ecotoxicological effects at different life stages. We combined stomach content analyses (SCA), prey composition analysis (PCA), the Multidimensional Niche Framework (MNNF) with Bayesian multivariate ellipses, trace metal analysis and nicheROVER to investigate nutrition and trace metals across sex, age, and sexual maturity status in common dolphins (Delphinus delphis) from New Zealand. A broader prey composition niche breadth (SEAc) was estimated for immature compared to mature conspecifics, showing a higher degree of prey and nutrient generalism driven by protein (P) intake. Cd and Zn niche similarities suggests these metals were incorporated through similar prey in both immature and mature dolphins, whereas Hg and Se niche divergence indicates uptake occurred via different prey. Our multidisciplinary assessment demonstrated how nutrients and metal interactions differ in common dolphins depending upon sexual maturity. This approach has relevance when considering how marine pollution, environmental fluctuations and climate change may affect nutritional and trace metal interactions during different reproductive stages within marine predators.


Asunto(s)
Delfín Común , Delfines , Mercurio , Oligoelementos , Animales , Delfín Común/metabolismo , Teorema de Bayes , Monitoreo del Ambiente , Delfines/metabolismo , Mercurio/análisis , Oligoelementos/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-37119961

RESUMEN

Cetaceans exhibit physiological adaptations that allowed the transition to aquatic life, including a robust antioxidant defense system that prevents injury from repeated exposure to ischemia/reperfusion events associated with breath-hold diving. The signaling cascades that characterize ischemic inflammation in humans are well characterized. In contrast, cetaceans' molecular and biochemical mechanisms that confer tolerance to inflammatory events are poorly understood. Heme oxygenase (HO) is a cytoprotective protein with anti-inflammatory properties. HO catalyzes the first step in the oxidative degradation of heme. The inducible HO-1 isoform is regulated by various stimuli, including hypoxia, oxidant stress, and inflammatory cytokines. The objective of this study was to compare the response of HO-1 and cytokines to a proinflammatory challenge in leukocytes isolated from humans and bottlenose dolphins (Tursiops truncatus). We measured changes in HO activity, and abundance and expression of interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and heme oxygenase 1 (HMOX1) in leukocytes treated with lipopolysaccharide (LPS) for 24 and 48 h. HO activity increased (p < 0.05) in dolphin (48 h) but not human cells. TNF-α expression increased in human (24 h, 48 h), but not dolphin cells following LPS stimulation. LPS-induced cytokine expression was lower in dolphin than in human leukocytes, suggesting a blunted cytokine response in bottlenose dolphin leukocytes treated with LPS. Results suggest species-specific regulation of inflammatory cytokines in leukocytes treated with LPS, which may lead to differential responses to a pro-inflammatory challenge between marine and terrestrial mammals.


Asunto(s)
Citocinas , Delfines , Humanos , Animales , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Delfines/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Interleucina-6/metabolismo , Leucocitos/metabolismo
7.
Chemosphere ; 323: 138237, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36863632

RESUMEN

Organic contaminants with toxic effects, like the conventional brominated flame retardants (BFRs) and BFRs of emergent concern, and their synergistic effects with other micropollutants, can be an additional threat to delphinids. Rough-toothed dolphins (Steno bredanensis) populations strongly associated with coastal environments already face a potential risk of decline due to high exposure to organochlorine pollutants. Moreover, natural organobromine compounds are important indicators of the environment's health. Polybrominated diphenyl ethers (PBDEs), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB) and the methoxylated PBDEs (MeO-BDEs) were determined in the blubber of rough-toothed dolphins from three ecological populations from the Southwestern Atlantic Ocean (Southeastern, Southern and Outer Continental Shelf/Southern populations, SE, S, and OCS/S, respectively). The profile was dominated by the naturally produced MeO-BDEs (mainly 2'-MeO-BDE 68 and 6-MeO-BDE 47), followed by the anthropogenic BFRs PBDEs (mainly BDE 47). Median ΣMeO-BDE concentrations varied between 705.4 and 3346.0 ng g-1 lw among populations and ΣPBDE from 89.4 until 538.0 ng g-1 lw. Concentrations of anthropogenic organobromine compounds (ΣPBDE, BDE 99 and BDE 100) were higher in SE population than in OCS/S, indicating a coast - ocean gradient of contamination. Negative correlations were found between the concentration of the natural compounds and age, suggesting their metabolization and/or biodilution and maternal transference. Conversely, positive correlations were found between the concentrations of BDE 153 and BDE 154 and age, indicating low biotransformation capability of these heavy congeners. The levels of PBDEs found are concerning, particularly for SE population, because they are similar to concentrations known for the onset of endocrine disruption in other marine mammals and may be an additional threat to a population in a hotspot for chemical pollution.


Asunto(s)
Delfines , Retardadores de Llama , Contaminantes Químicos del Agua , Animales , Delfines/metabolismo , Éteres Difenilos Halogenados/análisis , Contaminantes Químicos del Agua/análisis , Océano Atlántico , Monitoreo del Ambiente , Retardadores de Llama/análisis
8.
Sci Total Environ ; 876: 163094, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36996992

RESUMEN

Food has consistently been shown to be an important source of exposure to environmental pollutants, drawing attention to the health risks of pollutants in marine mammals with high daily food intake. Here, the dietary exposure risks posed to the Indo-Pacific humpback dolphins from the Pearl River Estuary (PRE), China, by fourteen phthalate metabolites (mPAEs) were evaluated for the first time. On the basis of liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the levels of ∑14mPAEs in ten main species of prey fish (n = 120) of dolphins ranged from 103.0 to 444.5 ng/g wet weight (ww), among which Bombay duck contained a significantly higher body burden of ∑14mPAEs than other prey species. Phthalic acid (PA), monooctyl phthalate (MnOP), monononyl phthalate (MNP), monoethyl phthalate (MEP), monoethylhexyl phthalate (MEHP), mono (5-carboxy-2-ethylpentyl) phthalate (MECPP), monobutyl phthalate (MBP), and monoisobutyl phthalate (MiBP) all had a trophic magnification factor (TMF) greater than unity, indicating the biomagnification potential of these mPAEs in the marine ecosystem of the PRE. A dietary exposure assessment based on the adjusted reference dose values of phthalates (PAEs) showed that bis (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) may pose a high (HQ > 1) and medium (0.01 < HQ < 1) risk to the dolphin adults and juveniles, respectively. Our results highlight the potential health risks of mPAEs to marine mammals through dietary routes.


Asunto(s)
Delfines , Contaminantes Ambientales , Ácidos Ftálicos , Animales , Exposición a Riesgos Ambientales/análisis , Delfines/metabolismo , Cromatografía Liquida , Ecosistema , Espectrometría de Masas en Tándem , Ácidos Ftálicos/análisis , Contaminantes Ambientales/análisis , Peces/metabolismo , Medición de Riesgo
9.
Eur J Neurosci ; 57(7): 1161-1179, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36514861

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and the primary cause of disability and dependency among elderly humans worldwide. AD is thought to be a disease unique to humans although several other animals develop some aspects of AD-like pathology. Odontocetes (toothed whales) share traits with humans that suggest they may be susceptible to AD. The brains of 22 stranded odontocetes of five different species were examined using immunohistochemistry to investigate the presence or absence of neuropathological hallmarks of AD: amyloid-beta plaques, phospho-tau accumulation and gliosis. Immunohistochemistry revealed that all aged animals accumulated amyloid plaque pathology. In three animals of three different species of odontocete, there was co-occurrence of amyloid-beta plaques, intraneuronal accumulation of hyperphosphorylated tau, neuropil threads and neuritic plaques. One animal showed well-developed neuropil threads, phospho-tau accumulation and neuritic plaques, but no amyloid plaques. Microglia and astrocytes were present as expected in all brain samples examined, but we observed differences in cell morphology and numbers between individual animals. The simultaneous occurrence of amyloid-beta plaques and hyperphosphorylated tau pathology in the brains of odontocetes shows that these three species develop AD-like neuropathology spontaneously. The significance of this pathology with respect to the health and, ultimately, death of the animals remains to be determined. However, it may contribute to the cause(s) of unexplained live-stranding in some odontocete species and supports the 'sick-leader' theory whereby healthy conspecifics in a pod mass strand due to high social cohesion.


Asunto(s)
Enfermedad de Alzheimer , Delfines , Enfermedades Neurodegenerativas , Anciano , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Delfines/metabolismo , Placa Amiloide/metabolismo , Ovillos Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo
10.
Environ Pollut ; 315: 120358, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228850

RESUMEN

The susceptibility to trace metals and legacy POPs is different between terrestrial and marine mammals. In this study, we established the first cell line from Indo-Pacific finless porpoises and compared the cellular responses of skin fibroblast cells from Pygmy killer whales, Pantropic spotted dolphins, Indo-Pacific finless porpoises, mice, and humans following exposure to copper, methylmercury, cadmium, PCB126, PCB153, and BDE47 to better understand the interspecies sensitivities of mammals to chemical pollutants. We conducted a risk assessment by comparing no-observed effect concentrations (NOEC), lowest-observed effect concentrations (LOEC), and half maximal effective concentrations (EC50) from cell viability assays and previously reported pollutant body burdens in mammals. Based on the in vitro data, Indo-Pacific finless porpoises were more sensitive to copper and methylmercury than other mammals. PCB153 exposure reduced cell viability in all mammals except humans, while PCB126 was more potent, with 13.33 µg/mL exposure reducing cell viability in all mammals. In contrast, BDE47 exposure reduced cell viability only in terrestrial mammals in addition to pantropic spotted dolphin. Based on the in vitro data and the natural context of metal concentrations, both methylmercury and cadmium posed a higher risk to cetaceans than human, while copper posed a lower risk to cetaceans. All three legacy POPs (PCB126, PCB153, and BDE47) posed minor risk to cetaceans for short-term exposure. This study demonstrated that a species-specific in vitro model may provide more accurate information on the potential risk of pollutants to mammals. However, due to the bioamplification of POPs and their potential impact on the endocrine system and immune system of cetaceans, risk assessment with long-term exposure with more in vitro models should be further studied.


Asunto(s)
Delfines , Contaminantes Ambientales , Compuestos de Metilmercurio , Marsopas , Oligoelementos , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Contaminantes Químicos del Agua/análisis , Compuestos de Metilmercurio/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Cadmio/metabolismo , Marsopas/metabolismo , Delfines/metabolismo , Oligoelementos/toxicidad , Oligoelementos/metabolismo , Contaminantes Ambientales/metabolismo , Fibroblastos
11.
PLoS One ; 16(8): e0250331, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34460862

RESUMEN

The goal of the current study was to create reference intervals and values for several common and one potential novel physiological indicators of animal welfare for four species of cetaceans. The subjects included 189 bottlenose dolphins (Tursiops truncatus), 27 Indo-Pacific bottlenose dolphins (Tursiops aduncus), eight Pacific white-sided dolphins (Lagenorhynchus obliquidens), and 13 beluga whales (Delphinapterus leucas) at Alliance of Marine Mammal Parks and Aquariums and/or Association of Zoos and Aquariums accredited facilities. During two sampling time periods between July and November of 2018 and between January and April of 2019, fecal samples were collected weekly for five weeks from all animals. Samples were processed and analyzed using enzyme immunoassay for fecal cortisol, aldosterone, and dehydroepiandrosterone (DHEA) metabolites. Linear mixed models were used to examine demographic and time factors impacting hormone metabolite concentrations. Age, sex, and time of year were all significant predictors for some of the models (p < 0.01). An iOS mobile application ZooPhysioTrak was created for easy access to species-specific reference intervals and values accounting for significant predictors. For facilities without access to this application, additional reference intervals and values were constructed without accounting for significant predictors. Information gained from this study and the use of the application can provide reference intervals and values to make informed management decisions for cetaceans in zoological facilities.


Asunto(s)
Aldosterona/análisis , Ballena Beluga/metabolismo , Delfín Mular/metabolismo , Deshidroepiandrosterona/metabolismo , Delfines/metabolismo , Hidrocortisona/análisis , Factores de Edad , Animales , Deshidroepiandrosterona/análisis , Delfines/fisiología , Heces/química , Femenino , Hidrocortisona/metabolismo , Masculino , Valores de Referencia , Estaciones del Año , Factores Sexuales
12.
PLoS One ; 16(8): e0250332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34460864

RESUMEN

This study reports comprehensive clinical pathology data for hematology, serum, and plasma biochemistry reference intervals for 174 apparently healthy common bottlenose dolphins (Tursiops truncatus) and reference values for 27 Indo-Pacific bottlenose dolphins (Tursiops aduncus), 13 beluga whales (Delphinapterus leucas), and 6 Pacific white-sided dolphins (Lagenorhynchus obliquidens) in zoos and aquariums accredited by the Alliance for Marine Mammal Parks and Aquariums and the Association of Zoos & Aquariums. Blood samples were collected as part of a larger study titled "Towards understanding the welfare of cetaceans in zoos and aquariums" (colloquially called the Cetacean Welfare Study). Two blood samples were collected following a standardized protocol, and two veterinarian examinations were conducted approximately six months apart between July to November 2018 and January to April 2019. Least square means, standard deviations, and 95% confidence intervals were calculated for hematology, serum, and plasma biochemical variables. Comparisons by age, gender, and month revealed statistically significant differences (p < 0.01) for several variables. Reference intervals and values were generated for samples tested at two laboratories for up to 56 hematologic, serum, and plasma biochemical variables. To apply these data, ZooPhysioTrak, an iOS mobile software application, was developed to provide a new resource for cetacean management. ZooPhysioTrak provides species-specific reference intervals and values based on user inputs of individual demographic and sample information. These data provide a baseline from which to compare hematological, serum, and plasma biochemical values in cetaceans in zoos and aquariums.


Asunto(s)
Ballena Beluga/sangre , Delfín Mular/sangre , Delfines/sangre , Factores de Edad , Animales , Animales de Zoológico/sangre , Delfines/metabolismo , Femenino , Masculino , Valores de Referencia , Estaciones del Año , Factores Sexuales
13.
Commun Biol ; 4(1): 642, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059764

RESUMEN

The development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


Asunto(s)
Envejecimiento/genética , Delfines/metabolismo , Ballenas/metabolismo , Factores de Edad , Envejecimiento/fisiología , Animales , ADN/genética , Metilación de ADN/genética , Delfines/genética , Epigénesis Genética/genética , Epigenómica/métodos , Genoma , Filogenia , Ballenas/genética
14.
Mar Pollut Bull ; 153: 110975, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32275533

RESUMEN

Titanium (Ti), used in many dailyuse products, such as shampoos and sunscreen filters, in the form of TiO2 nanoparticles (NPs), may elicit adverse marine biota effects. Marine mammal Ti data is scarce, and subcellular distribution and detoxification information is non-existent. Ti concentrations and metalloprotein detoxification in Pontoporia blainvillei and Steno bredanensis dolphins from Southeastern Brazil were assessed. Metallothionein (MT) concentrations were determined spectrophotometrically, total and subcellular Ti, by ICP-MS and detoxification, by HPLC-ICP-MS. Ti detoxification occurred through MT complexation. Statistical Ti-MT associations were observed in S. bredanensis liver, indicating TiO2 NPs contamination, as Ti binds to MT only as NPs. MT-Ti correlations were observed for both the coastal (P. blainvillei) and offshore (S. bredanensis) dolphins, evidencing oceanic TiO2 diffusion. Ti detoxification through binding to reduced glutathione occurred in both species. Thermostable subcellular fractions are a valuable tool for cetacean Ti detoxification assessments and should be applied to conservation efforts.


Asunto(s)
Delfines/metabolismo , Titanio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Brasil , Inactivación Metabólica
15.
Physiol Biochem Zool ; 93(2): 153-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027233

RESUMEN

Muscle biochemistry of aquatic birds and mammals varies in accordance with swimming and diving performance, as well as with ontogeny. Similar to other odontocetes, the locomotor muscles (longissimus dorsi) of neonatal melon-headed whales (Peponocephala electra) have low myoglobin content (Mb; 1.06±0.20 g Mb/100 g wet muscle mass; mean ± SE; n=2] and low muscle nonbicarbonate buffering capacity (37.78±3.75 slykes; n=2), representing only 16% of adult Mb (6.64±0.33 g Mb/100 g wet muscle mass; n=5) and 56% of adult muscle nonbicarbonate buffering capacities (66.90±4.80 slykes; n=5). By the juvenile stage, Mb (2.75±0.80⁢ g Mb/100 g wet muscle mass; n=3) is still only 41% of adult levels, but nonbicarbonate buffering capacity (65.61±2.62 slykes; n=3) has matured. Despite the observation that Hawaiian melon-headed whales are not deep divers or long-duration divers, their Mb rivals that found in ziphiids that forage in the bathypelagic zone and monodontids that forage under sea ice. The pelagic lifestyle of melon-headed whales likely requires sustained swimming, such that endurance training could elevate Mb in the locomotor muscle. Indeed, elevated Mb in the locomotor muscles of other pelagic odontocetes has been observed. Unlike deep-diving and Arctic-dwelling odontocetes, melon-headed whales do not achieve mature muscle characteristics before nursing. It is likely that early in life, the hydrodynamic benefits of swimming in echelon position with their mothers minimizes the endurance training of the calves that would otherwise promote rapid elevations in Mb.


Asunto(s)
Delfines/crecimiento & desarrollo , Mioglobina/análisis , Animales , Animales Recién Nacidos , Delfines/metabolismo , Delfines/fisiología , Femenino , Masculino , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Mioglobina/metabolismo , Natación/fisiología
16.
Bull Environ Contam Toxicol ; 103(4): 521-527, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31473774

RESUMEN

We determinated Hg and Se concentrations in liver, kidney, brain, lung and muscle of five bottlenose dolphin (Tursiops truncatus), four common dolphins (Delphinus delphis) and four Risso's dolphin (Grampus griseus) stranded along the Murcia coast, Southeast Spain, in order to evaluate the risk of Hg toxicity. Hg concentrations showed similar concentrations to other individuals in the Mediterranean Sea with the same length in the same period. We observed a positive correlation of Hg and Se in liver (r = 0.948, p < 0.001) and kidney (r = 0.939; p = 0.001) and ratio the Se/Hg molar was higher than 1 in most cases. Our results suggest that the protective effects of Se against Hg toxicity occur in cetaceans. However, we detected levels of Hg described as responsible liver damage and neurotoxicological effects so other tools, as biochemical markers, should be included. Besides, more studies are needed to evaluate the risk of Hg exposure in dolphins from Murcia coastline.


Asunto(s)
Delfines/metabolismo , Monitoreo del Ambiente/métodos , Riñón/química , Hígado/química , Mercurio/análisis , Selenio/análisis , Animales , Delfín Mular/metabolismo , Delfín Común/metabolismo , Mar Mediterráneo , Especificidad de Órganos , España
17.
Mar Pollut Bull ; 146: 263-273, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31426156

RESUMEN

Metals are subject to internal subcellular compartmentalization, altering their bioavailability. Thus, subcellular metal assessments are crucial in biomonitoring efforts. Metal distribution in three subcellular fractions (insoluble - ISF, thermolabile - TLF and thermostable - TSF) were determined by ICP-MS in Steno bredanensis specimens from Southeastern Brazil. Associations between metals, metallothionein (MT) and reduced glutathione (GSH) were also investigated. Differential metal-detoxification mechanisms were observed. MT detoxification was mostly noted for As, Cd, and Pb, while Cu, Cr, Hg, Ni, Se and Ti displayed lower MT-associations. Fe, Zn and Se, on the other hand, were poorly associated to MT, and mostly present in the ISF, indicating low bioavailability. This is the first report on subcellular Sn and Ti distribution in cetaceans and the first in this species in Brazil. Potential protective roles of essential metals against toxic elements are postulated. This study indicates that important biochemical detoxification information is obtained through subcellular fraction analyses in marine mammals.


Asunto(s)
Delfines/metabolismo , Monitoreo del Ambiente/métodos , Metalotioneína/metabolismo , Metales/metabolismo , Fracciones Subcelulares/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Brasil , Glutatión/metabolismo , Inactivación Metabólica , Metales Pesados/análisis , Estaño/metabolismo , Titanio/metabolismo
18.
Mar Pollut Bull ; 146: 67-75, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31426207

RESUMEN

Plastic pollution is an omnipresent problem that threatens marine animals through ingestion and entanglement. Marine mammals are no exception to this rule but their interaction with plastic remains understudied in the Mediterranean Sea. Here we highlight this problem by analyzing the stomach contents of 34 individuals from seven odontocete species stranded in Greece. Macroplastic (>5 mm) was found in the stomachs of nine individuals from four species (harbour porpoise Phocoena phocoena, Risso's dolphin Grampus griseus, Cuvier's beaked whale Ziphius cavirostris and sperm whale Physeter macrocephalus) with the highest frequency of occurrence in sperm whales (60%). Gastric blockage from plastic was presumably lethal in three cases, with plastic bags being the most common finding (46%). Plastic ingestion is of particular conservation concern for the endangered Mediterranean sperm whales. A regular examination of stranded cetaceans with a standardised protocol is critical for allowing spatiotemporal comparisons within and across species.


Asunto(s)
Delfines/metabolismo , Phocoena/metabolismo , Plásticos/análisis , Cachalote/metabolismo , Ballenas/metabolismo , Animales , Caniformia , Grecia , Mar Mediterráneo , Plásticos/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
19.
Aquat Toxicol ; 213: 105229, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31255889

RESUMEN

Although the global use of the 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) has been prohibited, its persistence in the environment has caused long-lasting exposure on marine mammals. Our previous studies revealed exceedingly high residue levels of DDTs in Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary region, China. However, the molecular mechanisms of p,p'-DDT toxicity on the dolphin are largely unknown. This study conducted the first cytotoxicity effect exploration of p,p'-DDT on the dolphin skin fibroblasts (ScSFs) to enhance the understanding of the cellular and molecular regulation impacts. ScSF cells were exposed to p,p'-DDT (28∼168 µM) for 24, 48 and 72 h. The exposure remarkably decreased viability of ScSF cells, possibly due to the synergetic effects of cell cycle arrest and apoptosis via DNA damage and mitochondria dysfunction. The DNA damage and mitochondria dysfunction were likely triggered by an increase of cellular reactive oxygen species (ROS), alteration in mitochondrial membrane potential, reduction in the cellular ATP levels, decreased expression of the genes CDK1, CDK4, cyclin B1, cyclin D1 and apoptosis regulator Bcl-2, release of cytochrome c, and activation of caspase-3, caspase-8 and caspase-9. Moreover, caspase inhibitor displayed protective activity against p,p'-DDT-induced apoptosis, indicating that caspases played a central role in p,p'-DDT-triggered apoptosis in the ScSF cells. We hypothesize apoptosis likely plays a minor role in cytocidal effects induced by p,p'-DDT exposure, but the mechanisms remain unclear. Overall, this research provides new evidence of the cytotoxic mechanisms underlying p,p'-DDT exposure on humpback dolphin skin cells, and suggests that p,p'-DDT contamination is one of key health concern issues for the protection of this marine mammal.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , DDT/toxicidad , Delfines/metabolismo , Exposición a Riesgos Ambientales , Fibroblastos/citología , Mitocondrias/metabolismo , Piel/citología , Animales , Caspasas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
20.
Chemosphere ; 226: 791-799, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30965250

RESUMEN

PBDEs, HBCD, DBDPE, PBEB and HBB, dechloranes and OPFRs, as well as natural MeO-PBDEs were monitored in muscle tissue of three dolphin species from the southwestern Indian Ocean (Delphinus delphis, Sousa plumbea and Tursiops aduncus) collected between 2012 and 2015. The mean PBDE concentration was 416 ±â€¯333 ng g-1 lw. BDE-47 was found in all samples and was almost half the total PBDE contamination. BDE-209, BDE-100 and BDE-99 were present in ≥85% of the samples. HBCD was detected in just two samples at 20 and 330 ng g-1 lw. PBEB and HBB were not detected, while DBDPE was in all samples but always below its limit of quantification. Dec 602 was the only quantifiable dechlorane at 232 ±â€¯549 ng g-1 lw. Mean OPFR concentration was 10452 ±â€¯11301 ng g-1 lw. TBOEP was found in all samples making up most of the total OPFR contamination. MeO-PBDEs were detected in all samples at 114 ±â€¯137 ng g-1 lw. Data on flame retardants in biota and environmental samples from the southwestern Indian Ocean are scarce and, as a result, comparisons are difficult. However, data from other marine predators in the region, such as penguins, suggest that further studies are needed to determine if these concentrations are the consequence of a high local contamination or widespread thoughout the Indian Ocean.


Asunto(s)
Delfines/metabolismo , Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Animales , Retardadores de Llama/farmacocinética , Hidrocarburos Clorados/farmacocinética , Océano Índico , Músculo Esquelético/metabolismo , Organofosfatos/farmacocinética , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...