Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.184
Filtrar
1.
Sci Rep ; 14(1): 11640, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773268

RESUMEN

Porcine islet xenotransplantation is a promising therapy for severe diabetes mellitus. Maintenance of the quality and quantity of porcine islets is important for the success of this treatment. Here, we aimed to elucidate the influence of relatively short-term (14 days) culture on adult porcine islets isolated from three micro-minipigs (P111, P112 and P121). Morphological characteristics of islets changed little after 14 days of culture. The viability of cultured islets was also maintained at a high level (> 80%). Furthermore, cultured islets exhibited similar glucose-stimulated insulin secretion and insulin content at Day 14 were preserved comparing with Day 1, while the expressions of Ins, Gcg and Sst were attenuated at Day 14. Xenotransplantation using diabetic nude mice showed no normalization of blood glucose but increased levels of plasma porcine C-peptide after the transplantation of 14 day cultured porcine islets. Histological assessment revealed that relatively short-term cultured porcine islets were successfully engrafted 56 days following transplantation. These data show that relatively short-term culture did not impair the quality of adult porcine islets in regard to function, morphology, and viability. Prevention of impairment of gene correlated with endocrine hormone is warranted for further improvement.


Asunto(s)
Insulina , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Trasplante Heterólogo , Animales , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/citología , Porcinos , Trasplante de Islotes Pancreáticos/métodos , Insulina/metabolismo , Ratones , Ratones Desnudos , Secreción de Insulina , Diabetes Mellitus Experimental/terapia , Glucemia/metabolismo , Porcinos Enanos , Supervivencia Celular , Péptido C/metabolismo , Péptido C/sangre
2.
Behav Brain Funct ; 20(1): 9, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702776

RESUMEN

BACKGROUND: In the present study, we investigated the effect of high-intensity interval training (HIIT) on cognitive behaviors in female rats with a high-fat diet + streptozotocin (STZ)-induced type 2 diabetes. METHODS: Twenty-four female rats were divided into four groups randomly (n = 6): control (C), control + exercise (Co + EX), diabetes mellitus (type 2) (T2D), and diabetes mellitus + exercise (T2D + EX). Diabetes was induced by a two-month high-fat diet and a single dose of STZ (35 mg/kg) in the T2D and T2D + EX groups. The Co + EX and T2D + EX groups performed HIIT for eight weeks (five sessions per week, running on a treadmill at 80-100% of VMax, 4-10 intervals). Elevated plus maze (EPM) and open field test (OFT) were used for assessing anxiety-like behaviors, and passive avoidance test (PAT) and Morris water maze (MWM) were applied for evaluating learning and memory. The hippocampal levels of beta-amyloid (Aß) and Tau were also assessed using Western blot. RESULTS: An increase in fasting blood glucose (FBG), hippocampal level of Tau, and a decrease in the percentage of open arm time (%OAT) as an index of anxiety-like behavior were seen in the female diabetic rats which could be reversed by HIIT. In addition, T2D led to a significant decrease in rearing and grooming in the OFT. No significant difference among groups was seen for the latency time in the PAT and learning and memory in the MWM. CONCLUSIONS: HIIT could improve anxiety-like behavior at least in part through changes in hippocampal levels of Tau.


Asunto(s)
Péptidos beta-Amiloides , Ansiedad , Diabetes Mellitus Experimental , Hipocampo , Condicionamiento Físico Animal , Proteínas tau , Animales , Femenino , Hipocampo/metabolismo , Proteínas tau/metabolismo , Ratas , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/psicología , Ansiedad/terapia , Ansiedad/psicología , Ansiedad/metabolismo , Péptidos beta-Amiloides/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/psicología , Diabetes Mellitus Experimental/terapia , Entrenamiento de Intervalos de Alta Intensidad/métodos , Aprendizaje por Laberinto/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/terapia , Conducta Animal/fisiología , Dieta Alta en Grasa/efectos adversos , Ratas Sprague-Dawley
3.
J Appl Biomater Funct Mater ; 22: 22808000241245298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38733215

RESUMEN

In the current study, Cnicus benedictus extract was loaded into electrospun gelatin scaffolds for diabetic wound healing applications. Scaffolds were characterized in vitro by mechanical testing, cell culture assays, electron microscopy, cell migration assay, and antibacterial assay. In vivo wound healing study was performed in a rat model of diabetic wound. In vitro studies revealed fibrous architecture of our developed dressings and their anti-inflammatory properties. In addition, Cnicus benedictus extract-loaded wound dressings prevented bacterial penetration. In vivo study showed that wound size reduction, collagen deposition, and epithelial thickness were significantly greater in Cnicus benedictus extract-loaded scaffolds than other groups. Gene expression studies showed that the produced wound dressings significantly upregulated VEGF and IGF genes expression in diabetic wounds.


Asunto(s)
Vendajes , Diabetes Mellitus Experimental , Gelatina , Cicatrización de Heridas , Animales , Gelatina/química , Cicatrización de Heridas/efectos de los fármacos , Ratas , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/patología , Masculino , Humanos , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Andamios del Tejido/química
4.
Sci Rep ; 14(1): 10658, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724553

RESUMEN

This study aimed to investigate the effects of exercise on excessive mitochondrial fission, insulin resistance, and inflammation in the muscles of diabetic rats. The role of the irisin/AMPK pathway in regulating exercise effects was also determined. Thirty-two 8-week-old male Wistar rats were randomly divided into four groups (n = 8 per group): one control group (Con) and three experimental groups. Type 2 diabetes mellitus (T2DM) was induced in the experimental groups via a high-fat diet followed by a single intraperitoneal injection of streptozotocin (STZ) at a dosage of 30 mg/kg body weight. After T2DM induction, groups were assigned as sedentary (DM), subjected to 8 weeks of treadmill exercise training (Ex), or exercise training combined with 8-week cycloRGDyk treatment (ExRg). Upon completion of the last training session, all rats were euthanized and samples of fasting blood and soleus muscle were collected for analysis using ELISA, immunofluorescence, RT-qPCR, and Western blotting. Statistical differences between groups were analyzed using one-way ANOVA, and differences between two groups were assessed using t-tests. Our findings demonstrate that exercise training markedly ameliorated hyperglycaemia, hyperlipidaemia, and insulin resistance in diabetic rats (p < 0.05). It also mitigated the disarranged morphology and inflammation of skeletal muscle associated with T2DM (p < 0.05). Crucially, exercise training suppressed muscular excessive mitochondrial fission in the soleus muscle of diabetic rats (p < 0.05), and enhanced irisin and p-AMPK levels significantly (p < 0.05). However, exercise-induced irisin and p-AMPK expression were inhibited by cycloRGDyk treatment (p < 0.05). Furthermore, the administration of CycloRGDyk blocked the effects of exercise training in reducing excessive mitochondrial fission and inflammation in the soleus muscle of diabetic rats, as well as the positive effects of exercise training on improving hyperlipidemia and insulin sensitivity in diabetic rats (p < 0.05). These results indicate that regular exercise training effectively ameliorates insulin resistance and glucolipid metabolic dysfunction, and reduces inflammation in skeletal muscle. These benefits are partially mediated by reductions in mitochondrial fission through the irisin/AMPK signalling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental , Fibronectinas , Inflamación , Resistencia a la Insulina , Dinámicas Mitocondriales , Músculo Esquelético , Condicionamiento Físico Animal , Ratas Wistar , Animales , Fibronectinas/metabolismo , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Ratas , Músculo Esquelético/metabolismo , Inflamación/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Transducción de Señal , Estreptozocina
5.
Cell Transplant ; 33: 9636897241251621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756050

RESUMEN

Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously revealed that a gelatin hydrogel nonwoven fabric (GHNF) markedly improved subcutaneous islet engraftment. We herein investigated whether the addition of adipose tissue-derived stem cells (ADSCs) to GHNF affected the outcome. A silicone spacer sandwiched between two GHNFs with (AG group) or without (GHNF group) ADSCs, or a silicone spacer alone (Silicone group) was implanted into the subcutaneous space of healthy mice at 6 weeks before transplantation, then diabetes was induced 7 days before transplantation. Syngeneic islets were transplanted into the pretreated space. Intraportal transplantation (IPO group) was also performed to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and inflammatory mediators were evaluated. The results in the subcutaneous transplantation were compared using the Silicone group as a control. The results of the IPO group were also compared with those of the AG group. The AG group showed significantly better blood glucose changes than the Silicone and the IPO groups. The cure rate of AG group (72.7%) was the highest among the groups (GHNF; 40.0%, IPO; 40.0%, Silicone; 0%). The number of vWF-positive vessels in the subcutaneous space of the AG group was significantly higher than that in other groups before transplantation (P < 0.01). Lectin angiography also showed that the same results (P < 0.05). According to the results of the ADSCs tracing, ADSCs did not exist at the transplant site (6 weeks after implantation). The positive rates for laminin and collagen III constructed around the transplanted islets did not differ among groups. Inflammatory mediators were higher in the Silicone group, followed by the AG and GHNF groups. Pretreatment using bioabsorbable scaffolds combined with ADSCs enhanced neovascularization in subcutaneous space, and subcutaneous islet transplantation using GHNF with ADSCs was superior to intraportal islet transplantation.


Asunto(s)
Tejido Adiposo , Gelatina , Hidrogeles , Trasplante de Islotes Pancreáticos , Animales , Trasplante de Islotes Pancreáticos/métodos , Tejido Adiposo/citología , Gelatina/química , Ratones , Hidrogeles/química , Masculino , Diabetes Mellitus Experimental/terapia , Células Madre/citología , Células Madre/metabolismo , Islotes Pancreáticos/citología , Glucemia/metabolismo , Ratones Endogámicos C57BL
6.
Biol Res ; 57(1): 20, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698488

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a global epidemic with increasing incidences. DM is a metabolic disease associated with chronic hyperglycemia. Aside from conventional treatments, there is no clinically approved cure for DM up till now. Differentiating mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) is a promising approach for curing DM. Our study was conducted to investigate the effect of DM on MSCs differentiation into IPCs in vivo and in vitro. METHODS: We isolated adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of normal and STZ-induced diabetic Sprague-Dawley male rats. Afterwards, the in vitro differentiation of normal-Ad-MSCs (N-Ad-MSCs) and diabetic-Ad-MSCs (DM-Ad-MSCs) into IPCs was compared morphologically then through determining the gene expression of ß-cell markers including neurogenin-3 (Ngn-3), homeobox protein (Nkx6.1), musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and insulin-1 (Ins-1) and eventually, through performing glucose-stimulated insulin secretion test (GSIS). Finally, the therapeutic potential of N-Ad-MSCs and DM-Ad-MSCs transplantation was compared in vivo in STZ-induced diabetic animals. RESULTS: Our results showed no significant difference in the characteristics of N-Ad-MSCs and DM-Ad-MSCs. However, we demonstrated a significant difference in their abilities to differentiate into IPCs in vitro morphologically in addition to ß-cell markers expression, and functional assessment via GSIS test. Furthermore, the abilities of both Ad-MSCs to control hyperglycemia in diabetic rats in vivo was assessed through measuring fasting blood glucose (FBGs), body weight (BW), histopathological examination of both pancreas and liver and immunoexpression of insulin in pancreata of study groups. CONCLUSION: Our findings reveal the effectiveness of N-Ad-MSCs in differentiating into IPCs in vitro and controlling the hyperglycemia of STZ-induced diabetic rats in vivo compared to DM-Ad-MSCs.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulina , Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Animales , Diferenciación Celular/fisiología , Diabetes Mellitus Experimental/terapia , Masculino , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ratas , Trasplante de Células Madre Mesenquimatosas/métodos , Células Cultivadas , Estreptozocina , Glucemia/análisis
7.
J Vis Exp ; (205)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38619246

RESUMEN

The treatment of type 2 diabetes mellitus (T2DM) is a major difficulty in improving patient health. Exercise is one of the main interventions for T2DM. Static strength training is one of the key forms of traditional sports in China. Research shows that static strength training is an effective clinical method for T2DM intervention, but there is no experimental device suitable for static training in mice. One of the difficulties in moving from clinical to basic research is to design appropriate experimental devices. In order to further study the mechanism of static training intervention in T2DM, a simple method for making a static training device for mice is introduced in this paper. This device has the advantages of simple operation, cheap material, and high feasibility. Previous studies conducted under this protocol have shown that static training can effectively reduce blood glucose levels and improve the mitochondrial function of skeletal muscle cells in T2DM mice. The purpose of introducing this device is to promote research on the mechanism of traditional exercise in the intervention of T2DM and to lay a foundation for the quantitative intervention of exercise.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Entrenamiento de Fuerza , Humanos , Animales , Ratones , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Experimental/terapia , China , Mitocondrias
8.
Front Immunol ; 15: 1389134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605972

RESUMEN

Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Trasplante de Islotes Pancreáticos/métodos , Inteligencia Artificial , Diabetes Mellitus Experimental/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Insulina
9.
Int Wound J ; 21(4): e14867, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597295

RESUMEN

Non-healing wounds are one of the chronic complications of diabetes and have remained a worldwide challenge as one of the major health problems. Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic wound treatment, for which the molecular basis is not understood. Adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes. Endothelial cell-derived extracellular vesicles could promote wound healing in diabetes. To study the mechanism by which HBO promotes wound healing in diabetes, we investigated the effect of HBO on fat cells in diabetic mice. A diabetic wound mouse model was established and treated with HBO. Haematoxylin and eosin (H&E) staining and immunofluorescence were used for the analysis of wound healing. To further explore the mechanism, we performed whole-genome sequencing on extracellular vesicles (EVs). Furthermore, we conducted in vitro experiments. Specifically, exosomes were collected from human umbilical vein endothelial cell (HUVEC) cells after HBO treatment, and then these exosomes were co-incubated with adipose tissue. The wound healing rate in diabetic mice treated with HBO was significantly higher. HBO therapy promotes the proliferation of adipose precursor cells. HUVEC-derived exosomes treated with HBO significantly promoted fat cell browning. These data clarify that HBO therapy may promote vascular endothelial cell proliferation and migration, and promote browning of fat cells through vascular endothelial cells derived exosomes, thereby promoting diabetic wound healing. This provides new ideas for the application of HBO therapy in the treatment of diabetic trauma.


Asunto(s)
Diabetes Mellitus Experimental , Oxigenoterapia Hiperbárica , Humanos , Animales , Ratones , Cicatrización de Heridas/fisiología , Diabetes Mellitus Experimental/terapia , Células Endoteliales de la Vena Umbilical Humana , Tejido Adiposo Blanco
10.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659015

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , Miocardio , Cordón Umbilical , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/terapia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Fibrosis/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Cordón Umbilical/citología , Cordón Umbilical/metabolismo
11.
Stem Cell Res Ther ; 15(1): 66, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443965

RESUMEN

BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs) a potentially effective disease-modulating therapy for diabetic nephropathy (DN) but their clinical translation has been hampered by incomplete understanding of the optimal timing of administration and in vivo mechanisms of action. This study aimed to elucidate the reno-protective potency and associated mechanisms of single intravenous injections of human umbilical cord-derived MSCs (hUC-MSCs) following shorter and longer durations of diabetes. METHODS: A streptozotocin (STZ)-induced model of diabetes and DN was established in C57BL/6 mice. In groups of diabetic animals, human (h)UC-MSCs or vehicle were injected intravenously at 8 or 16 weeks after STZ along with vehicle-injected non-diabetic animals. Diabetes-related kidney abnormalities was analyzed 2 weeks later by urine and serum biochemical assays, histology, transmission electron microscopy and immunohistochemistry. Serum concentrations of pro-inflammatory and pro-fibrotic cytokines were quantified by ELISA. The expression of autophagy-related proteins within the renal cortices was investigated by immunoblotting. Bio-distribution of hUC-MSCs in kidney and other organs was evaluated in diabetic mice by injection of fluorescent-labelled cells. RESULTS: Compared to non-diabetic controls, diabetic mice had increases in urine albumin creatinine ratio (uACR), mesangial matrix deposition, podocyte foot process effacement, glomerular basement membrane thickening and interstitial fibrosis as well as reduced podocyte numbers at both 10 and 18 weeks after STZ. Early (8 weeks) hUC-MSC injection was associated with reduced uACR and improvements in multiple glomerular and renal interstitial abnormalities as well as reduced serum IL-6, TNF-α, and TGF-ß1 compared to vehicle-injected animals. Later (16 weeks) hUC-MSC injection also resulted in reduction of diabetes-associated renal abnormalities and serum TGF-ß1 but not of serum IL-6 and TNF-α. At both time-points, the kidneys of vehicle-injected diabetic mice had higher ratio of p-mTOR to mTOR, increased abundance of p62, lower abundance of ULK1 and Atg12, and reduced ratio of LC3B to LC3A compared to non-diabetic animals, consistent with diabetes-associated suppression of autophagy. These changes were largely reversed in the kidneys of hUC-MSC-injected mice. In contrast, neither early nor later hUC-MSC injection had effects on blood glucose and body weight of diabetic animals. Small numbers of CM-Dil-labeled hUC-MSCs remained detectable in kidneys, lungs and liver of diabetic mice at 14 days after intravenous injection. CONCLUSIONS: Single intravenous injections of hUC-MSCs ameliorated glomerular abnormalities and interstitial fibrosis in a mouse model of STZ-induced diabetes without affecting hyperglycemia, whether administered at relatively short or longer duration of diabetes. At both time-points, the reno-protective effects of hUC-MSCs were associated with reduced circulating TGF-ß1 and restoration of intra-renal autophagy.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Riñón/anomalías , Células Madre Mesenquimatosas , Anomalías Urogenitales , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Nefropatías Diabéticas/terapia , Inyecciones Intravenosas , Factor de Crecimiento Transformador beta1 , Diabetes Mellitus Experimental/terapia , Interleucina-6 , Factor de Necrosis Tumoral alfa , Autofagia , Fibrosis , Serina-Treonina Quinasas TOR
12.
Dent Med Probl ; 61(1): 53-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38441304

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a critical chronic metabolic disease. Several treatment modalities are currently under investigation. Both bee venom (BV) and bone marrow mesenchymal stem cells (BMSCs) can possibly offer an approach for treating type I diabetes. OBJECTIVES: The aim of the present study was to investigate the mechanism underlying the anti-diabetic effect of BV as compared to BMSCs on the tongue mucosa of diabetic rats. MATERIAL AND METHODS: A total of 52 male albino rats were used in the current study. The rats were randomly assigned into 4 groups: group 1 (control); group 2 (streptozocin (STZ)); group 3 (BV-treated); and group 4 (BMSC-treated). Diabetes mellitus was induced via an intraperitoneal (IP) injection of STZ in the rats from groups 2, 3 and 4. Following the diagnosis of DM, the rats in group 3 were injected with a daily dose of 0.5 mg/kg of BV, while the rats in group 4 were treated with a single injection of BMSCs. All rats were euthanized after 4 weeks, and their tongues were dissected and divided into halves. The right halves of the tongues were utilized for the histological examination, followed by morphometric analysis. In contrast, the left halves were used to detect the local gene expression of transforming growth factor beta 1 (TGF-ß1) and vascular endothelial growth factor (VEGF). RESULTS: Group 2 revealed marked disruption in the morphology of the fungiform and filiform papillae, and atrophic epithelial changes in both dorsal and ventral surface epithelium as compared to other groups. Group 4 showed a significantly larger number of taste buds, and a higher gene expression of TGF-ß1 and VEGF as compared to groups 2 and 3. Additionally, BV and BMSCs effectively increased the thickness of dorsal and ventral surface epithelium as compared to group 2. CONCLUSIONS: Treatment with BMSCs was associated with significant improvement in the morphology and number of lingual epithelial cells and taste buds in the tongues of diabetic rats as compared to BV-treated rats, which was due to the local upregulation of TGF-ß1 and VEGF gene expression.


Asunto(s)
Venenos de Abeja , Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , Masculino , Animales , Ratas , Factor de Crecimiento Transformador beta1 , Factor A de Crecimiento Endotelial Vascular , Diabetes Mellitus Experimental/terapia , Lengua , Venenos de Abeja/farmacología
13.
ACS Biomater Sci Eng ; 10(4): 2486-2497, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38445596

RESUMEN

Islet or ß-cell transplantation is currently considered to be the ideal treatment for diabetes, and three-dimensional (3D) bioprinting of a bionic pancreas with physiological stiffness is considered to be promising for the encapsulation and transplantation of ß-cells. In this study, a 5%GelMA/2%AlgMA hybrid hydrogel with pancreatic physiological stiffness was constructed and used for ß-cell encapsulation, 3D bioprinting, and in vivo transplantation to evaluate glycemic control in diabetic mice. The hybrid hydrogel had good cytocompatibility and could induce insulin-producing cells (IPCs) to form pseudoislet structures and improve insulin secretion. Furthermore, we validated the importance of betacellulin (BTC) in IPCs differentiation and confirmed that IPCs self-regulation was achieved by altering the nuclear and cytoplasmic distributions of BTC expression. In vivo transplantation of diabetic mice quickly restored blood glucose levels. In the future, 3D bioprinting of ß-cells using biomimetic hydrogels will provide a promising platform for clinical islet transplantation for the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ratones , Animales , Diabetes Mellitus Experimental/terapia , Hidrogeles/farmacología , Hidrogeles/química , Control Glucémico , Biomimética , Células Secretoras de Insulina/metabolismo
14.
Sci Rep ; 14(1): 6409, 2024 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494538

RESUMEN

Dysregulation of key transcription factors involved in hepatic energy metabolism, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and liver X receptor alpha (LXRα), has been observed in T2DM. The present study aims to investigate the effects of aerobic training and vitamin D supplementation on liver enzyme levels and the levels of PGC-1α and LXRα proteins in hepatocytes, in a rat model of T2DM. The study involved 56 male Wistar rats, divided into two groups: one was non-diabetic and acted as a control group (n = 8), and the other had induced diabetes (n = 48). The diabetic rats were then split into six subgroups: two groups received high or moderate doses of vitamin D and aerobic training (D + AT + HD and D + AT + MD); two groups received high or moderate doses of vitamin D alone (D + HD and D + MD); one group underwent aerobic training with vehicle (sesame oil; D + AT + oil), and one group was a diabetic control receiving only sesame oil (oil-receiving). The D + AT + HD and D + HD groups received 10,000 IU of vitamin D, while the D + AT + MD and D + MD groups received 5000 IU of vitamin D once a week by injection. The D + AT + oil group and the sham group received sesame oil. After eight weeks of treatment, body weight, BMI, food intake, serum insulin, glucose, 25-hydroxyvitamin D, ALT, AST, and visceral fat were measured. The levels of PGC-1α and LXRα proteins in the liver was assessed by western blotting. Statistical analysis was performed using the paired t-test, one-way analysis of variance (ANOVA), and the Tukey post hoc test at a significance level of P < 0.05. Body weight, food intake, and BMI decreased significantly in the D + AT + HD, D + AT + MD, D + AT + oil, D + HD, and D + MD groups with the highest reduction being observed in body weight and BMI in the D + AT + HD group. The D + AT + HD group exhibited the lowest levels of insulin, glucose, and HOMA-IR while the D + C group exhibited the highest levels among the diabetic groups. The D + AT + HD and D + AT + MD groups had lower levels of ALT and AST enzymes compared to the other groups with no significant difference between D + AT + HD and D + AT + MD. D + AT + HD (p = 0.001), D + AT + MD (p = 0.001), D + HD (p = 0.023), D + MD (p = 0.029), and D + AT + oil (p = 0.011) upregulated LXRα compared to D + C. Among these groups, D + AT + HD exhibited a more profound upregulation of LXRα than D + AT + MD, D + AT + oil, D + HD, and D + MD (p = 0.005; p = 0.002, p = 0.001, and p = 0.001, respectively). Similarly, D + AT + HD showed a more notable upregulation of PGC-1α compared to D + AT + oil, D + HD, and D + MD (p = 0.002; p = 0.001, and p = 0.001, respectively). Pearson correlation tests showed significant and negative correlations between serum 25-hydroxyvitamin levels and both visceral fat (r = - 0.365; p = 0.005) and HOMA-IR (r = - 0.118; p = 0.009); while positive and significant correlations between the liver-to-bodyweight ratio with both ALT and AST enzymes and also between QUICKI levels with LXRα (r = 0.578; p = 0.001) and PGC-1α (r = 0.628; p = 0.001). Combined administration of aerobic training and vitamin D supplementation potentially improves liver enzymes in type-2 diabetic rats that were simultaneous with upregulating the levels of PGC-1α and LXRα proteins in hepatocytes. These improvements were more significant when combining exercise with high-dose vitamin D supplementation. This study highlights the potential of this combination therapy as a new diabetes treatment strategy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Masculino , Ratas , Animales , Receptores X del Hígado/genética , Diabetes Mellitus Experimental/terapia , Aceite de Sésamo , Ratas Wistar , Vitamina D/farmacología , Vitaminas , Insulina , Hígado , Peso Corporal , Glucosa , Diabetes Mellitus Tipo 2/tratamiento farmacológico
15.
Cytotherapy ; 26(4): 360-371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38363247

RESUMEN

BACKGROUND AIMS: Despite advancements in wound care, wound healing remains a challenge, especially in individuals with type 2 diabetes. Cell sheet technology has emerged as an efficient and promising therapy for tissue regeneration and wound repair. Among these, bilayered human keratinocyte-fibroblast cell sheets constructed using temperature-responsive culture surfaces have been shown to mimic a normal tissue-like structure and secrete essential cytokines and growth factors that regulate the wound healing process. METHODS: This study aimed to evaluate the safety and therapeutic potential of human skin cell sheets to treat full-thickness skin defects in a rat model of type 2 diabetes. RESULTS: Our findings demonstrate that diabetic wounds transplanted with bilayered cell sheets resulted in accelerated re-epithelialization, increased angiogenesis, enhanced macrophage polarization and regeneration of tissue that closely resembled healthy skin. In contrast, the control group that did not receive cell sheet transplantation presented characteristic symptoms of impaired and delayed wound healing associated with type 2 diabetes. CONCLUSIONS: The secretory cytokines and the upregulation of Nrf2 expression in response to cell sheet transplantation are believed to have played a key role in the improved wound healing observed in diabetic rats. Our study suggests that human keratinocyte-fibroblast cell sheets hold great potential as a therapeutic alternative for diabetic ulcers.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Ratas , Animales , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Cicatrización de Heridas/fisiología , Queratinocitos/fisiología , Queratinocitos/trasplante , Piel , Fibroblastos/fisiología , Citocinas
16.
Molecules ; 29(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338456

RESUMEN

Diabetic muscle atrophy is an inflammation-related complication of type-2 diabetes mellitus (T2DM). Even though regular exercise prevents further deterioration of atrophic status, there is no effective mediator available for treatment and the underlying cellular mechanisms are less explored. In this study, we investigated the therapeutic potential of MCC950, a specific, small-molecule inhibitor of NLRP3, to treat pyroptosis and diabetic muscle atrophy in mice. Furthermore, we used MCC950 to intervene in the protective effects of aerobic exercise against muscle atrophy in diabetic mice. Blood and gastrocnemius muscle (GAS) samples were collected after 12 weeks of intervention and the atrophic state was assessed. We initially corroborated a diabetic muscle atrophy phenotype in db/db mice (D) by comparison with control m/m mice (W) by examining parameters such as fasting blood glucose (D vs. W: 24.47 ± 0.45 mmol L-1 vs. 4.26 ± 0.6 mmol L-1, p < 0.05), grip strength (D vs. W: 166.87 ± 15.19 g vs. 191.76 ± 14.13 g, p < 0.05), exercise time (D vs. W: 1082.38 ± 104.67 s vs. 1716 ± 168.55 s, p < 0.05) and exercise speed to exhaustion (D vs. W: 24.25 ± 2.12 m min-1 vs. 34.75 ± 2.66 m min-1, p < 0.05), GAS wet weight (D vs. W: 0.07 ± 0.01 g vs. 0.13 ± 0.01 g, p < 0.05), the ratio of GAS wet weight to body weight (D vs. W: 0.18 ± 0.01% vs. 0.54 ± 0.02%, p < 0.05), and muscle fiber cross-sectional area (FCSA) (D vs. W: 1875 ± 368.19 µm2 vs. 2747.83 ± 406.44 µm2, p < 0.05). We found that both MCC950 (10 mg kg-1) treatment and exercise improved the atrophic parameters that had deteriorated in the db/db mice, inhibited serum inflammatory markers and significantly attenuated pyroptosis in atrophic GAS. In addition, a combined MCC950 treatment with exercise (DEI) exhibited a further improvement in glucose uptake capacity and muscle performance. This combined treatment also improved the FCSA of GAS muscle indicated by Laminin immunofluorescence compared to the group with the inhibitor treatment alone (DI) (DEI vs. DI: 2597 ± 310.97 vs. 1974.67 ± 326.15 µm2, p < 0.05) or exercise only (DE) (DEI vs. DE: 2597 ± 310.97 vs. 2006.33 ± 263.468 µm2, p < 0.05). Intriguingly, the combination of MCC950 treatment and exercise significantly reduced NLRP3-mediated inflammatory factors such as cleaved-Caspase-1, GSDMD-N and prevented apoptosis and pyroptosis in atrophic GAS. These findings for the first time demonstrate that targeting NLRP3-mediated pyroptosis with MCC950 improves diabetic muscle homeostasis and muscle function. We also report that inhibiting pyroptosis by MCC950 can enhance the beneficial effects of aerobic exercise on diabetic muscle atrophy. Since T2DM and muscle atrophy are age-related diseases, the young mice used in the current study do not seem to fully reflect the characteristics of diabetic muscle atrophy. Considering the fragile nature of db/db mice and for the complete implementation of the exercise intervention, we used relatively young db/db mice and the atrophic state in the mice was thoroughly confirmed. Taken together, the current study comprehensively investigated the therapeutic effect of NLRP3-mediated pyroptosis inhibited by MCC950 on diabetic muscle mass, strength and exercise performance, as well as the synergistic effects of MCC950 and exercise intervention, therefore providing a novel strategy for the treatment of the disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Piroptosis , Sulfonamidas/farmacología , Ratones Endogámicos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología
17.
Adv Sci (Weinh) ; 11(17): e2309491, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380490

RESUMEN

The regeneration of bone defects in diabetic patients still faces challenges, as the intrinsic healing process is impaired by hyperglycemia. Inspired by the discovery that the endoplasmic reticulum (ER) is in a state of excessive stress and dysfunction under hyperglycemia, leading to osteogenic disorder, a novel engineered exosome is proposed to modulate ER homeostasis for restoring the function of mesenchymal stem cells (MSCs). The results indicate that the constructed engineered exosomes efficiently regulate ER homeostasis and dramatically facilitate the function of MSCs in the hyperglycemic niche. Additionally, the underlying therapeutic mechanism of exosomes is elucidated. The results reveal that exosomes can directly provide recipient cells with SHP2 for the activation of mitophagy and elimination of mtROS, which is the immediate cause of ER dysfunction. To maximize the therapeutic effect of engineered exosomes, a high-performance hydrogel with self-healing, bioadhesive, and exosome-conjugating properties is applied to encapsulate the engineered exosomes for in vivo application. In vivo, evaluation in diabetic bone defect repair models demonstrates that the engineered exosomes delivering hydrogel system intensively enhance osteogenesis. These findings provide crucial insight into the design and biological mechanism of ER homeostasis-based tissue-engineering strategies for diabetic bone regeneration.


Asunto(s)
Regeneración Ósea , Retículo Endoplásmico , Exosomas , Homeostasis , Hidrogeles , Células Madre Mesenquimatosas , Exosomas/metabolismo , Regeneración Ósea/fisiología , Regeneración Ósea/genética , Animales , Homeostasis/fisiología , Hidrogeles/química , Ratones , Retículo Endoplásmico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Osteogénesis/fisiología , Modelos Animales de Enfermedad , Ingeniería de Tejidos/métodos , Masculino , Humanos
18.
BMC Pulm Med ; 24(1): 37, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233819

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) leads to serious respiratory problems. This study investigated the effectiveness of high-intensity interval training (HIIT) on T2D-induced lung injuries at histopathological and molecular levels. METHODS: Forty-eight male Wistar rats were randomly allocated into control (CTL), Diabetes (Db), exercise (Ex), and Diabetes + exercise (Db + Ex) groups. T2D was induced by a high-fat diet plus (35 mg/kg) of streptozotocin (STZ) administration. Rats in Ex and Db + Ex performed HIIT for eight weeks. Tumor necrosis factor-alpha (TNFα), Interleukin 10 (IL-10), BAX, Bcl2, Lecithin, Sphingomyelin (SPM) and Surfactant protein D (SPD) levels were measured in the bronchoalveolar lavage fluid (BALF) and malondialdehyde (MDA) and total antioxidant capacity (TAC) levels were measured in lung tissue. Lung histopathological alterations were assessed by using H&E and trichrome mason staining. RESULTS: Diabetes was significantly associated with imbalance in pro/anti-inflammatory, pro/anti-apoptosis and redox systems, and reduced the SPD, lecithin sphingomyelin and alveolar number. Performing HIIT by diabetic animals increased Bcl2 (P < 0.05) and IL10 (P < 0.01) levels as well as surfactants components and TAC (P < 0.05) but decreased fasting blood glucose (P < 0.001), TNFα (P < 0.05), BAX (P < 0.05) and BAX/Bcl2 (P < 0.001) levels as well as MDA (P < 0.01) and MDA/TAC (P < 0.01) compared to the diabetic group. Furthermore, lung injury and fibrosis scores were increased by T2D and recovered in presence of HIIT. CONCLUSION: These findings suggested that the attenuating effect of HIIT on diabetic lung injury mediated by reducing blood sugar, inflammation, oxidative stress, and apoptosis as well as improving pulmonary surfactants components.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Entrenamiento de Intervalos de Alta Intensidad , Lesión Pulmonar , Ratas , Masculino , Animales , Ratas Wistar , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Lecitinas/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Esfingomielinas/efectos adversos , Proteína X Asociada a bcl-2/farmacología , Pulmón/metabolismo , Antioxidantes/metabolismo
19.
Nutr Diabetes ; 14(1): 1, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195613

RESUMEN

AIMS: Diabetes is one of the main causes of mortality in developing countries. Performing physical activity in various ways and different environments using herbal supplements can be used as a non-pharmacological solution to prevent and improve diabetes. Hence, this study aimed to investigate the effects of eight weeks of cold water swimming exercise training combined with cinnamon supplementation on HbA1C (Hemoglobin A1c) levels, TBC1D1 (TBC1 domain family member 1), and TBC1D4 (TBC1 Domain Family Member 4) in diabetic rats. MATERIALS AND METHODS: Ninety-one rats (n = 78 diabetic, n = 13 healthy) were divided into seven groups (n = 13 per group): (1) healthy control (HC), (2) diabetic control (DC), (3) swimming training in cold water (5 °C) (S5), (4) swimming training in cold water (5 °C) with a cinnamon supplementation (200 mg/kg body weight) (S5+Ci), (5) swimming training in warm water (36-35 °C) (S35), (6) swimming training in warm water (35-36 °C) with a cinnamon supplementation (S35+Ci), and (7) a cinnamon supplementation only (Ci). To evaluate the hypothesis, a one-way ANOVA and Tukey's post hoc test were used. RESULTS: Findings showed that the TBC1D1 and TBC1D4 levels in the DC and S35 groups were higher than in the HC group (p < 0.001). Also, swimming training in cold water (5 °C) with cinnamon supplementation (S5+Ci) decreased the level of TBC1D1, TBC1D4, HbA1c, and glucose compared to other groups (p < 0.05). CONCLUSIONS: The study revealed that the combination of swimming training in cold water and cinnamon consumption led to a significant reduction in TBC1D1, TBC1D4, and HbA1c. Therefore, this non-traditional exercise approach coupled with cinnamon supplementation can be considered an effective method for improving insulin sensitivity, fasting blood glucose, and HbA1c levels and is proposed as an optimal method to improve glucose indices.


Asunto(s)
Diabetes Mellitus Experimental , Natación , Animales , Ratas , Cinnamomum zeylanicum , Hemoglobina Glucada , Frío , Diabetes Mellitus Experimental/terapia , Glucosa , Agua , Proteínas
20.
Biomater Adv ; 158: 213779, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277902

RESUMEN

Skin wound healing, particularly diabetic wound healing, is challenging in clinical management. Impaired wound healing is associated with persistent oxidative stress, altered inflammatory responses, unsatisfactory angiogenesis and epithelialization. Magnesium ascorbyl phosphate (MAP), which is an ascorbic acid derivative and active ingredient in cosmetics, has been reported to scavenge reactive oxygen species (ROS), and is considered a potential therapeutic agent for diabetic wounds. Herein, we report a hybrid gelatin-MAP scaffolds that can reduces oxidative stress damage, enhances angiogenesis and collagen remodeling to accelerate diabetic wound repair. Preliminary insights based on network pharmacology indicate that MAP may accelerate wound repair through multiple biological pathways, including extracellular matrix remodeling and anti-apoptosis. In vitro studies showed that the hybrid hydrogel scaffold had suitable mechanical properties, excellent biocompatibility and bioactivity. Further animal experiments demonstrated that the hydrogel accelerated full-thickness wound repair in diabetic mice (repair rate MAP vs Control=91.791±3.306 % vs 62.962±6.758 %) through antioxidant, neuroangiogenesis, collagen remodeling, and up-regulated the expression of the related factors COL-1, CD31, VEGF, and CGRP. Overall, we developed a bioactive hybrid hydrogel encapsulating MAP that synergistically promotes diabetic wound repair through multiple biological effects. This potentially integrated therapeutic scaffold may enrich future surgical approaches for treating diabetic wounds.


Asunto(s)
Ácido Ascórbico/análogos & derivados , Diabetes Mellitus Experimental , Cicatrización de Heridas , Ratones , Animales , Gelatina/farmacología , Especies Reactivas de Oxígeno , Diabetes Mellitus Experimental/terapia , Angiogénesis , Colágeno/farmacología , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Fosfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...