Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.634
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732052

RESUMEN

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Asunto(s)
delta-5 Desaturasa de Ácido Graso , Dieta Occidental , Ácido Graso Desaturasas , Hepatocitos , Ratas Sprague-Dawley , Animales , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Masculino , Ratas , delta-5 Desaturasa de Ácido Graso/metabolismo , Dieta Occidental/efectos adversos , Hepatocitos/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Dependovirus/genética , Hígado/metabolismo , Triglicéridos/metabolismo , Fructosa/metabolismo
2.
Front Immunol ; 15: 1372584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745665

RESUMEN

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Asunto(s)
Dependovirus , Vectores Genéticos , Vacunas contra la Malaria , Malaria Vivax , Plasmodium vivax , Animales , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Plasmodium vivax/inmunología , Plasmodium vivax/genética , Malaria Vivax/prevención & control , Malaria Vivax/transmisión , Malaria Vivax/inmunología , Ratones , Dependovirus/genética , Dependovirus/inmunología , Femenino , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Modelos Animales de Enfermedad , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Humanos , Ratones Endogámicos BALB C , Inmunización Secundaria , Eficacia de las Vacunas
3.
Nat Commun ; 15(1): 4018, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740820

RESUMEN

Anti-HSV therapies are only suppressive because they do not eliminate latent HSV present in ganglionic neurons, the source of recurrent disease. We have developed a potentially curative approach against HSV infection, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Gene editing performed with two anti-HSV-1 meganucleases delivered by a combination of AAV9, AAV-Dj/8, and AAV-Rh10 can eliminate 90% or more of latent HSV DNA in mouse models of orofacial infection, and up to 97% of latent HSV DNA in mouse models of genital infection. Using a pharmacological approach to reactivate latent HSV-1, we demonstrate that ganglionic viral load reduction leads to a significant decrease of viral shedding in treated female mice. While therapy is well tolerated, in some instances, we observe hepatotoxicity at high doses and subtle histological evidence of neuronal injury without observable neurological signs or deficits. Simplification of the regimen through use of a single serotype (AAV9) delivering single meganuclease targeting a duplicated region of the HSV genome, dose reduction, and use of a neuron-specific promoter each results in improved tolerability while retaining efficacy. These results reinforce the curative potential of gene editing for HSV disease.


Asunto(s)
Dependovirus , Edición Génica , Herpes Simple , Herpesvirus Humano 1 , Carga Viral , Esparcimiento de Virus , Animales , Edición Génica/métodos , Femenino , Dependovirus/genética , Ratones , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Herpes Simple/genética , Herpes Simple/virología , Herpes Simple/terapia , Modelos Animales de Enfermedad , Latencia del Virus/genética , Humanos , Vectores Genéticos/genética , Células Vero , Terapia Genética/métodos , Herpes Genital/terapia , Herpes Genital/virología , ADN Viral/genética
4.
Orphanet J Rare Dis ; 19(1): 193, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741157

RESUMEN

BACKGROUND: Adeno-associated virus (AAV)-based gene therapy for haemophilia has advanced substantially in the last 13 years; recently, three products have received approvals from regulatory authorities. Although the impact on quality of life seems promising, some limitations remain, such as the presence of pre-existing anti-AAV neutralising antibodies and the occurrence of hepatotoxicity. This review follows the CSL Behring-sponsored symposium at the 27th Congress of the European Hematology Association (EHA) 2022 that examined the haemophilia gene therapy process from a 360-degree multidisciplinary perspective. Here, the faculty (haematologist, nurse and haemophilia patient) summarised their own viewpoints from the symposium, with the aim of highlighting the key considerations required to engage with gene therapy effectively, for both patients and providers, as well as the importance of multidisciplinary collaboration, including with industry. RESULTS: When considering these new therapies, patients face a complex decision-making process, which includes whether gene therapy is right for them at their current stage of life. The authors agreed that collaboration and tailored education across the multidisciplinary team (including patients and their carers/families), starting early in the process and continuing throughout the long-term follow-up period, is key for the success of gene therapy. Additionally, patient expectations, which may surround eligibility, follow-up requirements and treatment outcomes, should be continually explored. During these ongoing discussions, transparent communication of the unknown factors, such as anticipated clotting factor levels, long-term factor expression and safety, and psychological changes, is critical. To ensure efficiency and comprehensiveness, clearly­defined protocols should outline the whole process, which should include the recording and management of long-term effects. CONCLUSION: In order to engage effectively, both patients and providers should be familiar with these key considerations prior to their involvement with the haemophilia gene therapy process. The future after the approval of haemophilia gene therapies remains to be seen and real-world evidence is eagerly awaited.


Asunto(s)
Dependovirus , Terapia Genética , Hemofilia A , Humanos , Terapia Genética/métodos , Hemofilia A/terapia , Hemofilia A/genética , Dependovirus/genética , Médicos , Enfermeras y Enfermeros , Calidad de Vida
5.
Biotechnol J ; 19(5): e2300672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719621

RESUMEN

The production of recombinant adeno-associated virus (rAAV) for gene therapy applications relies on the use of various host cell lines, with suspension-grown HEK293 cells being the preferred expression system due to their satisfactory rAAV yields in transient transfections. As the field of gene therapy continues to expand, there is a growing demand for efficient rAAV production, which has prompted efforts to optimize HEK293 cell line productivity through engineering. In contrast to other cell lines like CHO cells, the transcriptome of HEK293 cells during rAAV production has remained largely unexplored in terms of identifying molecular components that can enhance yields. In our previous research, we analyzed global regulatory pathways and mRNA expression patterns associated with increased rAAV production in HEK293 cells. Our data revealed substantial variations in the expression patterns between cell lines with low (LP) and high-production (HP) rates. Moving to a deeper layer for a more detailed analysis of inflammation-related transcriptome data, we detected an increased expression of interferon-related genes in low-producing cell lines. Following upon these results, we investigated the use of Ruxolitinib, an interferon pathway inhibitor, during the transient production of rAAV in HEK293 cells as potential media additive to boost rAAV titers. Indeed, we find a two-fold increase in rAAV titers compared to the control when the interferon pathways were inhibited. In essence, this work offers a rational design approach for optimization of HEK293 cell line productivity and potential engineering targets, ultimately paving the way for more cost-efficient and readily available gene therapies for patients.


Asunto(s)
Dependovirus , Interferones , Transducción de Señal , Humanos , Células HEK293 , Dependovirus/genética , Interferones/metabolismo , Interferones/genética , Nitrilos/farmacología , Pirimidinas/farmacología , Transfección , Pirazoles/farmacología
6.
Nat Commun ; 15(1): 3780, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710714

RESUMEN

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Asunto(s)
Neovascularización Coroidal , Dependovirus , Terapia Genética , Vectores Genéticos , Epitelio Pigmentado de la Retina , Animales , Dependovirus/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Terapia Genética/métodos , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/virología , Neovascularización Coroidal/terapia , Neovascularización Coroidal/genética , Conejos , Humanos , Técnicas de Transferencia de Gen , Degeneración Macular/terapia , Degeneración Macular/genética , Degeneración Macular/patología , Modelos Animales de Enfermedad , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Retina/virología , Masculino , Células HEK293
7.
Skelet Muscle ; 14(1): 9, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702726

RESUMEN

BACKGROUND: Adeno-associated virus (AAV)-based gene therapy is a promising strategy to treat muscle diseases. However, this strategy is currently confronted with challenges, including a lack of transduction efficiency across the entire muscular system and toxicity resulting from off-target tissue effects. Recently, novel myotropic AAVs named MyoAAVs and AAVMYOs have been discovered using a directed evolution approach, all separately demonstrating enhanced muscle transduction efficiency and liver de-targeting effects. However, these newly discovered AAV variants have not yet been compared. METHODS: In this study, we performed a comparative analysis of these various AAV9-derived vectors under the same experimental conditions following different injection time points in two distinct mouse strains. RESULTS: We highlight differences in transduction efficiency between AAV9, AAVMYO, MyoAAV2A and MyoAAV4A that depend on age at injection, doses and mouse genetic background. In addition, specific AAV serotypes appeared more potent to transduce skeletal muscles including diaphragm and/or to de-target heart or liver. CONCLUSIONS: Our study provides guidance for researchers aiming to establish proof-of-concept approaches for preventive or curative perspectives in mouse models, to ultimately lead to future clinical trials for muscle disorders.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Ratones Endogámicos C57BL , Músculo Esquelético , Transducción Genética , Animales , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Músculo Esquelético/metabolismo , Ratones , Transducción Genética/métodos , Terapia Genética/métodos , Masculino , Hígado/metabolismo , Ratones Endogámicos mdx
8.
J Nanobiotechnology ; 22(1): 223, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702815

RESUMEN

Cardiac muscle targeting is a notoriously difficult task. Although various nanoparticle (NP) and adeno-associated viral (AAV) strategies with heart tissue tropism have been developed, their performance remains suboptimal. Significant off-target accumulation of i.v.-delivered pharmacotherapies has thwarted development of disease-modifying cardiac treatments, such as gene transfer and gene editing, that may address both rare and highly prevalent cardiomyopathies and their complications. Here, we present an intriguing discovery: cargo-less, safe poly (lactic-co-glycolic acid) particles that drastically improve heart delivery of AAVs and NPs. Our lead formulation is referred to as ePL (enhancer polymer). We show that ePL increases selectivity of AAVs and virus-like NPs (VLNPs) to the heart and de-targets them from the liver. Serotypes known to have high (AAVrh.74) and low (AAV1) heart tissue tropisms were tested with and without ePL. We demonstrate up to an order of magnitude increase in heart-to-liver accumulation ratios in ePL-injected mice. We also show that ePL exhibits AAV/NP-independent mechanisms of action, increasing glucose uptake in the heart, increasing cardiac protein glycosylation, reducing AAV neutralizing antibodies, and delaying blood clearance of AAV/NPs. Current approaches utilizing AAVs or NPs are fraught with challenges related to the low transduction of cardiomyocytes and life-threatening immune responses; our study introduces an exciting possibility to direct these modalities to the heart at reduced i.v. doses and, thus, has an unprecedented impact on drug delivery and gene therapy. Based on our current data, the ePL system is potentially compatible with any therapeutic modality, opening a possibility of cardiac targeting with numerous pharmacological approaches.


Asunto(s)
Dependovirus , Vectores Genéticos , Miocardio , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Dependovirus/genética , Animales , Nanopartículas/química , Ratones , Miocardio/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Humanos , Ratones Endogámicos C57BL , Corazón , Terapia Genética/métodos , Técnicas de Transferencia de Gen , Hígado/metabolismo , Tropismo Viral , Células HEK293
9.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738885

RESUMEN

Adeno-associated viral vectors (AAVs) are a remarkable tool for investigating the central nervous system (CNS). Innovative capsids, such as AAV.PHP.eB, demonstrate extensive transduction of the CNS by intravenous injection in mice. To achieve comparable transduction, a 100-fold higher titer (minimally 1 x 1011 genome copies/mouse) is needed compared to direct injection in the CNS parenchyma. In our group, AAV production, including AAV.PHP.eB relies on adherent HEK293T cells and the triple transfection method. Achieving high yields of AAV with adherent cells entails a labor- and material-intensive process. This constraint prompted the development of a protocol for suspension-based cell culture in conical tubes. AAVs generated in adherent cells were compared to the suspension production method. Culture in suspension using transfection reagents Polyethylenimine or TransIt were compared. AAV vectors were purified by iodixanol gradient ultracentrifugation followed by buffer exchange and concentration using a centrifugal filter. With the adherent method, we achieved an average of 2.6 x 1012 genome copies (GC) total, whereas the suspension method and Polyethylenimine yielded 7.7 x 1012 GC in total, and TransIt yielded 2.4 x 1013 GC in total. There is no difference in in vivo transduction efficiency between vectors produced with adherent compared to the suspension cell system. In summary, a suspension HEK293 cell based AAV production protocol is introduced, resulting in a reduced amount of time and labor needed for vector production while achieving 3 to 9 times higher yields using components available from commercial vendors for research purposes.


Asunto(s)
Dependovirus , Vectores Genéticos , Humanos , Células HEK293 , Vectores Genéticos/genética , Dependovirus/genética , Transfección/métodos , Ratones , Animales
10.
Biomacromolecules ; 25(5): 2890-2901, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38683736

RESUMEN

While adeno-associated virus is a leading vector for gene therapy, significant gaps remain in understanding AAV degradation and stability. In this work, we study the degradation of an engineered AAV serotype at physiological pH and ionic strength. Viral particles of varying fractions of encapsulated DNA were incubated between 30 and 60 °C, with changes in molecular weight measured by changes in total light scattering intensity at 90° over time. Mostly full vectors demonstrated a rapid decrease in molecular weight corresponding to the release of capsid DNA, followed by slow aggregation. In contrast, empty vectors demonstrated immediate, rapid colloid-type aggregation. Mixtures of full and empty capsids showed a pronounced decrease in initial aggregation that cannot be explained by a linear superposition of empty and full degradation scattering signatures, indicating interactions between capsids and ejected DNA that influenced aggregation mechanisms. This demonstrates key interactions between AAV capsids and their cargo that influence capsid degradation, aggregation, and DNA release mechanisms in a physiological solution.


Asunto(s)
Cápside , ADN Viral , Dependovirus , Dependovirus/genética , Dependovirus/química , Cápside/química , Cápside/metabolismo , Cinética , ADN Viral/química , Humanos , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Concentración de Iones de Hidrógeno
11.
J Viral Hepat ; 31 Suppl 1: 26-34, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606944

RESUMEN

Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patología , Vectores Genéticos , Plásmidos , Terapia Genética , Dependovirus/genética , Dependovirus/metabolismo , Integración Viral
12.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673939

RESUMEN

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Asunto(s)
Ataxina-7 , Dependovirus , Modelos Animales de Enfermedad , Péptidos , Fenotipo , ARN Interferente Pequeño , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/metabolismo , Péptidos/genética , Dependovirus/genética , Ratones , Ataxina-7/genética , Ataxina-7/metabolismo , Expansión de Repetición de Trinucleótido/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratones Transgénicos , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Terapia Genética/métodos , Alelos
13.
Signal Transduct Target Ther ; 9(1): 95, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653979

RESUMEN

Bietti crystalline corneoretinal dystrophy is an inherited retinal disease caused by mutations in CYP4V2, which results in blindness in the working-age population, and there is currently no available treatment. Here, we report the results of the first-in-human clinical trial (NCT04722107) of gene therapy for Bietti crystalline corneoretinal dystrophy, including 12 participants who were followed up for 180-365 days. This open-label, single-arm exploratory trial aimed to assess the safety and efficacy of a recombinant adeno-associated-virus-serotype-2/8 vector encoding the human CYP4V2 protein (rAAV2/8-hCYP4V2). Participants received a single unilateral subretinal injection of 7.5 × 1010 vector genomes of rAAV2/8-hCYP4V2. Overall, 73 treatment-emergent adverse events were reported, with the majority (98.6%) being of mild or moderate intensity and considered to be procedure- or corticosteroid-related; no treatment-related serious adverse events or local/systemic immune toxicities were observed. Compared with that measured at baseline, 77.8% of the treated eyes showed improvement in best-corrected visual acuity (BCVA) on day 180, with a mean ± standard deviation increase of 9.0 ± 10.8 letters in the 9 eyes analyzed (p = 0.021). By day 365, 80% of the treated eyes showed an increase in BCVA, with a mean increase of 11.0 ± 10.6 letters in the 5 eyes assessed (p = 0.125). Importantly, the patients' improvement observed using multifocal electroretinogram, microperimetry, and Visual Function Questionnaire-25 further supported the beneficial effects of the treatment. We conclude that the favorable safety profile and visual improvements identified in this trial encourage the continued development of rAAV2/8-hCYP4V2 (named ZVS101e).


Asunto(s)
Distrofias Hereditarias de la Córnea , Familia 4 del Citocromo P450 , Dependovirus , Terapia Genética , Enfermedades de la Retina , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Distrofias Hereditarias de la Córnea/genética , Distrofias Hereditarias de la Córnea/terapia , Distrofias Hereditarias de la Córnea/patología , Dependovirus/genética , Familia 4 del Citocromo P450/genética , Vectores Genéticos/genética , Agudeza Visual
14.
Curr Gene Ther ; 24(3): 208-216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676313

RESUMEN

Hearing loss is a prevalent sensory impairment significantly affecting communication and quality of life. Traditional approaches for hearing restoration, such as cochlear implants, have limitations in frequency resolution and spatial selectivity. Optogenetics, an emerging field utilizing light-sensitive proteins, offers a promising avenue for addressing these limitations and revolutionizing hearing rehabilitation. This review explores the methods of introducing Channelrhodopsin- 2 (ChR2), a key light-sensitive protein, into cochlear cells to enable optogenetic stimulation. Viral- mediated gene delivery is a widely employed technique in optogenetics. Selecting a suitable viral vector, such as adeno-associated viruses (AAV), is crucial in efficient gene delivery to cochlear cells. The ChR2 gene is inserted into the viral vector through molecular cloning techniques, and the resulting viral vector is introduced into cochlear cells via direct injection or round window membrane delivery. This allows for the expression of ChR2 and subsequent light sensitivity in targeted cells. Alternatively, direct cell transfection offers a non-viral approach for ChR2 delivery. The ChR2 gene is cloned into a plasmid vector, which is then combined with transfection agents like liposomes or nanoparticles. This mixture is applied to cochlear cells, facilitating the entry of the plasmid DNA into the target cells and enabling ChR2 expression. Optogenetic stimulation using ChR2 allows for precise and selective activation of specific neurons in response to light, potentially overcoming the limitations of current auditory prostheses. Moreover, optogenetics has broader implications in understanding the neural circuits involved in auditory processing and behavior. The combination of optogenetics and gene delivery techniques provides a promising avenue for improving hearing restoration strategies, offering the potential for enhanced frequency resolution, spatial selectivity, and improved auditory perception.


Asunto(s)
Percepción Auditiva , Terapia Genética , Vectores Genéticos , Pérdida Auditiva , Optogenética , Optogenética/métodos , Humanos , Terapia Genética/métodos , Percepción Auditiva/genética , Vectores Genéticos/genética , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Channelrhodopsins/genética , Dependovirus/genética , Técnicas de Transferencia de Gen , Animales , Implantes Cocleares
15.
Nat Commun ; 15(1): 3478, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658578

RESUMEN

The expansion of the CRISPR-Cas toolbox is highly needed to accelerate the development of therapies for genetic diseases. Here, through the interrogation of a massively expanded repository of metagenome-assembled genomes, mostly from human microbiomes, we uncover a large variety (n = 17,173) of type II CRISPR-Cas loci. Among these we identify CoCas9, a strongly active and high-fidelity nuclease with reduced molecular size (1004 amino acids) isolated from an uncultivated Collinsella species. CoCas9 is efficiently co-delivered with its sgRNA through adeno associated viral (AAV) vectors, obtaining efficient in vivo editing in the mouse retina. With this study we uncover a collection of previously uncharacterized Cas9 nucleases, including CoCas9, which enriches the genome editing toolbox.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Microbiota , Edición Génica/métodos , Humanos , Animales , Ratones , Microbiota/genética , Dependovirus/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Retina/metabolismo , Clostridiales/genética , Clostridiales/enzimología , Células HEK293 , Vectores Genéticos/metabolismo , Vectores Genéticos/genética
16.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664752

RESUMEN

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Asunto(s)
Dependovirus , Vectores Genéticos , Poloxámero , Animales , Humanos , Células HEK293 , Poloxámero/farmacología , Poloxámero/química , Ratones , Dependovirus/genética , Vectores Genéticos/genética , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Temperatura , Genes Reporteros
17.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612516

RESUMEN

The purpose of this study was to compare the retention rate of Adeno-associated viral vector (AAV) gene therapy agents within different subretinal injection systems. The retention of AAV serotype 2-based voretigene neparvovec (VN) and a clinical-grade AAV serotype 8 vector within four different subretinal cannulas from two different manufacturers was quantified. A standardized qPCR using the universal inverted terminal repeats as a target sequence was developed. The instruments compared were the PolyTip® cannula 25 g/38 g by MedOne Surgical, Inc., Sarasota, FL, USA, and three different subretinal injection needles by DORC, Zuidland, The Netherlands (1270.EXT Extendible 41G subretinal injection needle (23G), DORC 1270.06 23G Dual bore injection cannula, DORC 27G Subretinal injection cannula). The retention rate of VN and within the DORC products (10-28%) was comparable to the retention rate (32%) found for the PolyTip® cannula that is mentioned in the FDA-approved prescribing information for VN. For the AAV8 vector, the PolyTip® cannula showed a retention rate of 14%, and a similar retention rate of 3-16% was found for the DORC products (test-retest variability: mean 4.5%, range 2.5-20.2%). As all the instruments tested showed comparable retention rates, they seem to be equally compatible with AAV2- and AAV8-based gene therapy agents.


Asunto(s)
Saltamontes , Parvovirinae , Animales , Serogrupo , Sistemas de Liberación de Medicamentos , Terapia Genética , Dependovirus/genética
18.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557598

RESUMEN

Genome editing technology is widely used to produce genetically modified animals, including rats. Cytoplasmic or pronuclear injection of DNA repair templates and CRISPR-Cas reagents is the most common delivery method into embryos. However, this type of micromanipulation necessitates access to specialized equipment, is laborious, and requires a certain level of technical skill. Moreover, microinjection techniques often result in lower embryo survival due to the mechanical stress on the embryo. In this protocol, we developed an optimized method to deliver large DNA repair templates to work in conjunction with CRISPR-Cas9 genome editing without the need for microinjection. This protocol combines AAV-mediated DNA delivery of single-stranded DNA donor templates along with the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) by electroporation to modify 2-cell embryos. Using this novel strategy, we have successfully produced targeted knock-in rat models carrying insertion of DNA sequences from 1.2 to 3.0 kb in size with efficiencies between 42% and 90%.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratas , Animales , Edición Génica/métodos , Dependovirus/genética , Electroporación/métodos , Cigoto
19.
Signal Transduct Target Ther ; 9(1): 78, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565561

RESUMEN

Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.


Asunto(s)
Dependovirus , Vectores Genéticos , Humanos , Dependovirus/genética , Vectores Genéticos/genética , Terapia Genética
20.
Genome Biol ; 25(1): 108, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671524

RESUMEN

BACKGROUND: Prime editing enables precise base substitutions, insertions, and deletions at targeted sites without the involvement of double-strand DNA breaks or exogenous donor DNA templates. However, the large size of prime editors (PEs) hampers their delivery in vivo via adeno-associated virus (AAV) due to the viral packaging limit. Previously reported split PE versions provide a size reduction, but they require intricate engineering and potentially compromise editing efficiency. RESULTS: Herein, we present a simplified split PE named as CC-PE, created through non-covalent recruitment of reverse transcriptase to the Cas9 nickase via coiled-coil heterodimers, which are widely used in protein design due to their modularity and well-understood sequence-structure relationship. We demonstrate that the CC-PE maintains or even surpasses the efficiency of unsplit PE in installing intended edits, with no increase in the levels of undesired byproducts within tested loci amongst a variety of cell types (HEK293T, A549, HCT116, and U2OS). Furthermore, coiled-coil heterodimers are used to engineer SpCas9-NG-PE and SpRY-PE, two Cas9 variants with more flexible editing scope. Similarly, the resulting NG-CC-PE and SpRY-CC-PE also achieve equivalent or enhanced efficiency of precise editing compared to the intact PE. When the dual AAV vectors carrying CC-PE are delivered into mice to target the Pcsk9 gene in the liver, CC-PE enables highly efficient precise editing, resulting in a significant reduction of plasma low-density lipoprotein cholesterol and total cholesterol. CONCLUSIONS: Our innovative, modular system enhances flexibility, thus potentially facilitating the in vivo applicability of prime editing.


Asunto(s)
Edición Génica , Humanos , Animales , Ratones , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Células HEK293 , Dependovirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...