Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Commun Biol ; 7(1): 529, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704509

RESUMEN

Intra-organism biodiversity is thought to arise from epigenetic modification of constituent genes and post-translational modifications of translated proteins. Here, we show that post-transcriptional modifications, like RNA editing, may also contribute. RNA editing enzymes APOBEC3A and APOBEC3G catalyze the deamination of cytosine to uracil. RNAsee (RNA site editing evaluation) is a computational tool developed to predict the cytosines edited by these enzymes. We find that 4.5% of non-synonymous DNA single nucleotide polymorphisms that result in cytosine to uracil changes in RNA are probable sites for APOBEC3A/G RNA editing; the variant proteins created by such polymorphisms may also result from transient RNA editing. These polymorphisms are associated with over 20% of Medical Subject Headings across ten categories of disease, including nutritional and metabolic, neoplastic, cardiovascular, and nervous system diseases. Because RNA editing is transient and not organism-wide, future work is necessary to confirm the extent and effects of such editing in humans.


Asunto(s)
Desaminasas APOBEC , Citidina Desaminasa , Edición de ARN , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Polimorfismo de Nucleótido Simple , Citosina/metabolismo , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/genética , Uracilo/metabolismo , Proteínas/genética , Proteínas/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo
2.
Viruses ; 16(5)2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38793610

RESUMEN

APOBEC3G (A3G) restricts HIV-1 replication primarily by reducing viral cDNA and inducing G-to-A hypermutations in viral cDNA. HIV-1 encodes virion infectivity factor (Vif) to counteract A3G primarily by excluding A3G viral encapsidation. Even though the Vif-induced exclusion is robust, studies suggest that A3G is still detectable in the virion. The impact of encapsidated A3G in the HIV-1 replication is unclear. Using a highly sensitive next-generation sequencing (NGS)-based G-to-A hypermutation detecting assay, we found that wild-type HIV-1 produced from A3G-expressing T-cells induced higher G-to-A hypermutation frequency in viral cDNA than HIV-1 from non-A3G-expressing T-cells. Interestingly, although the virus produced from A3G-expressing T-cells induced higher hypermutation frequency, there was no significant difference in viral infectivity, revealing a disassociation of cDNA G-to-A hypermutation to viral infectivity. We also measured G-to-A hypermutation in the viral RNA genome. Surprisingly, our data showed that hypermutation frequency in the viral RNA genome was significantly lower than in the integrated DNA, suggesting a mechanism exists to preferentially select intact genomic RNA for viral packing. This study revealed a new insight into the mechanism of HIV-1 counteracting A3G antiviral function and might lay a foundation for new antiviral strategies.


Asunto(s)
Desaminasa APOBEC-3G , ADN Complementario , VIH-1 , Mutación , Replicación Viral , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , VIH-1/genética , VIH-1/fisiología , VIH-1/patogenicidad , Humanos , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Replicación Viral/genética , ADN Complementario/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , ADN Viral/genética , Infecciones por VIH/virología , Linfocitos T/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Células HEK293
3.
Mol Cell Proteomics ; 23(5): 100755, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548018

RESUMEN

Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence are not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and mapped a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein-folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology. Data are available via ProteomeXchange with the identifier PXD044275.


Asunto(s)
Citidina Desaminasa , Mapas de Interacción de Proteínas , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Desaminación , Desaminasas APOBEC/metabolismo , Aminohidrolasas/metabolismo , Aminohidrolasas/genética , Células HEK293 , Citosina Desaminasa/metabolismo , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/genética , Empalmosomas/metabolismo , Unión Proteica , Espectrometría de Masas , ARN/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética
4.
mBio ; 14(4): e0078223, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37555667

RESUMEN

HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T lymphocytes and macrophages. Previous studies have demonstrated that the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins during viral replication is currently unknown. Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A-A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during infectious HIV-1 production from THP-1 cells is the targeting and degradation of A3 enzymes. IMPORTANCE HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wild-type HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for fully infectious HIV-1 production from THP-1 cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/fisiología , Citidina Desaminasa/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Unión Proteica , Desaminasa APOBEC-3G/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Línea Celular , Células Mieloides/metabolismo , Virión/metabolismo , Desaminasas APOBEC/metabolismo
5.
Eur J Med Chem ; 250: 115188, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773550

RESUMEN

Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.


Asunto(s)
VIH-1 , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Humanos , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/metabolismo , Línea Celular , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Mutación , Replicación Viral , Desaminasa APOBEC-3G/metabolismo
6.
Nature ; 615(7953): 728-733, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754086

RESUMEN

The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.


Asunto(s)
Desaminasa APOBEC-3G , VIH-1 , Proteolisis , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Animales , Humanos , Desaminasa APOBEC-3G/antagonistas & inhibidores , Desaminasa APOBEC-3G/química , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/ultraestructura , VIH-1/metabolismo , VIH-1/patogenicidad , ARN/química , ARN/metabolismo , Ubiquitina/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/ultraestructura , Microscopía por Crioelectrón , Empaquetamiento del Genoma Viral , Primates/virología
7.
FASEB J ; 37(3): e22793, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36723955

RESUMEN

HSP40/DNAJ family of proteins is the most diverse chaperone family, comprising about 49 isoforms in humans. Several reports have demonstrated the functional role of a few of these isoforms in the pathogenesis of various viruses, including HIV-1. Our earlier study has shown that several isoforms of HSP40 get significantly modulated at the mRNA level during HIV-1 infection in T cells. To explore the biological role of these significantly modulated isoforms, we analyzed their effect on HIV-1 gene expression and virus production using knockdown and overexpression studies. Among these isoforms, DNAJA3, DNAJB1, DNAJB7, DNAJC4, DNAJC5B, DNAJC5G, DNAJC6, DNAJC22, and DNAJC30 seem to positively regulate virus replication, whereas DNAJB3, DNAJB6, DNAJB8, and DNAJC5 negatively regulate virus replication. Further investigation on the infectivity of the progeny virion demonstrated that only DNAJB8 negatively regulates the progeny virion infectivity. It was further identified that DNAJB8 protein is involved in the downregulation of Vif protein, required for the infectivity of HIV-1 virions. DNAJB8 seems to direct Vif protein for autophagic-lysosomal degradation, leading to rescue of the cellular restriction factor APOBEC3G from Vif-mediated proteasomal degradation, resulting in enhanced packaging of APOBEC3G in budding virions and release of less infective progeny virion particles. Finally, our results also indicate that during the early stage of HIV-1 infection, enhanced expression of DNAJB8 promotes the production of less infective progeny virions, but at the later stage or at the peak of infection, reduced expression of DNJAB8 protein allows the HIV-1 to replicate and produce more infective progeny virion particles.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/metabolismo , Proteínas Virales/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , Replicación Viral/fisiología , Virión/metabolismo , Infecciones por VIH/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Proteínas del Tejido Nervioso/metabolismo
8.
Cancer Res ; 83(4): 487-488, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36789568

RESUMEN

The APOBEC cytidine deaminase enzyme family is linked to mutational signatures identified in cancer. While previous work has provided insights into the role of APOBEC3A and APOBEC3B in mutational processes in cancer, understanding of the mutational signatures induced by other APOBEC family members is limited. In this issue of Cancer Research, Liu and colleagues investigated the role of APOBEC3G (A3G) in bladder cancer. The authors revealed that transgenic expression of A3G in a murine bladder cancer model promotes tumorigenesis and induces a unique mutational signature distinct from previously identified APOBEC signatures. Expression of this A3G-related mutational signature correlated with significantly worse survival in patients with urothelial bladder carcinoma, and A3G expression was identified in 21 different cancer types. These findings suggest that different APOBEC3 enzymes induce unique mutation signatures and play distinct roles in cancer evolution. More complete understanding of the function of each APOBEC3 enzyme will improve anticancer therapy. See related article by Liu et al., p. 506.


Asunto(s)
Mutágenos , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Ratones , Mutagénesis , Citidina Desaminasa/genética , Neoplasias de la Vejiga Urinaria/genética , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Evolución Clonal , Antígenos de Histocompatibilidad Menor/genética
9.
Nat Commun ; 14(1): 16, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627271

RESUMEN

APOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. Low levels of deamination are believed to contribute to the genetic evolution of HIV-1, while intense catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total HIV-1 restriction. So far, little is known about how A3 cytosine deaminases might impact HIV-1 proviral DNA integration sites in human chromosomal DNA. Using a deep sequencing approach, we analyze the influence of catalytic active and inactive APOBEC3F and APOBEC3G on HIV-1 integration site selections. Here we show that DNA editing is detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 mutants decrease insertions into gene coding sequences and increase integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicates A3 as a host factor influencing HIV-1 integration site selection and also promotes what appears to be a more latent expression profile.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , VIH-1/genética , VIH-1/metabolismo , Desaminasa APOBEC-3G/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Proteínas/metabolismo , Antirretrovirales , Integración Viral/genética , Citidina/metabolismo , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo
10.
Sci Adv ; 9(1): eade3168, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598981

RESUMEN

Human APOBEC3G (A3G) is a virus restriction factor that inhibits HIV-1 replication and triggers lethal hypermutation on viral reverse transcripts. HIV-1 viral infectivity factor (Vif) breaches this host A3G immunity by hijacking a cellular E3 ubiquitin ligase complex to target A3G for ubiquitination and degradation. The molecular mechanism of A3G targeting by Vif-E3 ligase is unknown, limiting the antiviral efforts targeting this host-pathogen interaction crucial for HIV-1 infection. Here, we report the cryo-electron microscopy structures of A3G bound to HIV-1 Vif in complex with T cell transcription cofactor CBF-ß and multiple components of the Cullin-5 RING E3 ubiquitin ligase. The structures reveal unexpected RNA-mediated interactions of Vif with A3G primarily through A3G's noncatalytic domain, while A3G's catalytic domain is poised for ubiquitin transfer. These structures elucidate the molecular mechanism by which HIV-1 Vif hijacks the host ubiquitin ligase to specifically target A3G to establish infection and offer structural information for the rational development of antiretroviral therapeutics.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Microscopía por Crioelectrón , Ubiquitina/metabolismo , Unión Proteica , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo
11.
FEBS J ; 290(7): 1822-1839, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36325681

RESUMEN

Cytosine deaminases AID/APOBEC proteins act as potent nucleic acid editors, playing important roles in innate and adaptive immunity. However, the mutagenic effects of some of these proteins compromise genomic integrity and may promote tumorigenesis. Here, we demonstrate that human APOBEC3G (A3G), in addition to its role in innate immunity, promotes repair of double-strand breaks (DSBs) in vitro and in vivo. Transgenic mice expressing A3G successfully survived lethal irradiation, whereas wild-type controls quickly succumbed to radiation syndrome. Mass spectrometric analyses identified the differential upregulation of a plethora of proteins involved in DSB repair pathways in A3G-expressing cells early following irradiation to facilitate repair. Importantly, we find that A3G not only accelerates DSB repair but also promotes deamination-dependent error-free rejoining. These findings have two implications: (a) strategies aimed at inhibiting A3G may improve the efficacy of genotoxic therapies used to cure malignant tumours; and (b) enhancing A3G activity may reduce acute radiation syndrome in individuals exposed to ionizing radiation.


Asunto(s)
Carcinogénesis , Inmunidad Innata , Humanos , Ratones , Animales , Línea Celular , Mutagénesis , Carcinogénesis/genética , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Citidina Desaminasa/genética
12.
Cancer Res ; 83(4): 506-520, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36480186

RESUMEN

Mutagenic processes leave distinct signatures in cancer genomes. The mutational signatures attributed to APOBEC3 cytidine deaminases are pervasive in human cancers. However, data linking individual APOBEC3 proteins to cancer mutagenesis in vivo are limited. Here, we showed that transgenic expression of human APOBEC3G promotes mutagenesis, genomic instability, and kataegis, leading to shorter survival in a murine bladder cancer model. Acting as mutagenic fuel, APOBEC3G increased the clonal diversity of bladder cancer, driving divergent cancer evolution. Characterization of the single-base substitution signature induced by APOBEC3G in vivo established the induction of a mutational signature distinct from those caused by APOBEC3A and APOBEC3B. Analysis of thousands of human cancers revealed the contribution of APOBEC3G to the mutational profiles of multiple cancer types, including bladder cancer. Overall, this study dissects the mutagenic impact of APOBEC3G on the bladder cancer genome, identifying that it contributes to genomic instability, tumor mutational burden, copy-number loss events, and clonal diversity. SIGNIFICANCE: APOBEC3G plays a role in cancer mutagenesis and clonal heterogeneity, which can potentially inform future therapeutic efforts that restrict tumor evolution. See related commentary by Caswell and Swanton, p. 487.


Asunto(s)
Desaminasa APOBEC-3G , Evolución Clonal , Mutagénesis , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Evolución Clonal/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Inestabilidad Genómica , Antígenos de Histocompatibilidad Menor/genética , Mutagénesis/genética , Mutágenos , Neoplasias de la Vejiga Urinaria/genética
13.
Nat Commun ; 13(1): 7498, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470880

RESUMEN

An essential step in restricting HIV infectivity by the antiviral factor APOBEC3G is its incorporation into progeny virions via binding to HIV RNA. However, the mechanism of APOBEC3G capturing viral RNA is unknown. Here, we report crystal structures of a primate APOBEC3G bound to different types of RNAs, revealing that APOBEC3G specifically recognizes unpaired 5'-AA-3' dinucleotides, and to a lesser extent, 5'-GA-3' dinucleotides. APOBEC3G binds to the common 3'A in the AA/GA motifs using an aromatic/hydrophobic pocket in the non-catalytic domain. It binds to the 5'A or 5'G in the AA/GA motifs using an aromatic/hydrophobic groove conformed between the non-catalytic and catalytic domains. APOBEC3G RNA binding property is distinct from that of the HIV nucleocapsid protein recognizing unpaired guanosines. Our findings suggest that the sequence-specific RNA recognition is critical for APOBEC3G virion packaging and restricting HIV infectivity.


Asunto(s)
Infecciones por VIH , VIH-1 , Nucleósido Desaminasas , Animales , Desaminasa APOBEC-3G/metabolismo , Citidina Desaminasa/genética , VIH-1/genética , Antivirales/metabolismo , Nucleósido Desaminasas/metabolismo , Virión/metabolismo , ARN Viral/metabolismo , Infecciones por VIH/metabolismo
14.
Chin Med J (Engl) ; 135(22): 2706-2717, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574218

RESUMEN

BACKGROUND: Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or enhance viral infection by various mechanisms, there is lack of information on the role of DUBs in virus regulation, which needs to be further investigated. METHODS: Immunoblotting, real-time polymerase chain reaction, in vivo / in vitro deubiquitination, protein immunoprecipitation, immunofluorescence, and co-localization biological techniques were employed to examine the effect of ubiquitin-specific protease 3 (USP3) on APOBEC3G (A3G) stability and human immunodeficiency virus (HIV) replication. To analyse the relationship between USP3 and HIV disease progression, we recruited 20 HIV-infected patients to detect the levels of USP3 and A3G in peripheral blood and analysed their correlation with CD4 + T-cell counts. Correlation was estimated by Pearson correlation coefficients (for parametric data). RESULTS: The results demonstrated that USP3 specifically inhibits HIV-1 replication in an A3G-dependent manner. Further investigation found that USP3 stabilized 90% to 95% of A3G expression by deubiquitinating Vif-mediated polyubiquitination and blocking its degradation in an enzyme-dependent manner. It also enhances the A3G messenger RNA (mRNA) level by binding to A3G mRNA and stabilizing it in an enzyme-independent manner. Moreover, USP3 expression was positively correlated with A3G expression ( r  = 0.5110) and CD4 + T-cell counts ( r  = 0.5083) in HIV-1-infected patients. CONCLUSIONS: USP3 restricts HIV-1 viral infections by increasing the expression of the antiviral factor A3G. Therefore, USP3 may be an important target for drug development and serve as a novel therapeutic strategy against viral infections.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Replicación Viral , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología , Enzimas Desubicuitinizantes/metabolismo , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/farmacología , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/farmacología
15.
Viruses ; 14(9)2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146779

RESUMEN

APOBEC3 enzymes are polynucleotide deaminases, converting cytosine to uracil on single-stranded DNA (ssDNA) and RNA as part of the innate immune response against viruses and retrotransposons. APOBEC3G is a two-domain protein that restricts HIV. Although X-ray single-crystal structures of individual catalytic domains of APOBEC3G with ssDNA as well as full-length APOBEC3G have been solved recently, there is little structural information available about ssDNA interaction with the full-length APOBEC3G or any other two-domain APOBEC3. Here, we investigated the solution-state structures of full-length APOBEC3G with and without a 40-mer modified ssDNA by small-angle X-ray scattering (SAXS), using size-exclusion chromatography (SEC) immediately prior to irradiation to effect partial separation of multi-component mixtures. To prevent cytosine deamination, the target 2'-deoxycytidine embedded in 40-mer ssDNA was replaced by 2'-deoxyzebularine, which is known to inhibit APOBEC3A, APOBEC3B and APOBEC3G when incorporated into short ssDNA oligomers. Full-length APOBEC3G without ssDNA comprised multiple multimeric species, of which tetramer was the most scattering species. The structure of the tetramer was elucidated. Dimeric interfaces significantly occlude the DNA-binding interface, whereas the tetrameric interface does not. This explains why dimers completely disappeared, and monomeric protein species became dominant, when ssDNA was added. Data analysis of the monomeric species revealed a full-length APOBEC3G-ssDNA complex that gives insight into the observed "jumping" behavior revealed in studies of enzyme processivity. This solution-state SAXS study provides the first structural model of ssDNA binding both domains of APOBEC3G and provides data to guide further structural and enzymatic work on APOBEC3-ssDNA complexes.


Asunto(s)
ADN de Cadena Simple , Retroelementos , Desaminasa APOBEC-3G/metabolismo , Citidina Desaminasa , Citosina , Desoxicitidina , Polinucleótidos , Unión Proteica , Proteínas , ARN/metabolismo , Dispersión del Ángulo Pequeño , Uracilo , Difracción de Rayos X , Rayos X
16.
J Magn Reson ; 339: 107230, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35550909

RESUMEN

Over the last few decades, protein NMR isotope labeling methods using E. coli based expression have revolutionized the information accessible from biomolecular NMR experiments. Selective labeling of a protein of interest in a multi-protein complex can significantly reduce the number of cross-peaks and allow for study of large protein complexes. However, limitations still remain since some proteins are not stable independently and cannot be separately labeled in either NMR active isotope enriched or unenriched media and reconstituted into a multimeric complex. To overcome this limitation, the LEGO NMR method was previously developed using protein expression plasmids containing T7 or araBAD promoters to separately express proteins in the same E. coli after changing between labeled and unlabeled media. Building on this, we developed a method to label the Human Immunodeficiency Virus type 1 viral infectivity factor (HIV-1 Vif), a monomerically unstable protein, in complex with CBFß, it's host binding partner. We designed a dual promoter plasmid containing both T7 and araBAD promoters to independently control the expression of HIV-1 Vif in NMR active isotope enriched media and CBFß in unenriched media. Using this method, we assigned the backbone resonance and directly observed the binding of HIV-1 Vif with APOBEC3G, a host restriction factor to HIV-1.


Asunto(s)
Desaminasa APOBEC-3G , VIH-1 , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Escherichia coli , VIH-1/genética , Humanos , Regiones Promotoras Genéticas , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
17.
J Biol Chem ; 298(4): 101805, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35259395

RESUMEN

HIV-1 encodes accessory proteins that neutralize antiviral restriction factors to ensure its successful replication. One accessory protein, the HIV-1 viral infectivity factor (Vif), is known to promote ubiquitination and proteasomal degradation of the antiviral restriction factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G), a cytosine deaminase that leads to hypermutations in the viral DNA and subsequent aberrant viral replication. We have previously demonstrated that the HIV-1 viral transcription mediator Tat activates the host progrowth PI-3-AKT pathway, which in turn promotes HIV-1 replication. Because the HIV-1 Vif protein contains the putative AKT phosphorylation motif RMRINT, here we investigated whether AKT directly phosphorylates HIV-1 Vif to regulate its function. Coimmunoprecipitation experiments showed that AKT and Vif interact with each other, supporting this hypothesis. Using in vitro kinase assays, we further showed that AKT phosphorylates Vif at threonine 20, which promotes its stability, as Vif becomes destabilized after this residue is mutated to alanine. Moreover, expression of dominant-negative kinase-deficient AKT as well as treatment with a chemical inhibitor of AKT increased K48-ubiquitination and proteasomal degradation of HIV-1 Vif. In contrast, constitutively active AKT (Myr-AKT) reduced K48-ubiquitination of Vif to promote its stability. Finally, inhibition of AKT function restored APOBEC3G levels, which subsequently reduced HIV-1 infectivity. Thus, our results establish a novel mechanism of HIV-1 Vif stabilization through AKT-mediated phosphorylation at threonine 20, which reduces APOBEC3G levels and potentiates HIV-1 infectivity.


Asunto(s)
Desaminasa APOBEC-3G , Infecciones por VIH , VIH-1 , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Infecciones por VIH/fisiopatología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Humanos , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Treonina/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
18.
J Virol ; 96(2): e0170821, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730395

RESUMEN

The host restriction factor APOBEC3G (A3G) inhibits an extensive variety of viruses, including retroviruses, DNA viruses, and RNA viruses. Our study shows that A3G inhibits enterovirus 71 (EV71) and coxsackievirus A16 (CA16) via competitively binding the 5' untranslated region (UTR) with the host protein poly(C)-binding protein 1 (PCBP1), which is required for the replication of multiple EVs. However, whether A3G inhibits other EVs in addition to EV71 and CA16 has not been investigated. Here, we demonstrate that A3G could inhibit the replication of EVD68, which requires PCBP1 for its replication, but not CA6, which does not require PCBP1 for replication. Further investigation revealed that the nucleic-acid-binding activity of A3G is required for EVD68 restriction, similar to the mechanism presented for EV71 restriction. Mechanistically, A3G competitively binds to the cloverleaf (1 to 123 nucleotides [nt]) and the stem-loop IV (234 to 446 nt) domains of the EVD68 5' UTR with PCBP1, thereby inhibiting the 5' UTR activity of EVD68; by contrast, A3G does not interact with CA6 5' UTR, resulting in no effect on CA6 replication. Moreover, the nonstructural protein 2C, encoded by EVD68, overcomes A3G suppression by inducing A3G degradation via the autophagy-lysosome pathway. Our findings revealed that A3G might have broad-spectrum antiviral activity against multiple EVs through this general mechanism, and they might provide important information for the development of an anti-EV strategy. IMPORTANCE As the two major pathogens causing hand, foot, and mouth disease (HFMD), enterovirus 71 (EV71) and coxsackievirus A16 (CA16) attract a lot of attention for the study of their pathogenesis, their involvement with cellular proteins, and so on. However, other EVs such as CA6 and EVD68 constantly occur sporadically or have spread worldwide in recent years. Therefore, more information related to these EVs is needed in order to develop a broad-spectrum anti-EV inhibitor. In this study, we first reveal that the protein poly(C)-binding protein 1 (PCBP1), involved in PV- and EV71 virus replication, is also required for the replication of EVD68, but not for the replication of CA6. Next, we found that the host-restriction factor A3G specifically inhibits the replication of EVD68, but not the replication of CA6, by competitively binding to the 5' UTR of EVD68 along with PCBP1. Our findings broaden knowledge related to EV replication and the interplay between EVs and host factors.


Asunto(s)
Regiones no Traducidas 5'/fisiología , Desaminasa APOBEC-3G/metabolismo , Proteínas de Unión al ADN/metabolismo , Enterovirus Humano D/fisiología , Proteínas de Unión al ARN/metabolismo , Replicación Viral , Desaminasa APOBEC-3G/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Enterovirus Humano A/fisiología , Células HEK293 , Humanos , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
19.
J Mol Biol ; 434(2): 167355, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34774569

RESUMEN

Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Aminohidrolasas/metabolismo , Citosina Desaminasa/metabolismo , VIH-2 , Desaminasa APOBEC-3G/genética , Aminohidrolasas/genética , Citidina Desaminasa/metabolismo , Citosina Desaminasa/genética , Expresión Génica , Infecciones por VIH , VIH-2/genética , Humanos , Mutación , Replicación Viral
20.
Blood Cancer J ; 11(10): 166, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625538

RESUMEN

Multiple myeloma (MM) is a heterogeneous disease characterized by significant genomic instability. Recently, a causal role for the AID/APOBEC deaminases in inducing somatic mutations in myeloma has been reported. We have identified APOBEC/AID as a prominent mutational signature at diagnosis with further increase at relapse in MM. In this study, we identified upregulation of several members of APOBEC3 family (A3A, A3B, A3C, and A3G) with A3G, as one of the most expressed APOBECs. We investigated the role of APOBEC3G in MM and observed that A3G expression and APOBEC deaminase activity is elevated in myeloma cell lines and patient samples. Loss-of and gain-of function studies demonstrated that APOBEC3G significantly contributes to increase in DNA damage (abasic sites and DNA breaks) in MM cells. Evaluation of the impact on genome stability, using SNP arrays and whole genome sequencing, indicated that elevated APOBEC3G contributes to ongoing acquisition of both the copy number and mutational changes in MM cells over time. Elevated APOBEC3G also contributed to increased homologous recombination activity, a mechanism that can utilize increased DNA breaks to mediate genomic rearrangements in cancer cells. These data identify APOBEC3G as a novel gene impacting genomic evolution and underlying mechanisms in MM.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Daño del ADN , Inestabilidad Genómica , Mieloma Múltiple/enzimología , Mutación , Proteínas de Neoplasias/metabolismo , Desaminasa APOBEC-3G/genética , Línea Celular Tumoral , Humanos , Mieloma Múltiple/genética , Proteínas de Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA