Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 10(1): 70-86, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34795033

RESUMEN

The APOBEC family of cytidine deaminases is one of the most common endogenous sources of mutations in human cancer. Genomic studies of tumors have found that APOBEC mutational signatures are enriched in the HER2 subtype of breast cancer and are associated with immunotherapy response in diverse cancer types. However, the direct consequences of APOBEC mutagenesis on the tumor immune microenvironment have not been thoroughly investigated. To address this, we developed syngeneic murine mammary tumor models with inducible expression of APOBEC3B. We found that APOBEC activity induced antitumor adaptive immune responses and CD4+ T cell-mediated, antigen-specific tumor growth inhibition. Although polyclonal APOBEC tumors had a moderate growth defect, clonal APOBEC tumors were almost completely rejected, suggesting that APOBEC-mediated genetic heterogeneity limits antitumor adaptive immune responses. Consistent with the observed immune infiltration in APOBEC tumors, APOBEC activity sensitized HER2-driven breast tumors to anti-CTLA-4 checkpoint inhibition and led to a complete response to combination anti-CTLA-4 and anti-HER2 therapy. In human breast cancers, the relationship between APOBEC mutagenesis and immunogenicity varied by breast cancer subtype and the frequency of subclonal mutations. This work provides a mechanistic basis for the sensitivity of APOBEC tumors to checkpoint inhibitors and suggests a rationale for using APOBEC mutational signatures and clonality as biomarkers predicting immunotherapy response in HER2-positive (HER2+) breast cancers.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Linfocitos T/inmunología , Desaminasas APOBEC/inmunología , Animales , Antígenos de Neoplasias , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutagénesis/inmunología , Mutación , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Infect Genet Evol ; 97: 105188, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920098

RESUMEN

The best and most effective way to combat pandemics is to use effective vaccines and live attenuated vaccines are among the most effective vaccines. However, one of the major problems is the length of time it takes to get the attenuated vaccines. Today, the CRISPR toolkit (Clustered Regularly Inerspaced Short Palindromic Repeats) has made it possible to make changes with high efficiency and speed. Using this toolkit to make point mutations on the RNA virus's genome in a coculture of permissive and nonpermissive cells and under controlled conditions can accelerate changes in the genome and accelerate natural selection to obtain live attenuated vaccines.


Asunto(s)
Vacunas contra la COVID-19/genética , COVID-19/prevención & control , Sistemas CRISPR-Cas , Edición Génica/métodos , Tasa de Mutación , SARS-CoV-2/genética , Proteínas Virales/genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/biosíntesis , Endonucleasas/genética , Endonucleasas/inmunología , Expresión Génica , Genoma Viral , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2/inmunología , Selección Genética , Vacunas Atenuadas , Proteínas Virales/inmunología
3.
PLoS Pathog ; 17(6): e1009523, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170969

RESUMEN

The APOBEC3 (A3) genes encode cytidine deaminase proteins with potent antiviral and anti-retroelement activity. This locus is characterized by duplication, recombination, and deletion events that gave rise to the seven A3s found in primates. These include three single deaminase domain A3s (A3A, A3C, and A3H) and four double deaminase domain A3s (A3B, A3D, A3F, and A3G). The most potent of the A3 proteins against HIV-1 is A3G. However, it is not clear if double deaminase domain A3s have a generalized functional advantage to restrict HIV-1. In order to test whether superior restriction factors could be created by genetically linking single A3 domains into synthetic double domains, we linked A3C and A3H single domains in novel combinations. We found that A3C/A3H double domains acquired enhanced antiviral activity that is at least as potent, if not better than, A3G. Although these synthetic double domain A3s package into budding virions more efficiently than their respective single domains, this does not fully explain their gain of antiviral potency. The antiviral activity is conferred both by cytidine-deaminase dependent and independent mechanisms, with the latter correlating to an increase in RNA binding affinity. T cell lines expressing this A3C-A3H super restriction factor are able to control replicating HIV-1ΔVif infection to similar levels as A3G. Together, these data show that novel combinations of A3 domains are capable of gaining potent antiviral activity to levels similar to the most potent genome-encoded A3s, via a primarily non-catalytic mechanism.


Asunto(s)
Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Infecciones por VIH/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Desaminación , VIH-1 , Humanos , Células Jurkat
4.
J Biol Chem ; 297(2): 100909, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171358

RESUMEN

The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.


Asunto(s)
Desaminasas APOBEC/química , Desaminasas APOBEC/metabolismo , ADN de Cadena Simple/química , Mutación , Neoplasias/patología , Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Unión Proteica , Especificidad por Sustrato
5.
Viruses ; 13(3)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802945

RESUMEN

Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.


Asunto(s)
Desaminasas APOBEC , Neoplasias/metabolismo , Virosis , Desaminasas APOBEC/química , Desaminasas APOBEC/inmunología , Humanos , Inmunidad Innata , Multimerización de Proteína , Relación Estructura-Actividad , Virosis/inmunología
6.
Int J Cancer ; 147(8): 2293-2302, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32468570

RESUMEN

Immune checkpoint inhibition leads to response in some patients with head and neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We analyzed viral status, gene expression signatures, mutational load and mutational signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset (n = 496) and a validation set (DKTK MASTER cohort, n = 10). Public single-cell gene expression data from 17 HPV-negative HNSCC were separately reanalyzed. APOBEC3-associated TCW motif mutations but not total single nucleotide variant burden were significantly associated with inflammation. This association was restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-negative subgroup was identified, that showed higher T-cell inflammation and immune checkpoint expression, as well as expression of APOBEC3 genes. Mutations in immune-evasion pathways were also enriched in these tumors. Analysis of single-cell sequencing data identified expression of APOBEC3B and 3C genes in malignant cells. We identified an APOBEC-enriched subgroup of HPV-negative HNSCC with a distinct immunogenic phenotype, potentially mediating response to immunotherapy.


Asunto(s)
Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Evasión Inmune/genética , Evasión Inmune/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Estudios de Cohortes , Exoma/genética , Exoma/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Neoplasias de Cabeza y Cuello/virología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/virología , Masculino , Persona de Mediana Edad , Mutación/genética , Papillomaviridae/inmunología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Análisis de Secuencia de ARN/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Linfocitos T/inmunología , Transcriptoma/genética , Transcriptoma/inmunología
7.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 382-394, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30290238

RESUMEN

Antiviral restriction factors are cellular proteins that inhibit the entry, replication, or spread of viruses. These proteins are critical components of the innate immune system and function to limit the severity and host range of virus infections. Here we review the current knowledge on the mechanisms of action of several restriction factors that affect multiple viruses at distinct stages of their life cycles. For example, APOBEC3G deaminates cytosines to hypermutate reverse transcribed viral DNA; IFITM3 alters membranes to inhibit virus membrane fusion; MXA/B oligomerize on viral protein complexes to inhibit virus replication; SAMHD1 decreases dNTP intracellular concentrations to prevent reverse transcription of retrovirus genomes; tetherin prevents release of budding virions from cells; Viperin catalyzes formation of a nucleoside analogue that inhibits viral RNA polymerases; and ZAP binds virus RNAs to target them for degradation. We also discuss countermeasures employed by specific viruses against these restriction factors, and mention secondary functions of several of these factors in modulating immune responses. These important examples highlight the diverse strategies cells have evolved to combat virus infections.


Asunto(s)
Desaminasas APOBEC/inmunología , Proteínas Nucleares/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/inmunología , Virosis/inmunología , Inmunidad Adaptativa/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Proteínas de Unión al ARN , Proteínas Represoras , Proteínas Virales/metabolismo , Virosis/genética , Virosis/metabolismo
8.
DNA Repair (Amst) ; 45: 1-24, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27449479

RESUMEN

For 30 years two general mechanisms have competed to explain somatic hypermutation of immunoglobulin (Ig) genes. The first, the DNA-based model, is focused only on DNA substrates. The modern form is the Neuberger "DNA Deamination Model" based on activation-induced cytidine deaminase (AID) and short-patch error-prone DNA repair by DNA Polymerase-η operating around AID C-to-U lesions. The other is an RNA-based mechanism or the "Reverse Transcriptase Model" of SHM which produces strand-biased mutations at A:T and G:C base pairs. This involves error-prone cDNA synthesis via an RNA-dependent DNA polymerase copying the Ig pre-mRNA template and integrating the now error-filled cDNA copy back into the normal chromosomal site. The modern form of this mechanism depends on AID dC-to-dU lesions and long tract error-prone cDNA synthesis of the transcribed strand by DNA Polymerase-η acting as a reverse transcriptase. The evidence for and against each mechanism is critically evaluated. The conclusion is that all the SHM molecular data gathered since 1980 supports directly or indirectly the RNA/RT-based mechanism. All the data and critical analyses are systematically laid out so the reader can evaluate this conclusion for themselves. Recently we have investigated whether similar RNA/RT-based mutator mechanisms explain how de novo mutations arise in somatic tissues (cancer genomes). The data analyses indeed suggest that cancers arise via dysregulated "Ig-like SHM responses" involving rogue DNA and RNA deaminations coupled to genome-wide RT events. Further, Robyn Lindley has recently shown that the strand-biased mutations in cancer genome genes are also in "codon-context." This has been termed Targeted Somatic Mutation (TSM) to highlight that mutations are far more targeted than previously thought in somatic tissues associated with disease. The TSM process implies an "in-frame DNA reader" whereby DNA and RNA deaminases at transcribed regions are guided in their mutagenic action, by the codon reading frame of the DNA.


Asunto(s)
ADN de Neoplasias/genética , Genes de Inmunoglobulinas , Mutación , Neoplasias/genética , ARN/genética , Hipermutación Somática de Inmunoglobulina , Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Animales , Codón , ADN/genética , ADN/inmunología , Reparación del ADN/inmunología , ADN de Neoplasias/inmunología , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/inmunología , Humanos , Inmunidad Innata/genética , Neoplasias/inmunología , Neoplasias/patología , ARN/inmunología , Edición de ARN/inmunología , Transcripción Reversa/inmunología
9.
Trends Genet ; 32(1): 16-28, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26608778

RESUMEN

Information warfare is not limited to the cyber world because it is waged within our cells as well. The unique AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide) family comprises proteins that alter DNA sequences by converting deoxycytidines to deoxyuridines through deamination. This C-to-U DNA editing enables them to inhibit parasitic viruses and retrotransposons by disrupting their genomic content. In addition to attacking genomic invaders, APOBECs can target their host genome, which can be beneficial by initiating processes that create antibody diversity needed for the immune system or by accelerating the rate of evolution. AID can also alter gene regulation by removing epigenetic modifications from genomic DNA. However, when uncontrolled, these powerful agents of change can threaten genome stability and eventually lead to cancer.


Asunto(s)
Desaminasas APOBEC/metabolismo , ADN/metabolismo , Epigénesis Genética , Inmunidad Innata , Retroelementos , Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Animales , Citidina Desaminasa/metabolismo , Citosina Desaminasa/inmunología , Citosina Desaminasa/metabolismo , Evolución Molecular , Genoma , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...