Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS J ; 285(21): 3993-4004, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30153376

RESUMEN

Hexose-6-phosphate dehydrogenase (H6PD) is thought to be the major source of NADPH within the endoplasmic reticulum (ER), determining 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) reaction direction to convert inert 11-oxo- to potent 11ß-hydroxyglucocorticoids. Here, we tested the hypothesis whether H6pd knock-out (KO) in primary murine bone marrow-derived macrophages results in a switch from 11ß-HSD1 oxoreduction to dehydrogenation, thereby inactivating glucocorticoids (GC) and affecting macrophage phenotypic activation as well as causing a more aggressive M1 macrophage phenotype. H6pdKO did not lead to major disturbances of macrophage activation state, although a slightly more pronounced M1 phenotype was observed with enhanced proinflammatory cytokine release, an effect explained by the decreased 11ß-HSD1-dependent GC activation. Unexpectedly, ablation of H6pd did not switch 11ß-HSD1 reaction direction. A moderately decreased 11ß-HSD1 oxoreduction activity by 40-50% was observed in H6pdKO M1 macrophages but dehydrogenation activity was undetectable, providing strong evidence for the existence of an alternative source of NADPH in the ER. H6pdKO M1 activated macrophages showed decreased phagocytic activity, most likely a result of the reduced 11ß-HSD1-dependent GC activation. Other general macrophage functions reported to be influenced by GC, such as nitrite production and cholesterol efflux, were altered negligibly or not at all. Importantly, assessment of energy metabolism using an extracellular flux analyzer and lactate measurements revealed reduced overall glucose consumption in H6pdKO M1 activated macrophages, an effect that was GC independent. The GC-independent influence of H6PD on energy metabolism and the characterization of the alternative source of NADPH in the ER warrant further investigations. ENZYMES: 11ß-HSD1, EC 1.1.1.146; H6PD, EC 1.1.1.47.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasas/metabolismo , Deshidrogenasas de Carbohidratos/fisiología , Glucocorticoides/metabolismo , Glucosa/metabolismo , Activación de Macrófagos , 11-beta-Hidroxiesteroide Deshidrogenasas/genética , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/metabolismo , Oxidación-Reducción
2.
Mol Syst Biol ; 6: 436, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21119630

RESUMEN

Bacterial genomes encode hundreds to thousands of enzymes, most of which are specialized for particular functions. However, most enzymes have inefficient promiscuous activities, as well, that generally serve no purpose. Promiscuous reactions can be patched together to form multistep metabolic pathways. Mutations that increase expression or activity of enzymes in such serendipitous pathways can elevate flux through the pathway to a physiologically significant level. In this study, we describe the discovery of three serendipitous pathways that allow synthesis of pyridoxal-5'-phosphate (PLP) in a strain of E. coli that lacks 4-phosphoerythronate (4PE) dehydrogenase (PdxB) when one of seven different genes is overexpressed. We have characterized one of these pathways in detail. This pathway diverts material from serine biosynthesis and generates an intermediate in the normal PLP synthesis pathway downstream of the block caused by lack of PdxB. Steps in the pathway are catalyzed by a protein of unknown function, a broad-specificity enzyme whose physiological role is unknown, and a promiscuous activity of an enzyme that normally serves another function. One step in the pathway may be non-enzymatic.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Redes y Vías Metabólicas/genética , Fosfato de Piridoxal/biosíntesis , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/fisiología , Epistasis Genética/fisiología , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/fisiología , Glucosa/farmacología , Redes y Vías Metabólicas/fisiología , Técnicas Microbiológicas , Modelos Biológicos , Organismos Modificados Genéticamente , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Serina/biosíntesis
3.
Curr Opin Pediatr ; 20(4): 453-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18622204

RESUMEN

PURPOSE OF REVIEW: Inactive cortisone is converted to active cortisol by the reductase activity of 11 beta-hydroxysteroid dehydrogenase type 1, which can thus increase glucocorticoid effects in target tissues. This paper reviews the functional role(s) of 11 beta-hydroxysteroid dehydrogenase type 1 and examines factors influencing its activity. RECENT FINDINGS: In obese humans, 11 beta-hydroxysteroid dehydrogenase type 1 is relatively highly expressed in adipose tissue. In mice, overexpression of 11 beta-hydroxysteroid dehydrogenase type 1 in adipose or liver causes obesity or insulin resistance, respectively, whereas mice lacking 11 beta-hydroxysteroid dehydrogenase type 1 resist diet-induced obesity and are insulin-sensitive. Thus, 11 beta-hydroxysteroid dehydrogenase type 1 is a promising drug target for treating the metabolic syndrome and type 2 diabetes. Studies in vitro and in mutant mice demonstrate that the reductase activity of 11 beta-hydroxysteroid dehydrogenase type 1 depends on reduced nicotinamide adenine dinucleotide phosphate synthesized within the endoplasmic reticulum by hexose-6-phosphate dehydrogenase. Apparent cortisone reductase deficiency is characterized by androgen excess in women or children and decreased urinary excretion of cortisol metabolites. Although polymorphisms in the genes encoding 11 beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase were initially implicated in this condition, subsequent reports have not confirmed this. SUMMARY: Hexose-6-phosphate dehydrogenase and 11 beta-hydroxysteroid dehydrogenase type 1 may play important roles in the pathogenesis of obesity and metabolic syndrome. Although the importance of polymorphisms in the corresponding genes remains uncertain, rare mutations have not been ruled out.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/fisiología , Deshidrogenasas de Carbohidratos/fisiología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Animales , Deshidrogenasas de Carbohidratos/genética , Cortisona Reductasa/deficiencia , Cortisona Reductasa/genética , Retículo Endoplásmico/metabolismo , Glucocorticoides/metabolismo , Humanos , Obesidad/fisiopatología , Polimorfismo Genético
4.
J Mol Endocrinol ; 41(2): 53-64, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18524870

RESUMEN

Intracellular glucocorticoid (GC) receptor (GR) function determines tissue sensitivity to GCs and strongly affects the development of type 2 diabetes and obesity. 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) mediates intracellular steroid exposure to mouse liver GR by prereceptor reactivation of GCs and is crucially dependent on hexose-6-phosphate dehydrogenase (H6PDH)-generating NADPH system. Pharmacological inhibition of 11beta-HSD1 improves insulin intolerance and obesity. Here, we evaluated the potential beneficial effects of 11beta-HSD1 inhibitor carbenoxolone (CBX) in diet-induced obese (DIO) and insulin-resistant mice by examining the possible influence of CBX on the expression of GR, 11beta-HSD1, and H6PDH in vivo and in vitro in hepatocytes. Treatment of DIO mice with CBX markedly reduced hepatic GR mRNA levels and reduced weight gain, hyperglycemia, and insulin resistance. The reduction of hepatic GR gene expression was accompanied by CBX-induced inhibition of both 11beta-HSD1 and H6PDH activity and mRNA in the liver. Moreover, CBX treatment also suppressed the expression of both phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase enzyme (G6Pase) mRNA and improved hepatic [1, 2-(3)H] deoxy-d-glucose uptake in DIO mice. In addition, the treatment of primary cultures of hepatocytes with increasing concentrations of CBX led to a dose-dependent downregulation of GR mRNA levels, which correlated with the suppression of both 11beta-HSD1 and H6PDH activity and their gene expression. Addition of CBX to primary hepatocytes also resulted in suppression of both PEPCK and G6Pase mRNA levels. These findings suggest that CBX exerts some of its beneficial effects, at least in part, by inhibiting hepatic GR and H6PDH expression.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Resistencia a la Insulina , Obesidad/fisiopatología , Receptores de Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Carbenoxolona/farmacología , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/fisiología , Células Cultivadas , Corticosterona/sangre , Desoxiglucosa/metabolismo , Desoxiglucosa/farmacocinética , Grasas de la Dieta/administración & dosificación , Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Homeostasis/efectos de los fármacos , Immunoblotting , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiología
5.
J Biol Chem ; 280(15): 14892-9, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15668249

RESUMEN

Phosphoglycerate dehydrogenases exist in at least three different structural motifs. The first D-3-phosphoglycerate dehydrogenase structure to be determined was from Escherichia coli and is a tetramer composed of identical subunits that contain three discernable structural domains. The crystal structure of D-3-phosphoglycerate dehydrogenase from Mycobacterium tuberculosis has been determined at 2.3 A. This enzyme represents a second structural motif of the D-3-phosphoglycerate dehydrogenase family, one that contains an extended C-terminal region. This structure is also a tetramer of identical subunits, and the extended motif of 135 amino acids exists as a fourth structural domain. This intervening domain exerts quite a surprising characteristic to the structure by introducing significant asymmetry in the tetramer. The asymmetric unit is composed of two identical subunits that exist in two different conformations characterized by rotation of approximately 180 degrees around a hinge connecting two of the four domains. This asymmetric arrangement results in the formation of two different and distinct domain interfaces between identical domains in the asymmetric unit. As a result, the surface of the intervening domain that is exposed to solvent in one subunit is turned inward in the other subunit toward the center of the structure where it makes contact with other structural elements. Significant asymmetry is also seen at the subunit level where different conformations exist at the NAD-binding site and the putative serine-binding site in the two unique subunits.


Asunto(s)
Deshidrogenasas de Carbohidratos/fisiología , Mycobacterium tuberculosis/enzimología , Secuencias de Aminoácidos , Sitios de Unión , Deshidrogenasas de Carbohidratos/química , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/metabolismo , Ligandos , Modelos Moleculares , Fosfoglicerato-Deshidrogenasa , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Solventes/farmacología
6.
J Biol Chem ; 280(15): 14884-91, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15668250

RESUMEN

D-3-Phosphoglycerate dehydrogenase (PGDH) from Mycobacterium tuberculosis has been isolated to homogeneity and displays an unusual relationship to the Escherichia coli and mammalian enzymes. In almost all aspects investigated, the M. tuberculosis enzyme shares the characteristics of the mammalian PGDHs. These include an extended C-terminal motif, substrate inhibition kinetics, dependence of activity levels and stability on ionic strength, and the inability to utilize alpha-ketoglutarate as a substrate. The unique property that the M. tuberculosis enzyme shares with E. coli PGDH that it is very sensitive to inhibition by L-serine, with an I(0.5) = 30 microm. The mammalian enzymes are not inhibited by L-serine. In addition, the cooperativity of serine inhibition appears to be modulated by chloride ion, becoming positively cooperative in its presence. This is modulated by the gain of cooperativity in serine binding for the first two effector sites. The basis for the chloride modulation of cooperativity is not known, but the sensitivity to serine inhibition can be explained in terms of certain amino acid residues in critical areas of the structures. The differential sensitivity to serine inhibition by M. tuberculosis and human PGDH may open up interesting possibilities in the treatment of multidrug-resistant tuberculosis.


Asunto(s)
Deshidrogenasas de Carbohidratos/fisiología , Escherichia coli/metabolismo , Mycobacterium tuberculosis/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Deshidrogenasas de Carbohidratos/química , Cloruros/química , Clonación Molecular , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/enzimología , Humanos , Iones , Cinética , Hígado/enzimología , Modelos Genéticos , Datos de Secuencia Molecular , Fosfoglicerato-Deshidrogenasa , Cloruro de Potasio/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Homología de Secuencia de Aminoácido , Serina/química , Especificidad por Sustrato , Factores de Tiempo
8.
J Neurosci Res ; 76(5): 623-32, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15139021

RESUMEN

D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is a necessary enzyme for de novo L-serine biosynthesis via the phosphorylated pathway. Targeted disruption of the mouse Phgdh gene has been shown to result in embryonic lethality, accompanied by severe abnormalities in brain development. Phgdh is expressed exclusively by neuroepithelium and radial glia in developing brain and later mainly by astrocytes. To elucidate the molecular mechanism that regulates such cell-type-specific expression of Phgdh in developing brain, an upstream 3.5-kilobase-pair (kbp) region of the gene harboring the promoter was characterized in primary cultures and transgenic mice. Analysis of Phgdh 5'-nested deletions in transfected cultures indicated that overall reporter luciferase levels were higher in glial cultures than those in neuronal cultures. Although basal promoter activity of the gene appeared to depend on an Sp1 binding sequence residing between -193 and -184 in both glial and neuronal cultures, an upstream 5'-flanking region between -1,794 and -1,095 contributed to up-regulation of Phgdh transcription in a glial-cell-specific manner. In the cerebral cortex of transgenic mouse embryos, the Phgdh promoter-LacZ transgene DNA containing -1,794/+4 promoter sequences directed beta-galactosidase (beta-Gal) expression mainly to Phgdh-positive neuroepithelium and radial glia. This glial preference diminished when beta-Gal expression was driven solely by the upstream 0.2-kbp minimal promoter. However, glial preference of beta-Gal expression was restored by placing the 700-base-pair 5'-DNA segment upstream of the minimal promoter. These observations suggest the presence of cis-acting elements that confer the cell type specificity of Phgdh transcription in the distal promoter region.


Asunto(s)
Encéfalo/enzimología , Deshidrogenasas de Carbohidratos/fisiología , Regiones Promotoras Genéticas/fisiología , Secuencias Reguladoras de Ácidos Nucleicos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Northern Blotting/métodos , Encéfalo/embriología , Deshidrogenasas de Carbohidratos/genética , Recuento de Células , Células Cultivadas , Clonación Molecular , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética/métodos , Embrión de Mamíferos , Regulación de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuroglía/metabolismo , Fosfoglicerato-Deshidrogenasa , Reacción en Cadena de la Polimerasa/métodos , ARN/metabolismo , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo , Saposinas , Transfección/métodos , Tubulina (Proteína)/metabolismo , beta-Galactosidasa/metabolismo
9.
J Biol Chem ; 279(5): 3573-7, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14645240

RESUMEN

D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of L-serine biosynthesis in the phosphorylated pathway. To determine the physiological importance of Phgdh-dependent L-serine biosynthesis in vivo, we generated Phgdh-deficient mice using targeted gene disruption in embryonic stem cells. The absence of Phgdh led to a drastic reduction of L-serine metabolites such as phosphatidyl-L-serine and sphingolipids. Phgdh null embryos have small bodies with abnormalities in selected tissues and died after days post-coitum 13.5. Striking abnormalities were evident in the central nervous system in which the Phgdh null mutation culminated in hypoplasia of the telencephalon, diencephalon, and mesencephalon; in particular, the olfactory bulbs, ganglionic eminence, and cerebellum appeared as indistinct structures. These observations demonstrate that the Phgdh-dependent phosphorylated pathway is essential for normal embryonic development, especially for brain morphogenesis.


Asunto(s)
Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/fisiología , Sistema Nervioso/embriología , Alelos , Animales , Southern Blotting , Western Blotting , Encéfalo/embriología , Encéfalo/metabolismo , Citosol/metabolismo , Exones , Heterocigoto , Inmunohistoquímica , Intrones , Hígado/embriología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Mutación , Fenotipo , Fosfoglicerato-Deshidrogenasa , Fosforilación , Reacción en Cadena de la Polimerasa , Serina/química , Células Madre , Factores de Tiempo
10.
Infect Immun ; 69(2): 917-23, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11159986

RESUMEN

The Staphylococcus aureus serotype 5 capsular polysaccharide (CP5) has a repeating unit composed of (-->4)-3-O-acetyl-beta-D-ManNAcA-(1-->4)-alpha-L-FucNAc (1-->3)-beta-D-FucNAc-(1-->)(n). Sixteen chromosomal genes (cap5A through cap5P) are involved in the synthesis of CP5. We recently demonstrated that Cap5P, a 2-epimerase, catalyzes the conversion of UDP-N-acetyl glucosamine (UDP-GlcNAc) to UDP-N-acetylmannosamine (UDP-ManNAc). In this study, we show that UDP-ManNAc is oxidized to UDP-N-acetylmannosaminuronic acid (UDP-ManNAcA) by a UDP-ManNAc dehydrogenase encoded by S. aureus cap5O. We expressed Cap5O in Escherichia coli and purified the recombinant protein. The UDP-ManNAc dehydrogenase activity of purified Cap5O was assessed by incubating Cap5P and UDP-GlcNAc (to produce UDP-ManNAc), together with Cap5O, NAD(+), and a reducing agent. Enzymatic activity was quantitated indirectly by measuring the increase in absorbance at 340 nm resulting from NADH formation. The product of the reaction was confirmed as UDP-ManNAcA by gas chromatography-mass spectroscopy. A cap5O mutation, created by deletion of 727 bp in the 5' end of the gene, was introduced by allelic replacement into S. aureus Reynolds, rendering it CP5 negative. Mice inoculated intravenously or subcutaneously with the wild-type strain Reynolds had greater numbers of S. aureus recovered from their kidneys (P = 0.019) or their subcutaneous abscesses (P = 0.0018), respectively, than did animals inoculated with the cap5O mutant. The results of this study indicate that S. aureus cap5O is essential for capsule production and that capsule promotes staphylococcal virulence in mouse models of abscess formation.


Asunto(s)
Cápsulas Bacterianas/fisiología , Proteínas Bacterianas/fisiología , Deshidrogenasas de Carbohidratos/fisiología , Staphylococcus aureus/enzimología , Animales , Proteínas Bacterianas/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos ICR , Staphylococcus aureus/patogenicidad , Virulencia
12.
Proc Natl Acad Sci U S A ; 95(9): 5150-5, 1998 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-9560244

RESUMEN

We report the identification of the gene, SOU1, required for L-sorbose assimilation in Candida albicans. The level of the expression of SOU1 is determined by the copy number of chromosome III (also denoted chromosome 5), such that monosomic strains assimilate L-sorbose, whereas disomic strains do not, in spite of the fact that SOU1 is not on this chromosome. We suggest that C. albicans contains a resource of potentially beneficial genes that are activated by changes in chromosome number, and that this elaborate mechanism regulates the utilization of food supplies and possibly other important functions, thus representing a novel general means for regulating gene expression in microbes.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Candida albicans/genética , Deshidrogenasas de Carbohidratos/fisiología , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Sorbosa/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Cariotipificación , Datos de Secuencia Molecular , Monosomía , Familia de Multigenes , Mutagénesis Insercional , Saccharomyces cerevisiae/genética
13.
FEMS Microbiol Lett ; 135(2-3): 275-80, 1996 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-8595869

RESUMEN

We show that thrB-encoded homoserine kinase is required for growth of Escherichia coli K-12 pdxB mutants on minimal glucose medium supplemented with 4-hydroxy-L-threonine (synonym, 3-hydroxyhomoserine) or D-glycolaldehyde. This result is consistent with a model in which 4-phospho-hydroxy-L-threonine (synonym, 3-hydroxyhomoserine phosphate), rather than 4-hydroxy-L-threonine, is an obligatory intermediate in pyridoxal 5'-phosphate biosynthesis. Ring closure using 4-phospho-hydroxy-L-threonine as a substrate would lead to formation of pyridoxine 5'-phosphate, and not pyridoxine, as the first B6-vitamer synthesized de novo. These considerations suggest that E. coli pyridoxal/pyridoxamine/pyridoxine kinase is not required for the main de novo pathway of pyridoxal 5'-phosphate biosynthesis, and instead plays a role only in the B6-vitamer salvage pathway.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Organofosfatos/metabolismo , Fosfato de Piridoxal/biosíntesis , Treonina/análogos & derivados , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/fisiología , Escherichia coli/enzimología , Modelos Químicos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Treonina/metabolismo
15.
Eur J Biochem ; 186(1-2): 355-9, 1989 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-2689175

RESUMEN

D-Glycerate dehydrogenase (glyoxylate reductase) was partially purified from rat liver by anion- and cation-exchange chromatography. When assayed in the direction of D-glycerate or glycolate formation, the enzyme was inhibited by high (greater than or equal to 0.5 mM), unphysiological concentrations of hydroxypyruvate or glyoxylate much more potently in the presence of NADPH than in the presence of NADH. However, the dehydrogenase displayed a much greater affinity for NADPH (Km less than 1 microM) than for NADH (Km = 48-153 microM). Furthermore, NADP was over 1000-fold more potent than NAD in inhibiting the enzyme competitively with respect to NADH. NADP also inhibited the reaction competitively with respect to NADPH whereas NAD, at concentrations of up to 10 mM had no inhibitory effect. When measured by the formation of hydroxypyruvate from D-glycerate, the enzyme also displayed a much greater affinity for NADP than for NAD. These properties indicate that liver D-glycerate dehydrogenase functions physiologically as an NADPH-specific reductase. In agreement with this conclusion, the addition of hydroxypyruvate or glyoxylate to suspensions of rat hepatocytes stimulated the pentose-phosphate pathway. The coenzyme specificity of D-glycerate dehydrogenase is discussed in relation to the biochemical findings made in D-glyceric aciduria and in primary hyperoxaluria type II (L-glyceric aciduria).


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Hígado/enzimología , NADP/metabolismo , NAD/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Deshidrogenasas de Carbohidratos/antagonistas & inhibidores , Deshidrogenasas de Carbohidratos/fisiología , Catálisis , Coenzimas/metabolismo , Hidroxipiruvato Reductasa , Cinética , Masculino , Vía de Pentosa Fosfato , Ratas , Ratas Endogámicas , Especificidad por Sustrato
16.
J Biochem ; 103(6): 938-43, 1988 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2844746

RESUMEN

Flavobacterium saccharophilum cytoplasmic membranes contain several cytochromes linked to the respiratory chain. The presence of c-type cytochrome, cytochrome o, and a small amount of a-type cytochrome was proved. Cytochrome c551 was purified to electrophoretic homogeneity by ion-exchange chromatography and gel filtration from a membrane fraction of F. saccharophilum and its properties determined. Cytochrome c551 possessed absorption peaks at 407 nm in the oxidized form, and at 415, 521, 551 nm in the reduced form. The cytochrome c551 had a molecular weight of 15,500 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Glucoside 3-dehydrogenase of F. saccharophilum reduced the cytochrome c551 with methyl-alpha-D-glucoside, D-glucose, sucrose, or validoxylamine A. When the purified glucoside 3-dehydrogenase was incubated with methyl-alpha-D-glucoside and purified ferricytochrome c551, methyl-alpha-D-3-ketoglucoside was formed as indicated by GC-MS analysis. The addition of a substrate to the membrane fraction caused an increase in the rate of oxygen uptake and an abrupt reduction in cytochrome c551. The electron transfer in the 3-keto sugar forming system may be as follows: sugars----glucoside 3-dehydrogenase----cytochrome c551----cytochrome oxidase----O2. Thus, the electron acceptor of glucoside 3-dehydrogenase is possibly connected to the membrane-bound cytochrome system.


Asunto(s)
Proteínas Bacterianas , Deshidrogenasas de Carbohidratos/fisiología , Metabolismo de los Hidratos de Carbono , Grupo Citocromo c/fisiología , Flavobacterium/enzimología , Glucosa Deshidrogenasas/fisiología , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Grupo Citocromo c/aislamiento & purificación , Transporte de Electrón , Electroforesis en Gel de Poliacrilamida , Flavobacterium/fisiología , Glucosa Deshidrogenasas/aislamiento & purificación , Peso Molecular , Oxidación-Reducción , Consumo de Oxígeno
17.
Proc Natl Acad Sci U S A ; 80(20): 6286-8, 1983 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-6413974

RESUMEN

Glucose dehydrogenase (GO) was found to be expressed during the pupal stage in both sexes of Drosophila melanogaster, but is limited to the male ejaculatory duct at the adult stage. During copulation GO is transferred from males to females. Mutational analysis of the Go locus indicates that a single structural gene encodes the pupal and ejaculatory duct GO. Thus an example of an enzyme structural gene switching from non-sex-limited to sex-limited expression has been found. Go mutants are recessive lethals exhibiting a late pupal effective lethal phase. These mutants can be rescued by excising the anterior end of the pupal case 0-2 days prior to the normal adult emergence time. It appears that the function of GO in pupae is to aid in the degradation of the puparium cuticle in preparation for the eclosion of the adult.


Asunto(s)
Deshidrogenasas de Carbohidratos/fisiología , Drosophila melanogaster/enzimología , Glucosa Deshidrogenasas/fisiología , Animales , Copulación , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Regulación de la Expresión Génica , Glucosa Deshidrogenasas/genética , Isoenzimas/metabolismo , Larva , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA