Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Behav ; 103(5): 493-500, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21510964

RESUMEN

We examined the effects of periodic access to a palatable, high sugar content food (candy) in 8 male baboons on the anorectic response to d-amphetamine, which increases dopamine, and dexfenfluramine, which increases serotonin. During candy access, up to 200 candies containing 75% of energy as sugar were available during the morning on Mondays, Wednesdays and Fridays; food pellets (19% of energy as sugar) were available in the afternoon and throughout the remaining days of the week. During candy access, baboons consumed a mean of 177 pieces of candy containing 696 kcal (2.91 MJ) in the morning compared to 44 food pellets and 150 kcal (0.63 MJ) in the morning on non-candy days. Food pellet intake was lower during candy access. Complete dose-response functions for the effects of the drugs on food pellet intake on days that candy was not available were determined before, during, and after the period of access to candy. Dexfenfluramine and amphetamine produced dose-dependent decreases in food pellet intake and increases in latency to eat food pellets before, during, and after candy access. During access to candy, the dose-response function for dexfenfluramine was shifted to the right indicating the development of tolerance, while that for amphetamine was shifted to the left indicating sensitization. Only the dose-response function for dexfenfluramine returned to baseline after candy access suggesting that the difference was specific to concurrent palatable food consumption. We hypothesize that tolerance to the effects of dexfenfluramine reflects a decrease in the satiating effect of serotonin release due to repeatedly eating large amounts of palatable food.


Asunto(s)
Anfetamina/farmacología , Anorexia/dietoterapia , Dexfenfluramina/farmacología , Sacarosa en la Dieta/uso terapéutico , Anfetamina/antagonistas & inhibidores , Animales , Anorexia/inducido químicamente , Dexfenfluramina/antagonistas & inhibidores , Sacarosa en la Dieta/farmacología , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/antagonistas & inhibidores , Inhibidores de Captación de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Tolerancia a Medicamentos , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Masculino , Papio , Agonistas de Receptores de Serotonina/farmacología
2.
Neuropharmacology ; 39(11): 2028-35, 2000 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-10963746

RESUMEN

The effect of sibutramine and dexfenfluramine on 5-HT re-uptake sites, labelled with [(3)H]paroxetine, have been determined in various rat brain regions. In addition, the ability of fluoxetine and sibutramine to protect against the changes in [(3)H]paroxetine binding produced by dexfenfluramine was examined. Sibutramine (9 mg/kg, p.o.) and dexfenfluramine (1, 3 and 10 mg/kg, p.o.) were administered twice daily (before 09.00 h and after 16.00 h) for four days, followed by a 14 day drug-free period. In the protection studies, fluoxetine (10 mg/kg, i.p.) and sibutramine (9 mg/kg, p.o.) were given 1 h prior to dexfenfluramine (10 mg/kg, p.o.) using the same dosing regimen as described above. Sibutramine (9 mg/kg, p.o.; three times its ED(50) to inhibit food intake at 2 h) had no significant effect on the number or affinity of 5-HT re-uptake sites the brain regions studied. In contrast, dexfenfluramine at an equivalent dose (3 mg/kg, p.o.) significantly decreased the number of 5-HT re-uptake sites in frontal cortex (by 35%), hippocampus (by 47%) and hypothalamus (by 27%). This effect was dose-dependent with marked decreases (by 58-84%) in the number of sites following 10 mg/kg, p.o. These effects were not associated with changes in binding affinity. Fluoxetine (10 mg/kg, i.p.) completely blocked the effect of dexfenfluramine (10 mg/kg, p.o.) without having any significant effect alone. Sibutramine (9 mg/kg, p.o.) also blocked the effects of dexfenfluramine, although the reversal was only partial in frontal cortex, hippocampus and hypothalamus. Thus sibutramine, unlike dexfenfluramine, does not alter brain 5-HT re-uptake sites. Furthermore, sibutramine and fluoxetine protect against the deficits in 5-HT re-uptake sites produced by dexfenfluramine. These data provide further evidence that sibutramine is a 5-HT re-uptake inhibitor and it does not have neurotoxic potential.


Asunto(s)
Depresores del Apetito/farmacología , Encéfalo/efectos de los fármacos , Ciclobutanos/farmacología , Dexfenfluramina/farmacología , Paroxetina/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Animales , Encéfalo/metabolismo , Dexfenfluramina/antagonistas & inhibidores , Fluoxetina/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA