Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 741
Filtrar
1.
Fr J Urol ; 34(2): 102585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38717460

RESUMEN

INTRODUCTION: The aim was to compare the efficacy of polyacrylate polyalcohol copolymer (PPC) injections and dextranomer/hyaluronic acid (Dx/Ha) injections for the endoscopic treatment of vesicoureteral reflux in children. MATERIAL: This retrospective cohort study included 189 young patients who had endoscopic treatment for vesicoureteral reflux from January 2012 to December 2019 in our center. Among them, 101 had PCC injections and 88 had Dx/Ha injections. Indications for treatment were vesicoureteral reflux with breakthrough urinary tract infection or vesicoureteral reflux with renal scarring on dimercaptosuccinic acid (DMSA) renal scan. Endoscopic injection was performed under the ureteral meatus. Early complications, recurrence of febrile urinary tract infection and vesicoureteral reflux after endoscopic injection, ureteral obstruction and reintervention were evaluated and compared between groups. RESULTS: Endoscopic treatment was successful in 90.1% of patients who had PPC injection and in 82% of patients who had Dx/Ha injection. Four patients presented a chronic ureteral obstruction after PPC injection, one with a complete loss of function of the dilated kidney. One patient in the Dx/Ha group presented a postoperative ureteral dilatation after 2 injections. CONCLUSION: Despite a similar success rate after PPC and Dx/Ha injections for endoscopic treatment of VUR, there may be a greater risk of postoperative ureteral obstruction after PPC injections. The benefit of using PPC to prevent febrile UTI and renal scarring in children with low-grade VUR does not seem to outweigh the risk of chronic ureteral obstruction.


Asunto(s)
Dextranos , Ácido Hialurónico , Obstrucción Ureteral , Reflujo Vesicoureteral , Humanos , Reflujo Vesicoureteral/terapia , Estudios Retrospectivos , Ácido Hialurónico/administración & dosificación , Ácido Hialurónico/uso terapéutico , Ácido Hialurónico/efectos adversos , Femenino , Masculino , Dextranos/uso terapéutico , Dextranos/administración & dosificación , Dextranos/efectos adversos , Preescolar , Resultado del Tratamiento , Lactante , Resinas Acrílicas/uso terapéutico , Resinas Acrílicas/administración & dosificación , Niño , Inyecciones , Estudios de Cohortes , Ureteroscopía/efectos adversos
2.
Int Immunopharmacol ; 128: 111499, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38232535

RESUMEN

BACKGROUND AND AIMS: S100a10 is a member of the S100 family of proteins, which plays a key role in the depression and tumor metastasis. However, the role of S100a10 is unclear in ulcerative colitis. METHODS: The effect of S100a10 was assessed using a murine ulcerative colitis model which was accompanied by parameters including body weight loss, disease activity index, histological score, colon weight and length. The quantity and role of immune cells was determined by flow cytometry and bone marrow chimeric mice. Neutrophils depletion, adoptive cell transfer and conditional knockout mice were used to ascertain which cells played the key role in ulcerative colitis. The function of neutrophils was evaluated by migration assay, phagocytosis assay, multiplex immunoassay and real-time PCR. RESULTS: In this study, our data showed that S100a10-/- mice were prone to ulcerative colitis induced by dextran sodium sulfate. Neutrophils number increased in colon of S100a10-/- mice after dextran sodium sulfate treatment significantly. Meanwhile, adoptive transfer of neutrophils from wild type mice partially decreased the susceptibility of S100a10-/- mice to dextran sodium sulfate. There was no difference in ulcerative colitis between the groups of S100a10-/- mice without neutrophils and wild type mice. Finally, we found that S100a10-/- neutrophils had stronger function in secretion and synthesis of inflammatory factor. CONCLUSIONS: In one word, these results suggest that S100a10 has a role in inhibiting the pathogenesis of ulcerative colitis through regulation of neutrophils function.


Asunto(s)
Colitis Ulcerosa , Colitis , Sulfatos , Animales , Ratones , Colitis/inducido químicamente , Colitis Ulcerosa/patología , Colon/patología , Sulfato de Dextran/farmacología , Dextranos/efectos adversos , Dextranos/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo
3.
J Nutr ; 154(1): 121-132, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952777

RESUMEN

BACKGROUND: Previously, we assessed the impact of restrictive diets, including caloric restriction (CR), intermittent fasting (IF), or fasting-mimicking diet (FMD), on a healthy gastrointestinal tract. We revealed that each of the diets shows anti-inflammatory outcomes. OBJECTIVE: The current study aimed to verify the diets' applicability in treating colitis. METHODS: We exposed a mouse model with mild chronic dextran sodium sulfate (DSS)-induced colitis to ad libitum control feeding, CR, IF, or FMD. The collected samples were analyzed for markers of inflammation. RESULTS: The diets reduced DSS-triggered increases in spleen weight and myeloperoxidase (MPO) activity. Diet intervention also influenced occludin levels, small intestine morphology, as well as cytokine and inflammatory gene expression, mainly in the mucosa of the proximal colon. The diets did not reverse DSS-enhanced gut permeability and thickening of the colon muscularis externa. Concerning inflammatory gene expression, the impact of DSS and the dietary intervention was limited to the colon as we did not measure major changes in the jejunum mucosa, Peyer's patches, and mesenteric lymph nodes. Further, rather modest changes in the concentration of intestinal bile acids were observed in response to the diets, whereas taurine and its conjugates levels were strongly affected. CONCLUSIONS: Despite the differences in the dietary protocol, the tested diets showed very similar impacts and, therefore, may be interchangeable when aiming to reduce inflammation in the colon. However, FMD showed the most consistent beneficial impact.


Asunto(s)
Colitis , Dextranos , Sulfatos , Masculino , Animales , Ratones , Dextranos/efectos adversos , Dextranos/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colon/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Dieta , Sulfato de Dextran , Ratones Endogámicos C57BL
4.
Fundam Clin Pharmacol ; 38(2): 252-261, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37735998

RESUMEN

BACKGROUND: Kaurenol, a diterpene alcohol found in Copaifera langsdorffii Desf. (known as "copaiba"), is historically used in traditional medicine for inflammatory conditions. OBJECTIVES: This study aims to comprehensively assess the potential anti-inflammatory and antinociceptive properties of kaurenol. METHODS: To this end, the following experiments were conducted to evaluated toxicity: locomotor performance and acute toxicity; nociception: acetic acid-induced writhing and formalin-induced antinociception; and anti-inflammatory activity: carrageenan and dextran-induced paw edema at 10, 20, and 40 mg/kg, and measurement of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in macrophages at 1, 3, and 9 µg/ml. RESULTS: Kaurenol did not show significant locomotor changes, acute toxicity, and central analgesic activity in the first phase of formalin test at dosages tested. Kaurenol showed 53%, 64%, 64%, and 58% of inhibition in the acetic acid-induced writhing, second phase of formalin test, carrageenan and dextran-induced paw edema, respectively. CONCLUSION: The anti-inflammatory activity was associated with the regulation of NO release and probably with the regulation of mediators, such as serotonin and prostaglandin in vascular permeability, as well as by being associated with the regulation of IL-6 and IL-10. Kaurenol display anti-inflammatory activity but has no analgesic activity.


Asunto(s)
Diterpenos , Interleucina-10 , Humanos , Carragenina , Interleucina-6 , Dextranos/efectos adversos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Analgésicos/toxicidad , Diterpenos/efectos adversos , Extractos Vegetales/farmacología , Ácido Acético/efectos adversos , Edema/inducido químicamente , Edema/tratamiento farmacológico
5.
J Nutr Biochem ; 123: 109493, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871768

RESUMEN

This study investigated the effects of fermented rice bran (FRB) on modulating intestinal aryl hydrocarbon receptor (AhR) expression, innate lymphoid cell (ILC)3 populations, the fecal microbiota distribution, and their associations with dextran sodium sulfate (DSS)-induced acute colitis. C57BL/6 mice were assigned to four groups: 1) NC group, normal mice fed the AIN-93M diet; 2) FRB group, normal mice fed a diet supplemented with 5% FRB; 3) NCD group, DSS-treated mice fed AIN-93M; 4) FRBD group, DSS-treated mice fed a 5% FRB-supplemented diet. DSS was administered for 5 d and followed by 5 d for recovery. At the end of the experiment, mice were sacrificed. Their blood and intestinal tissues were collected. Results showed that there were no differences in colonic biological parameters and function between the NC and FRB groups. Similar fecal microbiota diversity was noted between these two groups. Compared to the non-DSS-treated groups, DSS administration led to increased intestinal permeability, enhanced inflammatory cytokine production and disease severity, whereas tight junctions and AhR, interleukin (IL)-22 expressions were downregulated, and the ILC3 population had decreased. Also, gut microbiota diversity differs from the non-DSS-treated groups and more detrimental bacterial populations exist when compared to the FRBD group. FRB supplementation in DSS-treated mice attenuated fecal microbial dysbiosis, decreased intestinal permeability, improved the barrier integrity, upregulated AhR and IL-22 expression, maintained the ILC3 population, and pathologically mitigated colonic injury. These findings suggest enhanced ILC3- and AhR-mediated functions may be partly responsible for the anti-colitis effects of FRB supplementation in DSS-induced colitis.


Asunto(s)
Colitis , Oryza , Ratones , Animales , Inmunidad Innata , Dextranos/efectos adversos , Dextranos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos , Ratones Endogámicos C57BL , Colitis/metabolismo , Colon/metabolismo , Suplementos Dietéticos , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad
6.
J Med Food ; 27(1): 35-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38156815

RESUMEN

Chronic inflammation is a major risk factor for cancer. Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, ultimately leading to a breakdown of intestinal barrier function. Clematis florida var. plena is a folk prescription used to treat inflammation and rheumatism in She pharmacy. The bioactivity of C. florida var. plena is primarily due to triterpene saponins. Huzhangoside C (HZ) is an active component of C. florida var. plena. In this study, the anti-inflammatory effect of HZ on a mouse colitis model induced by dextran sulfate sodium (DSS) was investigated. Result indicated a notable reduction in body weight loss and colon length shortening in HZ-mediated mice compared to DSS-stimulated control mice. Furthermore, inflammatory signaling mechanisms involving interleukin-6 and tumor necrosis factor-α were suppressed in HZ-treated mice. HZ treatment significantly suppressed the expression of nuclear factor kappa B (NF-κB), STAT3, and iNOS in colon tissue. After HZ treatment, malondialdehyde and nitric oxide levels were significantly decreased, while Nrf-2, superoxide dismutase, and glutathione expression levels were notably improved. The result indicated that HZ could activate the Nrf-2 signal cascade, inhibit the expression of NF-κB, eNOS, and STAT3, and enhance the intestinal barrier function of DSS stimulated ulcerative colitis intestinal injury. The results suggest that HZ is potential anti-inflammatory agent for treating IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Sulfatos , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Dextranos/efectos adversos , Dextranos/metabolismo , China , Etnicidad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Enfermedades Inflamatorias del Intestino/metabolismo , Inflamación/metabolismo , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Colon , Modelos Animales de Enfermedad
7.
Chem Biodivers ; 20(12): e202300906, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37795905

RESUMEN

Exacerbated inflammatory responses to harmful stimuli can lead to significant pain, edema, and other complications that require pharmacological intervention. Abietic acid (AA) is a diterpene found as a significant constituent in pine species, and evidence has identified its biological potential. The present study aimed to evaluate abietic acid's antiedematogenic and anti-inflammatory activity in mice. Swiss mice (Mus musculus) weighing 20-30 g were treated with AA at 50, 100, and 200 mg/kg. The central nervous system (CNS) effects were evaluated using open-field and rotarod assays. The antinociceptive and anti-inflammatory screening was assessed by the acetic acid and formalin tests. The antiedematogenic activity was investigated by measuring paw edema induced by carrageenan, dextran, histamine, arachidonic acid, and prostaglandin, in addition to using a granuloma model. The oral administration of abietic acid (200 mg/Kg) showed no evidence of CNS effects. The compound also exhibited significant antiedematogenic and anti-inflammatory activities in the carrageenan and dextran models, mostly related to the inhibition of myeloperoxidase (MOP) activity and histamine action and, to a lesser extent, the inhibition of eicosanoid-dependent pathways. In the granuloma model, abietic acid's effect was less expressive than in the acute models investigated in this study. In conclusion, abietic acid has analgesic and antiedematogenic activities related to anti-inflammatory mechanisms.


Asunto(s)
Dextranos , Histamina , Ratones , Animales , Carragenina/efectos adversos , Dextranos/efectos adversos , Histamina/efectos adversos , Analgésicos/farmacología , Analgésicos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Edema/inducido químicamente , Edema/tratamiento farmacológico , Granuloma/tratamiento farmacológico
8.
Nutrients ; 15(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513639

RESUMEN

Kale (Brassica oleracea var. acephala), a food rich in bioactive phytochemicals, prevents diet-induced inflammation and gut dysbiosis. We hypothesized that the phytochemicals protect against the lipopolysaccharide (LPS)-induced acute inflammation which results from gut dysbiosis and loss of gut barrier integrity. We designed this study to test the protective effects of the whole vegetable by feeding C57BL/6J mice a rodent high-fat diet supplemented with or without 4.5% kale (0.12 g per 30 g mouse) for 2 weeks before administering 3% dextran sulfate sodium (DSS) via drinking water. After one week, DSS increased the representation of proinflammatory LPS (P-LPS)-producing genera Enterobacter and Klebsiella in colon contents, reduced the representation of anti-inflammatory LPS (A-LPS)-producing taxa from Bacteroidales, reduced the expression of tight junction proteins, increased serum LPS binding protein, upregulated molecular and histopathological markers of inflammation in the colon and shortened the colons. Mice fed kale for 2 weeks before the DSS regime had a significantly reduced representation of Enterobacter and Klebsiella and instead had increased Bacteroidales and Gram-positive taxa and enhanced expression of tight junction proteins. Downstream positive effects of dietary kale were lack of granuloma in colon samples, no shortening of the colon and prevention of inflammation; the expression of F4/80, TLR4 and cytokines 1L-1b, IL-6, TNF-a and iNOS was not different from that of the control group. We conclude that through reducing the proliferation of P-LPS-producing bacteria and augmenting the integrity of the gut barrier, kale protects against DSS-induced inflammation.


Asunto(s)
Brassica , Colitis , Animales , Ratones , Colitis/inducido químicamente , Colitis/prevención & control , Colitis/metabolismo , Lipopolisacáridos/efectos adversos , Verduras/metabolismo , Dextranos/efectos adversos , Brassica/metabolismo , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Colon/metabolismo , Inflamación/metabolismo , Bacterias/metabolismo , Antiinflamatorios/efectos adversos , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Sulfatos/metabolismo , Sodio/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad
9.
Inflamm Res ; 72(8): 1649-1664, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37498393

RESUMEN

BACKGROUND, OBJECTIVES AND DESIGN: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS: In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION: The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Colitis , Humanos , Ratones , Femenino , Animales , Ratones Transgénicos , Adyuvante de Freund , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/uso terapéutico , Dextranos/efectos adversos , Dextranos/metabolismo , Ratones Endogámicos C57BL , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Antiinflamatorios/farmacología , Ratones Noqueados , Edema/inducido químicamente , Edema/genética , Edema/metabolismo , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad
10.
Nutrients ; 15(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37447355

RESUMEN

The purpose of this study was to investigate the effect that Glycine max hydrolyzed with enzymes from Bacillus velezensis KMU01 has on dextran-sulfate-sodium (DSS)-induced colitis in mice. Hydrolysis improves functional health through the bioconversion of raw materials and increase in intestinal absorption rate and antioxidants. Therefore, G. max was hydrolyzed in this study using a food-derived microorganism, and its anti-inflammatory effect was observed. Enzymatically hydrolyzed G. max (EHG) was orally administered once daily for four weeks before DSS treatment. Colitis was induced in mice through the consumption of 5% (w/v) DSS in drinking water for eight days. The results showed that EHG treatment significantly alleviated DSS-induced body weight loss and decreased the disease activity index and colon length. In addition, EHG markedly reduced tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 production, and increased that of IL-10. EHG improved DSS-induced histological changes and intestinal epithelial barrier integrity in mice. Moreover, we found that the abundance of 15 microorganisms changed significantly; that of Proteobacteria and Escherichia coli, which are upregulated in patients with Crohn's disease and ulcerative colitis, decreased after EHG treatment. These results suggest that EHG has a protective effect against DSS-induced colitis and is a potential candidate for colitis treatment.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Glycine max , Dextranos/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon , Antiinflamatorios/uso terapéutico , Sulfatos , Sodio/efectos adversos , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
11.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37330677

RESUMEN

Dextran sodium sulfate (DSS) is commonly used to induce intestinal (i.e., colonic) inflammation in a variety of animal models. However, DSS is known to cause interference when using quantitative-real time polymerase chain reaction (qRT-PCR) methods, thereby invalidating accurate and precise measurement of tissue gene expression. Therefore, the goal of this study was to determine whether different mRNA purification methods would reduce DSS-interference. Colonic tissue samples were collected at postnatal days (PND) 27 or 28 from pigs that had not been administered DSS (Control), and two independent groups of pigs that received 1.25 g of DSS/kg of BW/d (DSS-1 and DSS-2) from PND 14 to 18. Tissue samples collected were subsequently stratified into three purification methods (i.e., 9 total treatment × method combinations), including: 1) no purification, 2) purification with lithium chloride (LiCl), or 3) purification using spin column filtration. All data were analyzed using a one-way ANOVA in the Mixed procedure of SAS. The average RNA concentrations across all treatments were between 1,300 and 1,800 µg/µL for all three in vivo groups. Although there were statistical differences among purification methods, the 260/280 and 260/230 ratios fell between acceptable limits of 2.0 to 2.1 and 2.0 to 2.2, respectively, for all treatment groups. This confirms the RNA quality was adequate and not influenced by purification method in addition to suggesting the absence of phenol, salts, and carbohydrate contamination. For pigs in the Control group that did not receive DSS, qRT-PCR Ct values of four cytokines were achieved, though these values were not altered by purification method. For pigs that had undergone DSS dosing, those tissues subjected to either no purification or purification using LiCl did not generate applicable Ct values. However, when tissues derive from DSS-treated pigs underwent spin column purification, half of the samples from DSS-1 and DSS-2 groups generated appropriate Ct estimates. Therefore, spin column purification appeared to be more effective than LiCl purification, but no method was 100% effective, so caution should be exercised when interpreting gene expression results from studies where animals are exposed to DSS-induced colitis.


Dextran sodium sulfate (DSS) is a chemical used to experimentally induce colonic inflammation in animal models. However, DSS causes chemical inhibition of processes involved with quantitative real-time polymerization chain reaction, thereby inhibiting the measurement of gene expression in tissues. In this study, differing methods of RNA purification were applied to remove DSS inhibition. Because no purification methods were 100% effective in alleviating this interference, caution should be exercised when interpreting gene expression results from studies where animals are exposed to DSS-induced colitis.


Asunto(s)
Colitis , Enfermedades de los Porcinos , Animales , Porcinos , Ratones , Dextranos/efectos adversos , Dextranos/metabolismo , Colitis/inducido químicamente , Colitis/veterinaria , Colitis/genética , Colon/metabolismo , ARN/metabolismo , Expresión Génica , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades de los Porcinos/metabolismo
12.
Turk J Gastroenterol ; 34(5): 490-496, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37158534

RESUMEN

BACKGROUND: Alternative splicing of pre-messenger RNA is recognized as the crucial mechanism for gene expression regulation and proteome diversity generation. Alternative splicing has been found to be related to the pathogenesis of inflammatory bowel disease. The aim of this study was to identify the alternative splicing events in intestinal epithelial cells from mouse models of acute colitis and expand the understanding of the pathogenesis of inflammatory bowel disease. METHODS: The acute colitis mouse models were constructed, and intestinal epithelial cells of the colon were isolated for RNA sequence. The replicate Multivariate Analysis of Transcript Splicing software was used to analyze the alternative splicing events. The functional analysis was performed on genes with significant differential alternative splicing events. The alternative splicing events of picked genes were validated by reverse transcription polymerase chain reaction. RESULTS: A total of 340 significant differential alternative splicing events (from 293 genes) were screened out in acute colitis, and the alternative splicing events of CDK5-regulatory subunit associated protein 3 and TRM5 tRNA methyltransferase 5 were validated. The functional analysis showed that differential alternative splicing events in acute colitis participate in the apoptotic process, and the alternative splicing events of 3 genes (BCL2/adenovirus E1B-interacting protein 2, tumor necrosis factor receptor-associated factor 1, and tumor necrosis factor receptor-associated factor 7) were validated by reverse transcription polymerase chain reaction. CONCLUSION: This study pointed out the potential impact of different alternative splicing in acute colitis.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Dextranos/efectos adversos , Dextranos/metabolismo , Empalme Alternativo/genética , Mucosa Intestinal/patología , Colitis/inducido químicamente , Colitis/genética , Enfermedades Inflamatorias del Intestino/genética , Colon/patología , Células Epiteliales/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
13.
Protein Pept Lett ; 30(6): 459-468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37171009

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is an inflammatory intestinal disorder featured by mucosal injury. MicroRNAs (miRNAs) play a role in the pathogenesis underlying UC. OBJECTIVES: This study was conducted to investigate the role of miR-29c-3p in a dextran sodium sulfate (DSS)-induced UC mouse model and provide targets for UC treatment. METHODS: The UC mouse model was established by DSS induction. The expression levels of miR- 29c-3p, lysine-specific demethylase 6B (KDM6B), zonula occludens-1 (ZO-1), Occludin, and lactate dehydrogenase A (LDHA) were detected by real-time quantitative polymerase chain reaction or Western blot assays. The mucosal injury was evaluated by disease activity index (DAI), colon length, Hematoxylin-Eosin staining, and fluorescein isothiocyanate-glucan permeability test. The binding between miR-29c-3p and KDM6B and the occupation of KDM6B or trimethylated H3 lysine 27 (H3K27me3) on the LDHA promoter were analyzed by the dual-luciferase and chromatinimmunoprecipitation assays. RESULTS: miR-29c-3p was downregulated while KDM6B and LDHA were upregulated in DSS mice. miR-29c-3p overexpression reduced DAI and inflammatory cell infiltration while increasing colon length, intestinal permeability, and levels of ZO-1 and Occludin. miR-29c-3p inhibited KDM6B expression and increased H3K27me3 occupation on the LDHA promoter, thus inhibiting LDHA transcription. Overexpression of KDM6B or LDHA averted the protective role of miR-29c-3p upregulation in mucosal injury. CONCLUSION: miR-29c-3p limited KDM6B expression and increased the H3K27me3 occupation on the LDHA promoter to enhance LDHA transcription, moderating mucosal injury and delaying UC progression.


Asunto(s)
Colitis Ulcerosa , MicroARNs , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Dextranos/efectos adversos , Histonas , Lactato Deshidrogenasa 5 , Ocludina/genética , Lisina , MicroARNs/genética , Modelos Animales de Enfermedad
14.
Ann Vasc Surg ; 97: 8-17, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37004920

RESUMEN

BACKGROUND: Intraoperative dextran infusion has been associated with reduction of an embolic risk in patients undergoing carotid endarterectomy (CEA). Nonetheless, dextran has been associated with adverse reactions, including anaphylaxis, hemorrhage, cardiac, and renal complications. Herein, we aimed to compare the perioperative outcomes of CEA stratified by the use of intraoperative dextran infusion using a large multiinstitutional dataset. METHODS: Patients undergoing CEA between 2008 and 2022 from the Vascular Quality Initiative database were reviewed. Patients were categorized by use of intraoperative dextran infusion, and demographics, procedural data, and in-hospital outcomes were compared. Logistic regression analysis was utilized to adjust for differences in patients while assessing the association between postoperative outcomes and intraoperative infusion of dextran. RESULTS: Of 140,893 patients undergoing CEA, 9,935 (7.1%) patients had intraoperative dextran infusion. Patients with intraoperative dextran infusion were older with lower rates of symptomatic stenosis (24.7% vs. 29.3%; P < 0.001) and preoperative use of antiplatelets, anticoagulants and statins. Additionally, they were more likely to have severe carotid stenosis (>80%; 49% vs. 45%; P < 0.001) and undergo CEA under general anesthesia (96.4% vs. 92.3%; P < 0.001), with a more frequent use of shunt (64.4% vs. 49.5%; P < 0.001). After adjustment, multivariable analysis showed that intraoperative dextran infusion was associated with higher odds of in-hospital major adverse cardiac events (MACE), including myocardial infarction [MI] (odds ratio [OR], 1.76, 95% confidence interval [CI]: 1.34-2.3, P < 0.001), congestive heart failure [CHF] (OR, 2.15, 95% CI: 1.67-2.77, P = 0.001), and hemodynamic instability requiring vasoactive agents (OR, 1.08, 95% CI: 1.03-1.13, P = 0.001). However, it was not associated with decreased odds of stroke (OR, 0.92, 95% CI: 0.74-1.16, P = 0.489) or death (OR, 0.88, 95% CI: 0.58-1.35, P = 0.554). These trends persisted even when stratified by symptomatic status and degree of stenosis. CONCLUSIONS: Intraoperative infusion of dextran was associated with increased odds of MACE, including MI, CHF, and persistent hemodynamic instability, without decreasing the risk of stroke perioperatively. Given these results, judicious use of dextran in patients undergoing CEA is recommended. Furthermore, careful perioperative cardiac management is warranted in select patients receiving intraoperative dextran during CEA.


Asunto(s)
Estenosis Carotídea , Endarterectomía Carotidea , Infarto del Miocardio , Accidente Cerebrovascular , Humanos , Endarterectomía Carotidea/efectos adversos , Dextranos/efectos adversos , Constricción Patológica/etiología , Factores de Riesgo , Resultado del Tratamiento , Accidente Cerebrovascular/etiología , Estenosis Carotídea/complicaciones , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/cirugía , Infarto del Miocardio/etiología , Estudios Retrospectivos , Medición de Riesgo
15.
Nutrients ; 15(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37111064

RESUMEN

Ulcerative colitis is an inflammatory bowel disease (IBD) with relapsing and remitting patterns, and it is caused by varied factors, such as the intestinal inflammation extent and duration. We examined the preventative effects of human milk oligosaccharides (HMOs) on epithelial barrier integrity and intestinal inflammation in an interleukin (IL)-6-induced cell model and dextran sodium sulfate (DSS)-induced acute mouse colitis model. HMOs including 2'-fucosyllactose (FL) and 3-FL and positive controls including fructooligosaccharide (FOS) and 5-acetylsalicylic acid (5-ASA) were orally administrated once per day to C57BL/6J mice with colitis induced by 5% DSS in the administered drinking water. 2'-FL and 3-FL did not affect the cell viability in Caco-2 cells. Meanwhile, these agents reversed IL-6-reduced intestinal barrier function in Caco-2 cells. Furthermore, 2'-FL and 3-FL reversed the body weight loss and the remarkably short colon lengths in DSS-induced acute colitis mice. Moreover, 2'-FL and 3-FL obviously protected the decreasing expression of zonula occluden-1 and occludin in colon tissue relative to the findings in the DSS-treated control group. 2'-FL and 3-FL significantly reduced IL-6 and tumor necrosis factor-α levels in serum relative to the control findings. The summary of these results shows that HMOs prevent colitis mainly by enhancing intestinal barrier function and advancing anti-inflammatory responses. Therefore, HMOs might suppress inflammatory responses and represent candidate treatments for IBD that protect intestinal integrity.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Interleucina-6/metabolismo , Dextranos/efectos adversos , Células CACO-2 , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Oligosacáridos/efectos adversos , Inflamación/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo
16.
Genes Cells ; 28(4): 267-276, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36641236

RESUMEN

Although excessive immune responses by Th17 cells, a helper T cell subset, are implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanism by which its localization in an inflamed colon is regulated remains unclear. Chemokines and their receptors are involved in the pathogenesis of IBD, however, the relative significance of each receptor on Th17 cells remains unknown. We generated C-C motif chemokine receptor 2 (CCR2) knockout (KO) and CCR6 KO mice in the syngeneic background using the CRISPR/Cas9 system and found that the phenotypes of experimental colitis worsened in both mutant mice. Surprisingly, the phenotype of colitis in CCR2/CCR6-double knockout (CCR2/6 DKO) mice was opposite to that of the single-deficient mice, with significantly milder experimental colitis (p < .05). The same was true for the symptoms in CCR6 KO mice, but not in wild type mice treated with a CCR2 inhibitor, propagermanium. Colonic CCR2+ CCR6+ Th17 cells produced a potentially pathogenic cytokine GM-CSF whose levels in the gut were significantly reduced in CCR2/6 DKO mice (p < .05). These results suggest that GM-CSF-producing CCR2+ CCR6+ Th17 cells are pathogenic and are attracted to the inflamed colon by either CCR2 or CCR6 gradient, which subsequently exacerbates experimental colitis in mice.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Células Th17/metabolismo , Células Th17/patología , Dextranos/efectos adversos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/efectos adversos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Colitis/inducido químicamente , Colitis/genética , Quimiocinas/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL , Receptores CCR6/genética , Receptores CCR2/genética
17.
J Adv Res ; 52: 73-88, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36693567

RESUMEN

INTRODUCTION: Dietary fiber and flavonoids are promising drugs reported in the treatment of inflammatory bowel disease (IBD). However, it is unclear the interaction between dietary fiber and flavonoids in gut health. OBJECTIVE: The therapeutic effect of celery, kale, and red chicory powders on colitis mice using non-group feeding cages was investigated. Further, the efficacy of whole celery, celery soluble dietary fiber (CSDF), celery insoluble dietary fiber (CIDF), celery flavonoids (CF), CSDF + CF and CIDF + CF in IBD mice model was assessed to dissect protective effect to attribute to which component(s) in such complex matrix. METHODS: 3% Dextran sulfate sodium salt (DSS) was used to induce mice colitis model. Multiple molecular biological methods were employed to evaluate the severity of mice colitis and the gut microbial composition of mice. RESULTS: Administration of kale and red chicory significantly restored body weight, DAI score, and colon length in colonic mice, and celery showed the weakest effects. Administration of either CSDF or CF markedly improved the histological damage, increased colonic mucus expression, and reduced colonic MPO/iNOS activities, and IL-6/IL-1ß levels. However, CSDF + CF showed weaker improvement than CF or SDF in most physical and biochemical signs. Furthermore, CSDF and CF decreased intestinal g_Escherichia-Shihella and g_Clostridium_sensu_stricto_1 induced by DSS administration. Interestingly, celery flavonoid promoted g_Akkermansia proliferation both in vivo and in vitro, and which can be inhibited by CSDF. CONCLUSIONS: This study revealed for the first time that CSDF can suppress the protective effect of CF on intestinal health by inhibiting g_Akkermansia, and clarified that the decreased efficacy of celery whole food on colitis was mediated by an antagonism between CSDF and CF. Moreover, this study presents for the first time that interaction between soluble dietary fiber and flavonoids in vivo can ameliorate the efficacy of dietary fiber or flavonoids when administered alone suggestive for an antagonistic effect.


Asunto(s)
Apium , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Dextranos/efectos adversos , Flavonoides/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Verduras , Sulfatos/efectos adversos , Sodio , Sulfato de Dextran/efectos adversos
18.
Biol Trace Elem Res ; 201(8): 3961-3970, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36418634

RESUMEN

3,3'-Diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention because of its antioxidant properties and safety. Its protective effect against dextran sodium sulfate (DSS)-induced mouse ulcerative colitis (UC) and the role of T helper 17 (Th17) cell proliferation were investigated. Fifty C57BL/6 male mice were randomly assigned to one of five groups: control (Con), DSePA, DSS, low-dose DSePA (LSe), and high-dose DSePA (HSe). Mice in the DSS, LSe, and HSe groups drank 2% DSS to induce UC, and received normal saline, 1 and 2 mg/mL DSePA solution by intraperitoneal injection, respectively. The DSePA group only received 2 mg/mL DSePA solution. After 5 weeks, DSS challenge induced UC in the mice, which manifested as decreased body weight, shortened colon length, the loss of goblet cells, activated proliferating cells, and multiple signs of intestinal lesions by histological observation, all of which were reversed to varying degrees by DSePA administration. DSS upregulated the colonic protein expression of the macrophage marker F4/80 and proinflammatory cytokines (IL-1ß, IL-6, and TNFα), whereas DSePA administration downregulated the expression of these factors. DSS upregulated the mRNA expression of retinoic acid receptor-related orphan receptor γt (RORγt, mainly expressed in Th17 cells), IL-17A, and IL-17F and the levels of IL-17A and IL-17F in the colon, whereas DSePA administration decreased them. No difference was observed between the Con group and the DSePA group without DSS induction. Thus, DSePA administration ameliorated DSS-induced UC by regulating Th17-cell proliferation and the secretion of proinflammatory cytokines.


Asunto(s)
Colitis Ulcerosa , Ratones , Masculino , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacología , Dextranos/efectos adversos , Dextranos/metabolismo , Ratones Endogámicos C57BL , Colon , Citocinas/metabolismo , Modelos Animales de Enfermedad , Sulfato de Dextran/toxicidad , Sulfato de Dextran/metabolismo
19.
Cell Mol Gastroenterol Hepatol ; 15(2): 425-438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36244647

RESUMEN

BACKGROUND & AIMS: Increased intestinal permeability is seen in a variety of inflammatory conditions such as enteric infections and inflammatory bowel disease. Because barrier function can provide a key biomarker of disease severity, it often is assayed in animal models. A common methodology involves gavaging mice with fluorescein isothiocyanate-conjugated dextran (FITC-D), followed by cardiac puncture to assay plasma fluorescence on a spectrophotometer. Although the FITC-D method is relatively simple, its sensitivity is limited and enables only a single measurement because the test requires killing the subject. Herein, we describe a novel flow cytometry-based method of intestinal permeability measurement based on detection of orally gavaged ovalbumin (OVA) that leaks out of the gut. Our approach uses minute blood volumes collected from the tail vein, permitting repeated testing of the same subject at multiple time points. By comparing this assay against the gold standard FITC-D method, we show the expanded utility of our OVA assay in measuring intestinal permeability. METHODS: We directly compared our OVA assay against the FITC-D assay by co-administering both probes orally to the same animals and subsequently using their respective methodologies to measure intestinal permeability by detecting probe levels in the plasma. Permeability was assessed in mice genetically deficient in intestinal mucus production or glycosylation. In addition, wild-type mice undergoing dextran sodium sulfate-induced colitis or infected by the enteric bacterial pathogen Citrobacter rodentium also were tested. RESULTS: The OVA assay showed very high efficacy in all animal models of intestinal barrier dysfunction tested. Besides identifying intestinal barrier dysfunction in mice with impaired mucin glycosylation, the assay also allowed for repeated tracking of intestinal permeability within the same animal over time, providing data that cannot be easily acquired with other currently applied methods. CONCLUSIONS: The OVA assay is a highly sensitive and effective method of measuring intestinal permeability in mouse models of barrier dysfunction and experimental colitis.


Asunto(s)
Colitis , Dextranos , Ratones , Animales , Dextranos/efectos adversos , Mucosa Intestinal , Citometría de Flujo , Fluoresceína-5-Isotiocianato/efectos adversos , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Permeabilidad
20.
J Gastroenterol Hepatol ; 38(2): 311-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36349486

RESUMEN

BACKGROUND AND AIM: The study of the impact of environmental factors during pregnancy on fetal development has so far been focused primarily on those negatively affecting human health; however, little is known about the effects of probiotic treatment during pregnancy on inflammatory bowel diseases (IBD). In this study, we investigated whether oral administration of heat-killed probiotics isolated from fermented foods decreased the vulnerability of offspring to IBD. METHODS: Probiotics were administered to the pregnant mice until the birth of pups, after which the parent mice were maintained with autoclaved water. Partial pups were evaluated for dextran sodium sulfate-induced colitis. The influence of CD11c+ CD103+ dendritic cells (DCs) and regulatory T cells (Tregs) in mesenteric lymph nodes of parent mice and their pups was analyzed. RESULTS: Oral administration of heat-killed probiotics to pregnant dams significantly decreased inflammation induced by dextran sodium sulfate in pups. Probiotic treatment increased the number of CD103+ DCs, and the expression of ß8-integrin in CD103+ DCs and Tregs in mesenteric lymph nodes, not only in dams themselves but also in their offspring. CONCLUSIONS: Oral administration of probiotics during gestation induced transgenerational immunomodulatory effects on the gut-associated immune system and resilience to experimental colitis in the offspring. Our results suggest that consumption of fermented foods during pregnancy can be effective in preventing inflammatory diseases such as IBD beyond generation.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Probióticos , Humanos , Animales , Ratones , Embarazo , Femenino , Dextranos/efectos adversos , Colitis/inducido químicamente , Administración Oral , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...