Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.767
Filtrar
1.
J Oleo Sci ; 73(5): 675-681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692891

RESUMEN

Protein soils must be removed for both appearance and hygienic reasons. They are denatured by heat treatment or bleaching and cleaned using enzymes. Among the various types of protein soils, blood soils are the most noticeable and known to be denatured by heat and bleaching by oxidation. We verified herein that the detergency of heat and oxidatively denatured hemoglobin is greatly improved by the enzyme immersing treatment in the detergency with SDS and can be analyzed using the probability density functional method. The probability density functional method evaluates the cleaning power by assuming that the adhesion and cleaning force of soils are not uniquely determined, but instead have a distribution in intensity, with a usefulness that had recently been demonstrated. This analytical method showed that the cleaning power of the enzyme immersing treatment improved when the soil adhesive force was decreased due to denatured protein degradation, even though the cleaning power of the SDS remained unchanged, and the values were consistent with those in the cleaning test. In conclusion, the probability density functional method can be used to analyze enzymatic degradation of denatured protein soils and the resulting changes in their detergency.


Asunto(s)
Desnaturalización Proteica , Dodecil Sulfato de Sodio/química , Oxidación-Reducción , Calor , Hemoglobinas/química , Suelo/química , Probabilidad
2.
Proc Natl Acad Sci U S A ; 121(19): e2403049121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38691587

RESUMEN

Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones. We used model proteins such as cytochrome c, laccase, and lipase to screen polymeric monomers and identify the most effective formulations, offering tunable charge and hydrophobic properties. Utilizing a dispersed phase imprinting approach, we employed magnetic beads modified with destabilized whole-protein as solid-phase templates. This process involves medium exchange facilitated by magnetic pulldowns, resulting in the synthesis of nanoMIPs featuring imprinted sites that effectively mimic chaperone cavities. These nanoMIPs were able to selectively refold denatured enzymes, achieving up to 86.7% recovery of their activity, significantly outperforming control samples. Mechanistic studies confirmed that nanoMIPs preferentially bind denatured rather than native enzymes, mimicking natural chaperone interactions. Multifaceted analyses support the functionality of nanoMIPs, which emulate the protective roles of chaperones by selectively engaging with denatured proteins to inhibit aggregation and facilitate refolding. This approach shows promise for widespread use in protein recovery within biocatalysis and biomedicine.


Asunto(s)
Chaperonas Moleculares , Nanopartículas , Polímeros , Desnaturalización Proteica , Nanopartículas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Polímeros/química , Replegamiento Proteico , Pliegue de Proteína , Citocromos c/química , Citocromos c/metabolismo , Lacasa/química , Lacasa/metabolismo , Lipasa/química , Lipasa/metabolismo
3.
Biochemistry ; 63(9): 1147-1161, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38640496

RESUMEN

HdeA and HdeB are dimeric ATP-independent acid-stress chaperones, which protect the periplasmic proteins of enteric bacteria at pH 2.0 and 4.0, respectively, during their passage through the acidic environment of the mammalian stomach. Despite being structurally similar, they exhibit distinct functional pH optima and conformational prerequisite for their chaperone action. HdeA undergoes a dimer-to-monomer transition at pH 2.0, whereas HdeB remains dimeric at pH 4.0. The monomerization of HdeA exposes its hydrophobic motifs, which facilitates its interaction with the partially folded substrates. How HdeB functions despite maintaining its dimeric conformation has been poorly elucidated in the literature. Herein, we characterized the conformational states and stability of HdeB at its physiologically relevant pH and compared the data with those of HdeA. At pH 4.0, HdeB exhibited distinct spectroscopic signatures and higher stability against heat and guanidine-HCl-induced denaturation than at pH 7.5. We affirm that the pH 4.0 conformer of HdeB was distinct from that at pH 7.5 and that these two conformational states were hierarchically unrelated. Salt-bridge mutations that perturbed HdeB's intersubunit interactions resulted in the loss of its stability and function at pH 4.0. In contrast, mutations affecting intrasubunit interactions enhanced its function, albeit with a reduction in stability. These findings suggest that, unlike HdeA, HdeB acts as a noncanonical chaperone, where pH-dependent stability and conformational rearrangement at pH 4.0 play a core role in its chaperone function rather than its surface hydrophobicity. Such rearrangement establishes a stability-function trade-off that allows HdeB to function while maintaining its stable dimeric state.


Asunto(s)
Proteínas de Escherichia coli , Interacciones Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares , Conformación Proteica , Estabilidad Proteica , Concentración de Iones de Hidrógeno , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Multimerización de Proteína , Desnaturalización Proteica
4.
J Phys Chem B ; 128(17): 4076-4086, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642057

RESUMEN

In aqueous binary solvents with fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and aliphatic alcohols, ethanol (EtOH) and 2-propanol (2-PrOH), the denaturation of hen egg white lysozyme (HEWL) with increasing alcohol mole fraction xA has been investigated in a wide view from the molecular vibration to the secondary and ternary structures. Circular dichroism (CD) measurement showed that the secondary structure of α-helix content of HEWL increases on adding a small amount of the fluorinated alcohol to the aqueous solution, while the ß-sheet content decreases. On the contrary, the secondary structure does not significantly change by the addition of the aliphatic alcohols. Correspondingly, the infrared (IR) spectroscopic measurements revealed that the amide I band red-shifts on the addition of the fluorinated alcohol. However, the band remains unchanged in the aliphatic alcohol systems with increasing alcohol content. To observe the ternary structure of HEWL, small-angle neutron scattering (SANS) experiments with H/D substitution technique have been applied to the HEWL solutions. The SANS experiments were successful in revealing the details of how the geometry of the HEWL changes as a function of xA. The SANS profiles indicated the spherical structure of HEWL in all of the alcohol systems in the xA range examined. The mean radius of HEWL in the two fluorinated alcohol systems increases from ∼16 to ∼18 Å during the change in the secondary structure against the increase in the fluorinated alcohol content. On contrast, the radius does not significantly change in both aliphatic alcohol systems below xA = 0.3 but expands to ∼19 Å as the alcohol content is close to the limitation of the HEWL solubility. According to the present results, together with our knowledge of the alcohol cluster formation and the interaction of the trifluoromethyl (CF3) groups with the hydrophobic moieties of biomolecules, the effects of alcohols on the denaturation of the protein have been discussed on a molecular scale.


Asunto(s)
Dicroismo Circular , Muramidasa , Desnaturalización Proteica , Dispersión del Ángulo Pequeño , Muramidasa/química , Muramidasa/metabolismo , Animales , Difracción de Neutrones , Espectrofotometría Infrarroja , Pollos , Alcoholes/química
5.
Nat Commun ; 15(1): 3516, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664367

RESUMEN

Chemical cross-linking reactions (XL) are an important strategy for studying protein-protein interactions (PPIs), including low abundant sub-complexes, in structural biology. However, choosing XL reagents and conditions is laborious and mostly limited to analysis of protein assemblies that can be resolved using SDS-PAGE. To overcome these limitations, we develop here a denaturing mass photometry (dMP) method for fast, reliable and user-friendly optimization and monitoring of chemical XL reactions. The dMP is a robust 2-step protocol that ensures 95% of irreversible denaturation within only 5 min. We show that dMP provides accurate mass identification across a broad mass range (30 kDa-5 MDa) along with direct label-free relative quantification of all coexisting XL species (sub-complexes and aggregates). We compare dMP with SDS-PAGE and observe that, unlike the benchmark, dMP is time-efficient (3 min/triplicate), requires significantly less material (20-100×) and affords single molecule sensitivity. To illustrate its utility for routine structural biology applications, we show that dMP affords screening of 20 XL conditions in 1 h, accurately identifying and quantifying all coexisting species. Taken together, we anticipate that dMP will have an impact on ability to structurally characterize more PPIs and macromolecular assemblies, expected final complexes but also sub-complexes that form en route.


Asunto(s)
Reactivos de Enlaces Cruzados , Fotometría , Desnaturalización Proteica , Reactivos de Enlaces Cruzados/química , Fotometría/métodos , Proteínas/química , Proteínas/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Masas/métodos , Humanos
6.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38592735

RESUMEN

The rotavirus capsid protein VP6 forms the middle of three protein layers and is responsible for many critical steps in the viral life cycle. VP6 as a structural protein can be used in various applications including as a subunit vaccine component. The head domain of VP6 (VP6H) contains key sequences that allow the protein to trimerize and that represent epitopes that are recognized by human antibodies in the viral particle. The domain is rich in ß-sheet secondary structures. Here, VP6H was solubilised from bacterial inclusion bodies and purified using a single affinity chromatography step. Spectral (far-UV circular dichroism and intrinsic tryptophan fluorescence) analysis revealed that the purified domain had native-like secondary and tertiary structures. The domain could maintain structure up to 44°C during thermal denaturation following which structural changes result in an intermediate forming and finally irreversible aggregation and denaturation. The chemical denaturation with urea and guanidinium hydrochloride produces intermediates that represent a loss in the cooperativity. The VP6H domain is stable and can fold to produce its native structure in the absence of the VP6 base domain but cannot be defined as an independent folding unit.


Asunto(s)
Antígenos Virales , Proteínas de la Cápside , Rotavirus , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Antígenos Virales/química , Antígenos Virales/genética , Rotavirus/química , Desnaturalización Proteica , Dominios Proteicos , Dicroismo Circular , Pliegue de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Int J Biol Macromol ; 266(Pt 2): 131338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569987

RESUMEN

Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 µM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.


Asunto(s)
Manganeso , Albúmina Sérica Bovina , Agua , Albúmina Sérica Bovina/química , Manganeso/química , Agua/química , Animales , Protones , Bovinos , Reactivos de Enlaces Cruzados/química , Nanopartículas/química , Hemólisis/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Humanos
8.
Anal Biochem ; 691: 115533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38642818

RESUMEN

For irreversible denaturation transitions such as those exhibited by monoclonal antibodies, differential scanning calorimetry provides the denaturation temperature, Tm, the rate of denaturation at Tm, and the activation energy at Tm. These three quantities are essential but not sufficient for an accurate extrapolation of the rate of denaturation to temperatures of 25 °C and below. We have observed that the activation energy is not constant but temperature dependent due to the existence of an activation heat capacity, Cp,a. It is shown in this paper that a model that incorporates Cp,a is able to account for previous observations like, for example, that increasing the Tm does not always improve the stability at low temperatures; that some antibodies exhibit lower stabilities at 5 °C than at 25 °C; or that low temperature stabilities do not follow the rank order derived from Tm values. Most importantly, the activation heat capacity model is able to reproduce time dependent stabilities measured by size exclusion chromatography at low temperatures.


Asunto(s)
Anticuerpos Monoclonales , Rastreo Diferencial de Calorimetría , Desnaturalización Proteica , Anticuerpos Monoclonales/química , Frío , Temperatura , Estabilidad Proteica , Termodinámica
9.
Luminescence ; 39(3): e4707, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38497361

RESUMEN

We used site-specific mutagenesis by targeting E179 and F190 on the structure of photoprotein Mnemiopsin 2 (Mn2) from Mnemiopsis leidyi. The tertiary structure of E179S and F190L mutants was made by the MODELLER program. Far-ultraviolet circular dichroism data showed that the overall secondary structural content of photoprotein is not changed upon mutation, however the helicity and stabilizing interactions in helical structure decreases in mutants as compared with the wild-type (WT) photoprotein. Fluorescence spectra data revealed that the tertiary structure of the mutants is more compact than that of WT Mn2. According to the heat-induced denaturation experiments data, the melting temperature (Tm ) for the unfolding of tertiary structure of the F190L variant increases by 3°C compared with that of the WT and E179S mutant. Interestingly, the conformational enthalpy of the F190L mutant (86 kcal mol-1 ) is considerably lower than those in the WT photoprotein (102 kcal mol-1 ) and E179S mutant (106 kcal mol-1 ). The significant difference in the enthalpy of the thermal unfolding process could be explained by considering that the thermally denatured state of the F190L mutant is structurally less expanded than the WT and E179S variants. Bioluminescence activity data showed that the maximum characteristic wavelengths of the mutants undergo blue shift as compared with the WT protein. Initial intensity of the F190L and E179S variants was recorded to be 137.5% and 55.9% of the WT protein, respectively.


Asunto(s)
Calcio , Calcio/química , Mutagénesis Sitio-Dirigida , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Dicroismo Circular , Termodinámica , Desnaturalización Proteica
10.
Int J Biol Macromol ; 265(Pt 1): 130896, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490385

RESUMEN

This study evaluated the impact of high intensity ultrasound (HIU) on myofibrillar proteins (MP) from silver carp, and investigated the stabilizing effect of HIU-treated MP (UMP) on high internal phase emulsions (HIPEs). Ultrasonic cavitation induced protein denaturation by decreasing size and unfolding conformation, to expose more hydrophobic groups, particularly UMP at 390 W, showing the smallest particle size (181.71 nm) and most uniform distribution. These structural changes caused that UMP under 390 W exhibited the highest surface hydrophobicity, solubility (92.72 %) and emulsibility (115.98 m2/g and 70.4 min), all of which contributed to fabricating stable HIPEs with oil volume fraction up to 0.8. UMP-based HIPEs possessed tightly packed gel network and self-supporting appearance due to the adsorption of numerous proteins at the oil-water interface and the reduction of interfacial tension by protein reconfiguration. The larger interface coverage reinforced cross-linking between interfacial proteins, thus increasing the viscoelasticity and recoverability of HIPEs, also the resistance to centrifugal force, high temperature (90 °C, 30 min) and freeze-thaw cycles. These findings furnished insightful perspectives for MP deep processing through HIU, expanding the high-value application of UMP-based HIPEs in fat replacer, nutritional delivery system with high encapsulation content and novel 3D printing ink.


Asunto(s)
Carpas , Animales , Emulsiones/química , Adsorción , Desnaturalización Proteica , Fenómenos Químicos , Tamaño de la Partícula
11.
Methods ; 225: 1-12, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428472

RESUMEN

Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Termodinámica , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Desnaturalización Proteica , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Estreptavidina/química , Biotinilación/métodos
12.
Int J Biol Macromol ; 261(Pt 2): 129845, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302016

RESUMEN

Numerous neurodegenerative disorders are characterized by protein misfolding and aggregation. The mechanism of protein aggregation is intricate, and it is very challenging to study at cellular level. Inhibition of protein aggregation by interfering with its pathway is one of the ways to prevent neurodegenerative diseases. In the present work, we have evaluated the protective effect of a polyphenol compound chlorogenic acid (CGA) on the native and molten globule state of horse heart cytochrome c (cyt c). A molten globule state of this heme protein was achieved in the presence of fluorinated alcohol 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) at physiological pH, as studied by UV-Vis absorption, circular dichroism, intrinsic and ANS fluorescence. We found that at 50 % (v/v) HFIP, the native cyt c transformed into a molten globule state. The same techniques were also used to analyze the protective effect of CGA on the molten globule state of cyt c, and the results show that the CGA prevented the molten globular state and retained the protein close to the native state at 1:1 protein:CGA sub molar ratio. Molecular dynamics study also revealed that CGA retains the stability of cyt c in HFIP medium by preserving it in an intermediate state close to native conformation.


Asunto(s)
Ácido Clorogénico , Citocromos c , Hidrocarburos Fluorados , Propanoles , Animales , Caballos , Citocromos c/química , Pliegue de Proteína , Agregado de Proteínas , Dicroismo Circular , Concentración de Iones de Hidrógeno , Conformación Proteica , Desnaturalización Proteica
13.
Compr Rev Food Sci Food Saf ; 23(2): e13289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38343297

RESUMEN

Whey protein denaturation and aggregation have long been areas of research interest to the dairy industry, having significant implications for process performance and final product functionality and quality. As such, a significant number of analytical techniques have been developed or adapted to assess and characterize levels of whey protein denaturation and aggregation, to either maximize processing efficiency or create products with enhanced functionality (both technological and biological). This review aims to collate and critique these approaches based on their analytical principles and outline their application for the assessment of denaturation and aggregation. This review also provides insights into recent developments in process analytical technologies relating to whey protein denaturation and aggregation, whereby some of the analytical methods have been adapted to enable measurements in-line. Developments in this area will enable more live, in-process data to be generated, which will subsequently allow more adaptive processing, enabling improved product quality and processing efficiency. Along with the applicability of these techniques for the assessment of whey protein denaturation and aggregation, limitations are also presented to help assess the suitability of each analytical technique for specific areas of interest.


Asunto(s)
Suero Lácteo , Proteína de Suero de Leche , Desnaturalización Proteica , Concentración de Iones de Hidrógeno
14.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339045

RESUMEN

Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.


Asunto(s)
Aminoácidos , Proteínas , Estabilidad Proteica , Proteínas/química , Fluorometría/métodos , Bioensayo , Desnaturalización Proteica
15.
Int J Biol Macromol ; 260(Pt 2): 129451, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232886

RESUMEN

Jacalin, the jackfruit seed lectin, exhibits high specificity for the tumor-specific T-antigen and is used in various biomedical and biotechnological applications. Here, we report biophysical studies on the thermal unfolding of jacalin and the effect of pH and temperature on its secondary structure. Differential scanning calorimetric (DSC) studies revealed that native jacalin unfolds at ∼60 °C and that carbohydrate binding stabilizes the protein structure. Circular dichroism spectroscopic studies indicated that the secondary structure of jacalin remains mostly unaffected over pH 2.0-9.0, whereas considerable changes were observed in the tertiary structure. DSC experiments demonstrated that jacalin exhibits two overlapping transitions between pH 2 and 5, which could be attributed to dissociation of the tetrameric protein into subunits and their unfolding. Interestingly, only one transition between pH 6 and 9 was observed, suggesting that the subunit dissociation and unfolding occur simultaneously. While quenching of the protein intrinsic fluorescence by acrylamide increased significantly upon carbohydrate binding, quenching by succinimide is essentially unaffected. We attribute this difference to increased exposure of Trp-123 in the α-chain as it is involved in carbohydrate binding. Both acrylamide and succinimide gave biphasic Stern-Volmer plots, consistent with differential accessibility of the two tryptophan residues of jacalin to them.


Asunto(s)
Lectinas , Neoplasias , Lectinas de Plantas , Humanos , Lectinas/química , Temperatura , Triptófano/química , Desnaturalización Proteica , Concentración de Iones de Hidrógeno , Succinimidas , Carbohidratos , Acrilamidas , Dicroismo Circular , Espectrometría de Fluorescencia , Pliegue de Proteína
16.
J Biophotonics ; 17(4): e202300497, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282467

RESUMEN

The influence of femtosecond laser parameters on the degree of thermal denaturation was studied experimentally. The relationship between the degree of thermal denaturation and the characteristic parameters of skin microstructure and the secondary structure of skin tissue proteins in characterizing the degree of thermal damage was analyzed. The results showed the interaction of laser power, laser power, and scanning speed had a significant effect on the degree of thermal denaturation; greater degrees of thermal denaturation were associated with larger second-order moments of the texture angle of the skin microtissue and smaller entropy values and contrast, indicating a greater degree of thermal damage; and higher peak temperature, the lower peak intensity of Raman spectra, decrease in the percentage area of α-helix fitted curves and increase in the percentage area of ß-sheet and ß-turn fitted curves indicate that the protein is denatured to a large extent that means thermal damage is large.


Asunto(s)
Calor , Estructura Secundaria de Proteína , Desnaturalización Proteica
17.
J Phys Chem B ; 128(3): 676-683, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38197901

RESUMEN

Addition of sugars such as sucrose to aqueous protein solutions generally stabilizes proteins against thermal denaturation by preferential exclusion of sugars from proteins (preferential hydration of proteins). In this study, we investigated the effect of sucralose, a chlorinated sucrose derivative, on protein stability and preferential solvation. Circular dichroism and small-angle X-ray scattering measurements showed that sucrose increased the denaturation temperature of myoglobin and was preferentially excluded from the protein, whereas sucralose decreased the denaturation temperature of myoglobin and was preferentially adsorbed to the protein. No clear evidence was obtained for the indirect effects of sucralose on protein destabilization via the structure and properties of solvent water from the physicochemical properties (mass density, sound velocity, viscosity, and osmolality) of aqueous sucralose solutions; therefore, we concluded that a direct protein-sucralose interaction induced protein destabilization.


Asunto(s)
Mioglobina , Agua , Agua/química , Mioglobina/química , Solventes/química , Sacarosa/química , Desnaturalización Proteica
18.
Food Chem ; 441: 138347, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38183724

RESUMEN

Most commercially available whey products contain a mixture of 6-7 whey proteins; however, there is an increased focus on using the individual whey proteins for their unique biological activities. Before extracting individual whey proteins for use, it is important to quantify how much of a particular protein is present in whey mixtures as well as if the protein is still structurally folded. We first characterized the denaturation temperature and enthalpy values for the six purified whey proteins at six pHs (3-9) and under ion chelation using a nano-differential scanning calorimeter (DSC). From the individual protein scans, we determined the optimal condition for detecting all 6 proteins on a single DSC scan was whey in an EDTA MOPs pH 6.7 buffer.


Asunto(s)
Proteínas , Proteína de Suero de Leche , Rastreo Diferencial de Calorimetría , Temperatura , Termodinámica , Desnaturalización Proteica
19.
J Phys Chem B ; 128(2): 465-471, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37991741

RESUMEN

The recent discovery of metamorphic proteins, which can switch between multiple conformations under native conditions, has challenged the well-established one sequence-one structure paradigm of protein folding. This is exemplified in the C-terminal domain of the multidomain transcription factor RfaH, which converts from an α-helical coiled-coil conformation in its autoinhibited state to a ß-barrel conformation upon activation. Here, we use multisite line shape analysis of 19F NMR-monitored equilibrium chemical denaturation measurements of two 19F-labeled variants of full-length RfaH, to show that it folds/unfolds slowly on the NMR time scale, in an apparent all-or-none fashion at physiological pH and room temperature in the 3.3-4.8 M urea concentration range. The significant thermodynamic stability and slow unfolding rate (kinetic stability) are likely responsible for maintaining the closed autoinhibited state of RfaH, preventing spurious interactions with RNA polymerase (RNAP) when not functional. Our results provide a quantitative understanding of the folding-function relationship in the model fold-switching protein RfaH.


Asunto(s)
Proteínas de Escherichia coli , Transactivadores , Transactivadores/química , Proteínas de Escherichia coli/química , Estructura Terciaria de Proteína , Factores de Elongación de Péptidos/química , Factores de Transcripción/química , Pliegue de Proteína , Desnaturalización Proteica
20.
Meat Sci ; 209: 109395, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38141536

RESUMEN

Variations in pork quality impact consumer acceptance, and fibre type differences between muscles contribute to this variation. The aim was to investigate the influence of variations in muscle fibre types and protein denaturation peaks across four pork muscles and the influence of ageing and cooking temperature on longissimus quality traits. The longissimus, masseter, cutaneous trunci, and psoas major from 13 carcases were removed 1-day postmortem and subjected to 0- or 14-days ageing (d0, d14). Quality traits, protein denaturation peak temperature (DSC), fibre diameter and fibre type proportions were measured. Cook loss for longissimus was similar on d0 and d14, but was higher on d14 for masseter, cutaneous trunci, and psoas major. Warner-Bratzler shear force was highest, and ultimate pH was lowest, for longissimus, and similar among cutaneous trunci, masseter, and psoas major. Masseter had lowest L* and highest a* and longissimus and cutaneous trunci had highest L* and lowest a*. The DSC temperature peaks for longissimus occurred at lower temperatures relative to the other muscles. Fibre diameter was largest for type-IIb fibres relative to type-IIa and type-I. Longissimus and cutaneous trunci had predominantly type-IIb glycolytic (71%, 51% respectively), masseter had predominantly type-IIa intermediate (50%) and psoas major had predominantly type-I oxidative (48%) fibres. The glycolytic longissimus had the lowest DSC temperature peaks and the lowest quality meat. Masseter had the highest proportion of type-I fibres but was generally similar in quality traits to psoas major, and also similar to cutaneous trunci which had more glycolytic fibres than masseter.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Porcinos , Músculo Esquelético/metabolismo , Temperatura , Desnaturalización Proteica , Fibras Musculares Esqueléticas/metabolismo , Culinaria , Músculos Psoas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...