Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Curr Microbiol ; 81(8): 232, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898312

RESUMEN

Delftia has been separated from freshwater, sludge, and soil and has emerged as a novel opportunistic pathogen in the female vagina. However, the genomic characteristics, pathogenicity, and biotechnological properties still need to be comprehensively investigated. In this study, a Delftia strain was isolated from the vaginal discharge of a 43-year-old female with histologically confirmed cervical intraepithelial neoplasm (CIN III), followed by whole-genome sequencing. Phylogenetic analysis and average nucleotide identity (ANI) analysis demonstrated that it belongs to Delftia lacustris, named D. lacustris strain LzhVag01. LzhVag01 was sensitive to ß-lactams, macrolides, and tetracyclines but exhibited resistance to lincoamines, nitroimidazoles, aminoglycosides, and fluoroquinolones. Its genome is a single, circular chromosome of 6,740,460 bp with an average GC content of 66.59%. Whole-genome analysis identified 16 antibiotic resistance-related genes, which match the antimicrobial susceptibility profile of this strain, and 11 potential virulence genes. These pathogenic factors may contribute to its colonization in the vaginal environment and its adaptation and accelerate the progression of cervical cancer. This study sequenced and characterized the whole-genome of Delftia lacustris isolated from vaginal discharge, which provides investigators and clinicians with valuable insights into this uncommon species.


Asunto(s)
Delftia , Genoma Bacteriano , Excreción Vaginal , Delftia/clasificación , Delftia/efectos de los fármacos , Delftia/genética , Delftia/patogenicidad , Genoma Bacteriano/genética , Excreción Vaginal/microbiología , Humanos , Femenino , Adulto , Filogenia , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Factores de Virulencia/genética , Especificidad de la Especie
2.
J Nat Prod ; 87(5): 1384-1393, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38739531

RESUMEN

Bacteria have evolved various strategies to combat heavy metal stress, including the secretion of small molecules, known as metallophores. These molecules hold a potential role in the mitigation of toxic metal contamination from the environment (bioremediation). Herein, we employed combined comparative metabolomic and genomic analyses to study the metallophores excreted by Delftia lacustris DSM 21246. LCMS-metabolomic analysis of this bacterium cultured under iron limitation led to a suite of lipophilic metallophores exclusively secreted in response to iron starvation. Additionally, we conducted genome sequencing of the DSM 21246 strain using nanopore sequencing technology and employed antiSMASH to mine the genome, leading to the identification of a biosynthetic gene cluster (BGC) matching the known BGC responsible for delftibactin A production. The isolated suite of amphiphilic metallophores, termed delftibactins C-F (1-4), was characterized using various chromatographic, spectroscopic, and bioinformatic techniques. The planar structure of these compounds was elucidated through 1D and 2D NMR analyses, as well as LCMS/MS-based fragmentation studies. Notably, their structures differed from previously known delftibactins due to the presence of a lipid tail. Marfey's and bioinformatic analyses were employed to determine the absolute configuration of the peptide scaffold. Delftibactin A, a previously identified metallophore, has exhibited a gold biomineralizing property; compound 1 was tested for and also demonstrated this property.


Asunto(s)
Delftia , Delftia/metabolismo , Delftia/genética , Estructura Molecular , Metabolómica/métodos , Genoma Bacteriano , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA