Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.041
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732033

RESUMEN

Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Respuesta al Choque Térmico , Potencial de la Membrana Mitocondrial , Oocitos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Bovinos , Oocitos/metabolismo , Respuesta al Choque Térmico/genética , Especies Reactivas de Oxígeno/metabolismo , Femenino , Histonas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Apoptosis/genética , Desarrollo Embrionario/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732042

RESUMEN

Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality.


Asunto(s)
Desarrollo Embrionario , Histonas , Oocitos , Procesamiento Proteico-Postraduccional , Animales , Histonas/metabolismo , Oocitos/metabolismo , Ratones , Desarrollo Embrionario/genética , Femenino , Oogénesis , Lisina/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Regulación del Desarrollo de la Expresión Génica
3.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727565

RESUMEN

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Somitos , Animales , Desarrollo Embrionario/genética , Humanos , Somitos/metabolismo , Somitos/embriología , Desarrollo de Músculos/genética , Neurogénesis/genética , Neurogénesis/fisiología , Páncreas/embriología , Páncreas/metabolismo , Diferenciación Celular/genética
4.
Sci Rep ; 14(1): 10316, 2024 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705876

RESUMEN

Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.


Asunto(s)
Infertilidad Masculina , MicroARNs , Espermatozoides , Humanos , Masculino , Infertilidad Masculina/genética , Espermatozoides/metabolismo , MicroARNs/genética , Adulto , Femenino , Blastocisto/metabolismo , ARN/genética , ARN/metabolismo , Desarrollo Embrionario/genética
5.
Cell Rep ; 43(4): 114118, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38619966

RESUMEN

Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.


Asunto(s)
Embrión de Mamíferos , Cigoto , Animales , Ratones , Reprogramación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Genoma , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , ARN/metabolismo , ARN/genética , Transcripción Genética , Cigoto/metabolismo
6.
Cell Rep ; 43(4): 114077, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38592974

RESUMEN

Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.


Asunto(s)
Desarrollo Embrionario , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Animales , Desarrollo Embrionario/genética , Ratones , Elementos de Facilitación Genéticos/genética , ARN/metabolismo , ARN/genética , Femenino , Embrión de Mamíferos/metabolismo , Cigoto/metabolismo , Redes Reguladoras de Genes , Masculino
7.
Elife ; 122024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652107

RESUMEN

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Diferenciación Celular/genética , Animales , Hematopoyesis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Desarrollo Embrionario/genética , Transdiferenciación Celular/genética , Humanos
8.
Evol Dev ; 26(3): e12476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38654704

RESUMEN

Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Tardigrada , Animales , Tardigrada/genética , Tardigrada/embriología , Desarrollo Embrionario/genética , Embrión no Mamífero/metabolismo
9.
FASEB J ; 38(8): e23623, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38656660

RESUMEN

The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.


Asunto(s)
Desarrollo Embrionario , alfa Carioferinas , Animales , Femenino , Ratones , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , Desarrollo Embrionario/genética , Fertilidad/genética , Ratones Noqueados , Herencia Materna , Regulación del Desarrollo de la Expresión Génica , Masculino , Embarazo , Nucleoplasminas/metabolismo , Nucleoplasminas/genética , Blastocisto/metabolismo
10.
Mol Biol Rep ; 51(1): 560, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643284

RESUMEN

BACKGROUND: Zygotic genome activation (ZGA) is an important event in the early embryo development, and human embryo developmental arrest has been highly correlated with ZGA failure in clinical studies. Although a few studies have linked maternal factors to mammalian ZGA, more studies are needed to fully elucidate the maternal factors that are involved in ZGA. METHODS AND RESULTS: In this study, we utilized published single-cell RNA sequencing data from a Dux-mediated mouse embryonic stem cell to induce a 2-cell-like transition state and selected potential drivers for the transition according to an RNA velocity analysis. CONCLUSIONS: An overlap of potential candidate markers of 2-cell-like-cells identified in this research with markers generated by various data sets suggests that Trim75 is a potential driver of minor ZGA and may recruit EP300 and establish H3K27ac in the gene body of minor ZGA genes, thereby contributing to mammalian preimplantation embryo development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cigoto , Animales , Humanos , Ratones , Desarrollo Embrionario/genética , Genoma/genética , Embrión de Mamíferos , Mamíferos
11.
Nat Commun ; 15(1): 3104, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600066

RESUMEN

During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the relative contributions of mRNA transcription and degradation to shaping those profiles remains challenging, especially within embryos with diverse cellular identities. Here, we combine single-cell RNA-Seq and metabolic labeling to capture temporal cellular transcriptomes of zebrafish embryos where newly-transcribed (zygotic) and pre-existing (maternal) mRNA can be distinguished. We introduce kinetic models to quantify mRNA transcription and degradation rates within individual cell types during their specification. These models reveal highly varied regulatory rates across thousands of genes, coordinated transcription and destruction rates for many transcripts, and link differences in degradation to specific sequence elements. They also identify cell-type-specific differences in degradation, namely selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types. Our study provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Pez Cebra , Animales , Desarrollo Embrionario/genética , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación del Desarrollo de la Expresión Génica
12.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673805

RESUMEN

Amphetamines (Amph) are psychostimulants broadly used as physical and cognitive enhancers. However, the long-term effects of prenatal exposure to Amph have been poorly investigated. Here, we show that continuous exposure to Amph during early development induces long-lasting changes in histone methylation at the C. elegans tyrosine hydroxylase (TH) homolog cat-2 and the vesicular monoamine transporter (VMAT) homologue cat-1 genes. These Amph-induced histone modifications are correlated with enhanced expression and function of CAT-2/TH and higher levels of dopamine, but decreased expression of CAT-1/VMAT in adult animals. Moreover, while adult animals pre-exposed to Amph do not show obvious behavioral defects, when challenged with Amph they exhibit Amph hypersensitivity, which is associated with a rapid increase in cat-2/TH mRNA. Because C. elegans has helped reveal neuronal and epigenetic mechanisms that are shared among animals as diverse as roundworms and humans, and because of the evolutionary conservation of the dopaminergic response to psychostimulants, data collected in this study could help us to identify the mechanisms through which Amph induces long-lasting physiological and behavioral changes in mammals.


Asunto(s)
Anfetamina , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Desarrollo Embrionario , Tirosina 3-Monooxigenasa , Proteínas de Transporte Vesicular de Monoaminas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Anfetamina/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Dopamina/metabolismo , Epigénesis Genética/efectos de los fármacos
13.
Dev Biol ; 511: 53-62, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593904

RESUMEN

Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Factores Asociados con la Proteína de Unión a TATA , Animales , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Ratones , Desarrollo Embrionario/genética , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Femenino , Blastocisto/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Gastrulación/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Embrión de Mamíferos/metabolismo
14.
Biol Open ; 13(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38656788

RESUMEN

Embryo development is an orchestrated process that relies on tight regulation of gene expression to guide cell differentiation and fate decisions. The Srrm2 splicing factor has recently been implicated in developmental disorders and diseases, but its role in early mammalian development remains unexplored. Here, we show that Srrm2 dosage is critical for maintaining embryonic stem cell pluripotency and cell identity. Srrm2 heterozygosity promotes loss of stemness, characterised by the coexistence of cells expressing naive and formative pluripotency markers, together with extensive changes in gene expression, including genes regulated by serum-response transcription factor (SRF) and differentiation-related genes. Depletion of Srrm2 by RNA interference in embryonic stem cells shows that the earliest effects of Srrm2 heterozygosity are specific alternative splicing events on a small number of genes, followed by expression changes in metabolism and differentiation-related genes. Our findings unveil molecular and cellular roles of Srrm2 in stemness and lineage commitment, shedding light on the roles of splicing regulators in early embryogenesis, developmental diseases and tumorigenesis.


Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular/genética , Animales , Ratones , Desarrollo Embrionario/genética , Empalme Alternativo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos
15.
Redox Biol ; 72: 103147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593632

RESUMEN

Adaptive response to physiological oxygen levels (physO2; 5% O2) enables embryonic survival in a low-oxygen developmental environment. However, the mechanism underlying the role of physO2 in supporting preimplantation development, remains elusive. Here, we systematically studied oxygen responses of hallmark events in preimplantation development. Focusing on impeded transcriptional upregulation under atmospheric oxygen levels (atmosO2; 20% O2) during the 2-cell stage, we functionally identified a novel role of HIF-1α in promoting major zygotic genome activation by serving as an oxygen-sensitive transcription factor. Moreover, during blastocyst formation, atmosO2 impeded H3K4me3 and H3K27me3 deposition by deregulating histone-lysine methyltransferases, thus impairing X-chromosome inactivation in blastocysts. In addition, we found atmosO2 impedes metabolic shift to glycolysis before blastocyst formation, thus resulting a low-level histone lactylation deposition. Notably, we also reported an increased sex-dimorphic oxygen response of embryos upon preimplantation development. Together, focusing on genetic and epigenetic events that are essential for embryonic survival and development, the present study advances current knowledge of embryonic adaptive responses to physO2, and provides novel insight into mechanism underlying irreversibly impaired developmental potential due to a short-term atmosO2 exposure.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Oxígeno , Transcriptoma , Cigoto , Animales , Oxígeno/metabolismo , Desarrollo Embrionario/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Cigoto/metabolismo , Femenino , Histonas/metabolismo , Blastocisto/metabolismo , Masculino
16.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574734

RESUMEN

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción AP-2 , Factores de Transcripción , Animales , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Femenino , Implantación del Embrión/genética , Redes Reguladoras de Genes , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Regiones Promotoras Genéticas/genética , Tretinoina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética
17.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38586898

RESUMEN

The pleomorphic adenoma gene1 (PLAG1) encodes a DNA-binding, C2H2 zinc-finger protein which acts as a transcription factor that regulates the expression of diverse genes across different organs and tissues; hence, the name pleomorphic. Rearrangements of the PLAG1 gene, and/or overexpression, are associated with benign tumors and cancers in a variety of tissues. This is best described for pleomorphic adenoma of the salivary glands in humans. The most notable expression of PLAG1 occurs during embryonic and fetal development, with lesser expression after birth. Evidence has accumulated of a role for PLAG1 protein in normal early embryonic development and placentation in mammals. PLAG1 protein influences the expression of the ike growth factor 2 (IGF2) gene and production of IGF2 protein. IGF2 is an important mitogen in ovarian follicles/oocytes, embryos, and fetuses. The PLAG1-IGF2 axis, therefore, provides one pathway whereby PLAG1 protein can influence embryonic survival and pregnancy. PLAG1 also influences over 1,000 other genes in embryos including those associated with ribosomal assembly and proteins. Brahman (Bos indicus) heifers homozygous for the PLAG1 variant, rs109815800 (G > T), show greater fertility than contemporary heifers with either one, or no copy, of the variant. Greater fertility in heifers homozygous for rs109815800 could be the result of early puberty and/or greater embryonic survival. The present review first looks at the broader roles of the PLAG1 gene and PLAG1 protein and then focuses on the emerging role of PLAG1/PLAG1 in embryonic development and pregnancy. A deeper understanding of factors which influence embryonic development is required for the next transformational increase in embryonic survival and successful pregnancy for both in vivo and in vitro derived embryos in cattle.


The pleomorphic adenoma gene1 (PLAG1) produces PLAG1 protein which, by binding to specific regions on DNA, influences the activity of other genes that regulate many body functions. One gene is insulin-like growth factor 2 (IGF2) which controls cell metabolism and growth. The PLAG1 gene is particularly active during embryonic and fetal growth, and through IGF2 determines stature later in life. IGF2 protein is also very important in early embryonic development. This review explores the hypothesis that PLAG1 is an important determinant of embryonic survival and the establishment of pregnancy in mammals.


Asunto(s)
Proteínas de Unión al ADN , Animales , Bovinos/genética , Femenino , Embarazo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reproducción/genética , Desarrollo Embrionario/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo
18.
Genome Biol ; 25(1): 74, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504288

RESUMEN

BACKGROUND: Early embryonic developmental programs are guided by the coordinated interplay between maternally inherited and zygotically manufactured RNAs and proteins. Although these processes happen concomitantly and affecting gene function during this period is bound to affect both pools of mRNAs, it has been challenging to study their expression dynamics separately. RESULTS: By employing SLAM-seq, a nascent mRNA labeling transcriptomic approach, in a developmental time series we observe that over half of the early zebrafish embryo transcriptome consists of maternal-zygotic genes, emphasizing their pivotal role in early embryogenesis. We provide an hourly resolution of de novo transcriptional activation events and follow nascent mRNA trajectories, finding that most de novo transcriptional events are stable throughout this period. Additionally, by blocking microRNA-430 function, a key post transcriptional regulator during zebrafish embryogenesis, we directly show that it destabilizes hundreds of de novo transcribed mRNAs from pure zygotic as well as maternal-zygotic genes. This unveils a novel miR-430 function during embryogenesis, fine-tuning zygotic gene expression. CONCLUSION: These insights into zebrafish early embryo transcriptome dynamics emphasize the significance of post-transcriptional regulators in zygotic genome activation. The findings pave the way for future investigations into the coordinated interplay between transcriptional and post-transcriptional landscapes required for the establishment of animal cell identities and functions.


Asunto(s)
MicroARNs , Pez Cebra , Animales , Pez Cebra/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cigoto/metabolismo , Desarrollo Embrionario/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación del Desarrollo de la Expresión Génica
19.
PLoS One ; 19(3): e0298697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536780

RESUMEN

Global cannabis use has risen 23% since 2010, with 209 million reported users, most of whom are males of reproductive age. Delta-9-tetrahydrocannabinol (THC), the main psychoactive phytocannabinoid in cannabis, disrupts pro-homeostatic functions of the endocannabinoid system (ECS) within the male reproductive system. The ECS is highly involved in regulating morpho-functional and intrinsic sperm features that are required for fertilization and pre-implantation embryo development. Previous work by our group demonstrated that THC altered sperm capacitation and the transcriptome, including several fertility-associated microRNAs (miRs). Despite the prevalent use of cannabis among males of reproductive age, clinical and pre-clinical research investigating the impact of paternal cannabis on sperm function and the outcomes of artificial reproductive technologies (ARTs) remains inconclusive. Therefore, the present study investigates the impact of in vitro THC exposure on morpho-functional and intrinsic sperm functions, including contributions to embryo development following IVF. Bovine sperm were used as a translational model for human and treated with concentrations of THC that reflect plasma levels after therapeutic (0.032µM), and low (0.32µM)-high (4.8µM) recreational cannabis use. After 6-hours of treatment, THC did not alter the acrosomal reaction, but 4.8µM significantly reduced mitochondrial membrane potential (MMP) (p<0.05), primarily through agonistic interactions with CB-receptors. Fertilization of bovine oocytes with THC-treated sperm did not alter developmental rates, but blastocysts generated from sperm treated with 0.32-4.8µM THC had fewer trophoblasts (p<0.05), while blastocysts generated from sperm exposed to any concentration of THC had fewer cells in the inner cell mass (ICM), particularly within the 0.032µM group (p<0.001). Fertility associated miRs, including miR-346, miR-324, miR-33b, and miR-34c were analyzed in THC-exposed sperm and associated blastocysts generated by IVF, with lower levels of miRs-346, -324, and -33b found in sperm treated with 0.32µM THC, while miR-34c levels were higher in sperm treated with 0.032µM THC (p<0.05). Levels of miR-346 were also lower in sperm treated with 0.032µM THC, but higher in blastocysts generated from sperm exposed to 0.32µM THC (p<0.05). Our findings suggest that THC may alter key morpho-functional and epigenetic sperm factors involved in fertilization and embryo development. This is the first study to demonstrate that sperm exposed to THC in vitro negatively affects embryo quality following IVF.


Asunto(s)
Fertilización In Vitro , MicroARNs , Masculino , Humanos , Animales , Bovinos , Femenino , Semen , Espermatozoides , Desarrollo Embrionario/genética , MicroARNs/genética , Capacitación Espermática , Epigénesis Genética , Endocannabinoides
20.
Genes (Basel) ; 15(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38540426

RESUMEN

Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Animales , Ratones , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Variaciones en el Número de Copia de ADN/genética , Potenciales de la Membrana , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Desarrollo Embrionario/genética , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...