Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.617
Filtrar
1.
Int J Cosmet Sci ; 46(4): 494-505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113319

RESUMEN

INTRODUCTION: Complexities of robotic distal gastrectomy (RDG) give reason to assess physician's surgical skill. Varying levels in surgical skill affect patient outcomes. We aim to investigate how a novel artificial intelligence (AI) model can be used to evaluate surgical skill in RDG by recognizing surgical instruments. METHODS: Fifty-five consecutive robotic surgical videos of RDG for gastric cancer were analyzed. We used Deeplab, a multi-stage temporal convolutional network, and it trained on 1234 manually annotated images. The model was then tested on 149 annotated images for accuracy. Deep learning metrics such as Intersection over Union (IoU) and accuracy were assessed, and the comparison between experienced and non-experienced surgeons based on usage of instruments during infrapyloric lymph node dissection was performed. RESULTS: We annotated 540 Cadiere forceps, 898 fenestrated bipolars, 359 suction tubes, 307 Maryland bipolars, 688 harmonic scalpels, 400 staplers, and 59 large clips. The average IoU and accuracy were 0.82 ± 0.12% and 87.2 ± 11.9% respectively. Moreover, the percentage of each instrument's usage to overall infrapyloric lymphadenectomy duration predicted by AI were compared. The use of stapler and large clip were significantly shorter in the experienced group compared to the non-experienced group. CONCLUSIONS: This study is the first to report that surgical skill can be successfully and accurately determined by an AI model for RDG. Our AI gives us a way to recognize and automatically generate instance segmentation of the surgical instruments present in this procedure. Use of this technology allows unbiased, more accessible RDG surgical skill.


OBJECTIF: Les desmosomes sont les jonctions inter­kératinocytaires les plus proéminentes. Le fonctionnement appropriée des épithéliums stratifiés comme épiderme dépend de leur expression. La composition moléculaire et les propriétés physico­chimiques des desmosomes évoluent au cours de la différenciation épidermique. La desquamation de cornéocytes la surface du stratum corneum depend de la dégradation ordonnée des desmosomes par les enzymes endogènes. Ce processus peut être régulé par les molécules glycosylées. Notre travail consistait en détection et caractérisation de l'un des acteurs potentiellement impliqués, portant des chaînes carbohydrate. METHODES: Les approches d'analyse biochimique s'appuyant sur un anticorps monoclonal original (immunotransfert mono­et bi­dimensionnel, immunoprécipitation­immunodétection croisées, digestions enzymatiques, tests de déglycosylation et d'inhibition de synthèse) nous ont permis la caractérisation partielle d'un protéoglycanne sécrété dans les espaces inter­kératinocytaires. Cette molécule s'intègre aux desmosomes en quantités proportionnelles au stade de différenciation des kératinocytes, comme le démontrent les marquages ultrastructuraux à l'or colloïdal sur des cryocoupes et tissus enrobés en résines acryliques. RESULTATS: Cet antigène, que nous avons appelé desmosealine, est clairement distinct des éléments constitutifs de desmosomes décrits jusqu'alors. Contrairement aux protéoglycannes épidermiques connus, il porte exclusivement les chaînes glycosaminoglycannes de type chondroïtine/dermatane sulfate. La desmosealine est présente dans les parties extracellulaires de desmosomes, dans la portion supérieure de l'épiderme vivant et le début du stratum corneum. CONCLUSION: L'intégration massive d'un protéoglycanne dans des parties intercellulaires de desmosomes revêt vraisemblablement une importance fonctionnelle. De par son profile biochimique, sa distribution dans l'épiderme et son affinité pour les desmosomes, le desmosealine peut s'avérer être un élément clé dans la régulation de la cohésion interkératinocytaire et la formation de la barrière de perméabilité épidermique.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Condroitín , Desmosomas , Humanos , Condroitín/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Desmosomas/metabolismo
2.
Sci Rep ; 14(1): 18189, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107343

RESUMEN

Desmosomes are intercellular adhesion complexes providing mechanical coupling and tissue integrity. Previously, a correlation of desmosomal molecule expression with invasion and metastasis formation in several tumor entities was described together with a relevance for circulating tumor cell cluster formation. Here, we investigated the contribution of the desmosomal core adhesion molecule desmoglein-2 (DSG2) to the initial steps of liver metastasis formation by pancreatic cancer cells using a novel ex vivo liver perfusion mouse model. We applied the pancreatic ductal adenocarcinoma cell line AsPC-1 with and without a knockout (KO) of DSG2 and generated mouse lines with a hepatocyte-specific KO of the known interacting partners of DSG2 (DSG2 and desmocollin-2). Liver perfusion with DSG2 KO AsPC-1 cells led to smaller circulating cell clusters and a reduced number of cells adhering to murine livers compared to control cells. While this was independent of the expression levels of desmosomal adhesion molecules in hepatocytes, we show that increased cluster size of cancer cells, which correlates with stronger cell-cell adhesion and expression of desmosomal molecules, is a major factor contributing to the early phase of metastatic spreading. In conclusion, impaired desmosomal adhesion results in reduced circulating cell cluster size, which is relevant for seeding and attachment of metastatic cells to the liver.


Asunto(s)
Adhesión Celular , Desmogleína 2 , Desmosomas , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Desmosomas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Ratones , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Humanos , Desmogleína 2/metabolismo , Desmogleína 2/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones Noqueados , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología
3.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39120608

RESUMEN

The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Desmosomas/ultraestructura , Humanos , Animales , Adhesión Celular , Transducción de Señal
4.
J Cell Sci ; 137(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940346

RESUMEN

Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Humanos , Animales , Epidermis/metabolismo
5.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892395

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/ß-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Modelos Animales de Enfermedad , Animales , Humanos , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/patología , Placofilinas/genética , Placofilinas/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Vía de Señalización Wnt/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Desmosomas/genética , Ratones
6.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892455

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Humanos , Displasia Ventricular Derecha Arritmogénica/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Proteínas de la Membrana/genética , Cadherinas/genética , Desmosomas/genética , Desmosomas/metabolismo , Predisposición Genética a la Enfermedad , Variación Genética , Filaminas/genética , Estudios Retrospectivos , Italia , Proteínas de Unión al Calcio/genética , Antígenos CD/genética
7.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840221

RESUMEN

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Cadherinas , Endocitosis , Epidermis , Diana Mecanicista del Complejo 1 de la Rapamicina , Óxido de Zinc , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Endocitosis/efectos de los fármacos , Ratones , Cadherinas/metabolismo , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Desmosomas/metabolismo , Nanopartículas/química , Estrés Mecánico
8.
Cell Adh Migr ; 18(1): 1-13, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38566311

RESUMEN

Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.


Asunto(s)
Desmogleína 2 , Desmosomas , Cadherinas , Uniones Intercelulares , Adhesión Celular
10.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342409

RESUMEN

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Asunto(s)
Desmosomas , Placofilinas , Animales , Perros , Desmosomas/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células de Riñón Canino Madin Darby , Transducción de Señal , Adhesión Celular , Desmoplaquinas/metabolismo
11.
Kidney Int ; 105(5): 1035-1048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395410

RESUMEN

Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.


Asunto(s)
Desmosomas , Enfermedades Renales , Animales , Humanos , Ratones , Adhesión Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Corazón , Enfermedades Renales/genética , Enfermedades Renales/metabolismo
12.
J Invest Dermatol ; 144(2): 284-295.e16, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37716648

RESUMEN

Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.


Asunto(s)
Enfermedades del Cabello , Queratodermia Palmoplantar , Anomalías Cutáneas , Animales , Humanos , Ratones , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmosomas/metabolismo , Cabello/metabolismo , Enfermedades del Cabello/genética , Enfermedades del Cabello/metabolismo , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/metabolismo , Piel/metabolismo , Anomalías Cutáneas/metabolismo
13.
Curr Opin Cell Biol ; 86: 102282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000362

RESUMEN

Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.


Asunto(s)
Desmosomas , Queratinas , Ratones , Animales , Queratinas/metabolismo , Desmosomas/metabolismo , Citoesqueleto/metabolismo , Epitelio/metabolismo , Filamentos Intermedios/metabolismo
14.
Cancer Sci ; 115(1): 17-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048779

RESUMEN

Plakophilin 3 (PKP3), a component of desmosome, is aberrantly expressed in many kinds of human diseases, especially in cancers. Through direct interaction, PKP3 binds with a series of desmosomal proteins, such as desmoglein, desmocollin, plakoglobin, and desmoplakin, to initiate desmosome aggregation, then promotes its stability. As PKP3 is mostly expressed in the skin, loss of PKP3 promotes the development of several skin diseases, such as paraneoplastic pemphigus, pemphigus vulgaris, and hypertrophic scar. Moreover, accumulated clinical data indicate that PKP3 dysregulates in diverse cancers, including breast, ovarian, colon, and lung cancers. Numerous lines of evidence have shown that PKP3 plays important roles in multiple cellular processes during cancer progression, including metastasis, invasion, tumor formation, autophagy, and proliferation. This review examines the diverse functions of PKP3 in regulating tumor formation and development in various types of cancers and summarizes its detailed mechanisms in the occurrence of skin diseases.


Asunto(s)
Neoplasias , Placofilinas , Enfermedades de la Piel , Humanos , Desmosomas/metabolismo , Neoplasias/metabolismo , Placofilinas/genética , Placofilinas/metabolismo
15.
Cells ; 12(23)2023 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-38067138

RESUMEN

The role of desmoglein-3 (DSG3) in oncogenesis is unclear. This study aimed to uncover molecular mechanisms through comparative transcriptome analysis in oral cancer cells, defining potential key genes and associated biological processes related to DSG3 expression. Four mRNA libraries of oral squamous carcinoma H413 cell lines were sequenced, and 599 candidate genes exhibited differential expression between DSG3-overexpressing and matched control lines, with 12 genes highly significantly differentially expressed, including 9 upregulated and 3 downregulated. Genes with known implications in cancer, such as MMP-13, KRT84, OLFM4, GJA1, AMOT and ADAMTS1, were strongly linked to DSG3 overexpression. Gene ontology analysis indicated that the DSG3-associated candidate gene products participate in crucial cellular processes such as junction assembly, focal adhesion, extracellular matrix formation, intermediate filament organisation and keratinocyte differentiation. Validation of RNA-Seq was performed through RT-qPCR, Western blotting and immunofluorescence analyses. Furthermore, using transmission electron microscopy, we meticulously examined desmosome morphology and revealed a slightly immature desmosome structure in DSG3-overexpressing cells compared to controls. No changes in desmosome frequency and diameter were observed between the two conditions. This study underscores intricate and multifaceted alterations associated with DSG3 in oral squamous carcinoma cells, implying a potential oncogenic role of this gene in biological processes that enable cell communication, motility and survival.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Desmogleína 3/genética , Desmogleína 3/análisis , Desmogleína 3/metabolismo , Desmosomas/metabolismo , Perfilación de la Expresión Génica , Queratinocitos/metabolismo , Queratinas Específicas del Pelo/análisis , Queratinas Específicas del Pelo/genética , Queratinas Específicas del Pelo/metabolismo , Queratinas Tipo II/análisis , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Oncogenes , Transcriptoma
16.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38069408

RESUMEN

Desmosomes play a key role in the regulation of cell adhesion and signaling. Dysregulation of the desmosome complex is associated with the loss of epithelial cell polarity and disorganized tissue architecture typical of colorectal cancer (CRC). The aim of this study was to investigate and characterize the effect of miR-195-5p on desmosomal junction regulation in CRC. In detail, we proposed to investigate the deregulation of miR-195-5p and JUP, a gene target that encodes a desmosome component in CRC patients. JUP closely interacts with desmosomal cadherins, and downstream, it regulates several intracellular transduction factors. We restored the miR-195-5p levels by transient transfection in colonic epithelial cells to examine the effects of miR-195-5p on JUP mRNA and protein expression. The JUP regulation by miR-195-5p, in turn, determined a modulation of desmosome cadherins (Desmoglein 2 and Desmocollin 2). Furthermore, we focused on whether the miR-195-5p gain of function was also able to modulate the expression of key components of Wnt signaling, such as NLK, LEF1 and Cyclin D1. In conclusion, we have identified a novel mechanism controlled by miR-195-5p in the regulation of adhesive junctions, suggesting its potential clinical relevance for future miRNA-based therapy in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , gamma Catenina/genética , gamma Catenina/metabolismo , Desmosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vía de Señalización Wnt/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo
17.
Cells ; 12(17)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37681854

RESUMEN

Desmosomes play a vital role in providing structural integrity to tissues that experience significant mechanical tension, including the heart. Deficiencies in desmosomal proteins lead to the development of arrhythmogenic cardiomyopathy (AC). The limited availability of preventative measures in clinical settings underscores the pressing need to gain a comprehensive understanding of desmosomal proteins not only in cardiomyocytes but also in non-myocyte residents of the heart, as they actively contribute to the progression of cardiomyopathy. This review focuses specifically on the impact of desmosome deficiency on epi- and endocardial cells. We highlight the intricate cross-talk between desmosomal proteins mutations and signaling pathways involved in the regulation of epicardial cell fate transition. We further emphasize that the consequences of desmosome deficiency differ between the embryonic and adult heart leading to enhanced erythropoiesis during heart development and enhanced fibrogenesis in the mature heart. We suggest that triggering epi-/endocardial cells and fibroblasts that are in different "states" involve the same pathways but lead to different pathological outcomes. Understanding the details of the different responses must be considered when developing interventions and therapeutic strategies.


Asunto(s)
Cardiomiopatías , Desmosomas , Adulto , Humanos , Diferenciación Celular , Epirrubicina , Miocitos Cardíacos
18.
Cell Mol Life Sci ; 80(8): 203, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450050

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (AC) is a severe heart disease predisposing to ventricular arrhythmias and sudden cardiac death caused by mutations affecting intercalated disc (ICD) proteins and aggravated by physical exercise. Recently, autoantibodies targeting ICD proteins, including the desmosomal cadherin desmoglein 2 (DSG2), were reported in AC patients and were considered relevant for disease development and progression, particularly in patients without underlying pathogenic mutations. However, it is unclear at present whether these autoantibodies are pathogenic and by which mechanisms show specificity for DSG2 and thus can be used as a diagnostic tool. METHODS AND RESULTS: IgG fractions were purified from 15 AC patients and 4 healthy controls. Immunostainings dissociation assays, atomic force microscopy (AFM), Western blot analysis and Triton X-100 assays were performed utilizing human heart left ventricle tissue, HL-1 cells and murine cardiac slices. Immunostainings revealed that autoantibodies against ICD proteins are prevalent in AC and most autoantibody fractions have catalytic properties and cleave the ICD adhesion molecules DSG2 and N-cadherin, thereby reducing cadherin interactions as revealed by AFM. Furthermore, most of the AC-IgG fractions causing loss of cardiomyocyte cohesion activated p38MAPK, which is known to contribute to a loss of desmosomal adhesion in different cell types, including cardiomyocytes. In addition, p38MAPK inhibition rescued the loss of cardiomyocyte cohesion induced by AC-IgGs. CONCLUSION: Our study demonstrates that catalytic autoantibodies play a pathogenic role by cleaving ICD cadherins and thereby reducing cardiomyocyte cohesion by a mechanism involving p38MAPK activation. Finally, we conclude that DSG2 cleavage by autoantibodies could be used as a diagnostic tool for AC.


Asunto(s)
Anticuerpos Catalíticos , Cardiomiopatías , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Cadherinas/metabolismo , Desmogleína 2/genética , Anticuerpos Catalíticos/metabolismo , Adhesión Celular/genética , Autoanticuerpos/metabolismo , Cardiomiopatías/metabolismo , Inmunoglobulina G/metabolismo , Desmogleína 3/metabolismo , Desmosomas/metabolismo
20.
Nat Cell Biol ; 25(6): 823-835, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37291267

RESUMEN

The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization, mobility and expression of ER stress transcripts. These findings indicate that desmosomes and the keratin cytoskeleton regulate the distribution, function and dynamics of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.


Asunto(s)
Citoesqueleto , Desmosomas , Desmosomas/química , Desmosomas/metabolismo , Desmosomas/ultraestructura , Citoesqueleto/metabolismo , Queratinas/metabolismo , Filamentos Intermedios/metabolismo , Filamentos Intermedios/ultraestructura , Retículo Endoplásmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA