Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(23): 3928-3938, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37799103

RESUMEN

Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Engeletin, a natural Smilax glabra rhizomilax derivative, is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The effects of engeletin were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Engeletin was also investigated in the chronic restraint stress (CRS) mouse model of depression with fluoxetine (FLX) as the positive control. Changes in prefrontal cortex (PFC) spine density, synaptic plasticity-linked protein expressions and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB)- mammalian target of rapamycin complex 1 (mTORC1) signalling pathway after chronic stress and engeletin treatment were then investigated. The TrkB and mTORC1 selective inhibitors, ANA-12 and rapamycin, respectively, were utilized to assess the engeletin's antidepressive mechanisms. Our data shows that engeletin exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. Furthermore, it exhibited efficiency against the depression of CRS model. Moreover, it enhanced the BDNF-TrkB-mTORC1 pathway in the PFC during CRS and altered the reduction in dendritic spine density and levels of synaptic plasticity-linked protein induced by CRS. In conclusion, engeletin has antidepressant activity via activation of the BDNF-TrkB-mTORC1 signalling pathway and upregulation of PFC synaptic plasticity.


Asunto(s)
Trastorno Depresivo Mayor , Plasticidad Neuronal , Receptor trkB , Animales , Humanos , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Hipocampo/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Receptor trkB/efectos de los fármacos , Receptor trkB/metabolismo
2.
Anticancer Drugs ; 33(1): e94-e102, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261913

RESUMEN

Everolimus, an oral mammalian target of rapamycin complex 1 (mTORC1) inhibitor, presents a therapeutic option in metastatic renal cell carcinoma (RCC) patients who were intolerant to, or previously failed, immune- and vascular endothelial growth factor-targeted therapies. However, the onset of drug resistance limits its clinical use. One possible mechanism underpinning the resistance is that inhibiting mTORC1 by everolimus results in mTORC2-dependent activation of v-Akt murine thymoma viral oncogene (AKT) and upregulation of hypoxia-inducible transcription factors (HIF). Norcantharidin (NCTD) is a demethylated derivative of cantharidin with antitumor properties which is an active ingredient of the traditional Chinese medicine Mylabris. In this study, everolimus-resistant RCC cells (786-O-R) obtained by chronic everolimus treatment revealed higher level of HIF2α and over-activated mTORC2 pathway and NCTD inhibits cell proliferation in both everolimus-resistant and -sensitive RCC cells by arresting cell cycle in G0/G1 phase and reducing cell cycle-related proteins of C-Myc and cyclin D. Furthermore, NCTD shows synergistic anticancer effects combined with everolimus in everolimus-resistant 786-O-R cells. Mechanically, NCTD repressed both mTORC1 and mTORC2 signaling pathways as well as downstream molecular signaling pathways, such as p-4EBP1, p-AKT, HIF1α and HIF2α. Our findings provide sound evidence that combination of NCTD and everolimus is a potential therapeutic strategy for treating RCC and overcoming everolimus resistance by dual inhibition of mTORC1 and mTORC2.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Carcinoma de Células Renales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Everolimus/farmacología , Neoplasias Renales/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Diabetes ; 71(3): 453-469, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862201

RESUMEN

The dynamic regulation of autophagy in ß-cells by cycles of fasting-feeding and its effects on insulin secretion are unknown. In ß-cells, mechanistic target of rapamycin complex 1 (mTORC1) is inhibited while fasting and is rapidly stimulated during refeeding by a single amino acid, leucine, and glucose. Stimulation of mTORC1 by nutrients inhibited the autophagy initiator ULK1 and the transcription factor TFEB, thereby preventing autophagy when ß-cells were continuously exposed to nutrients. Inhibition of mTORC1 by Raptor knockout mimicked the effects of fasting and stimulated autophagy while inhibiting insulin secretion, whereas moderate inhibition of autophagy under these conditions rescued insulin secretion. These results show that mTORC1 regulates insulin secretion through modulation of autophagy under different nutritional situations. In the fasting state, autophagy is regulated in an mTORC1-dependent manner, and its stimulation is required to keep insulin levels low, thereby preventing hypoglycemia. Reciprocally, stimulation of mTORC1 by elevated leucine and glucose, which is common in obesity, may promote hyperinsulinemia by inhibiting autophagy.


Asunto(s)
Autofagia/fisiología , Células Secretoras de Insulina/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Ayuno , Glucosa/farmacología , Humanos , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/fisiología , Leucina/farmacología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodo Posprandial/fisiología
4.
Elife ; 102021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33646118

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.


When building healthy tissue, the human body must carefully control the growth of new cells to prevent them from becoming cancerous. A core component of this regulation is the protein mTORC1, which responds to various growth-stimulating factors and nutrients, and activates the chemical reactions cells need to grow. Part of this process involves controlling 'nutrient-sensing transcription factors' ­ proteins that regulate the activity of specific genes based on the availability of different nutrients. One of these nutrient-sensing transcription factors, ATF4, has recently been shown to be involved in some of the processes triggered by mTORC1. The role this factor plays in how cells respond to stress ­ such as when specific nutrients are depleted, protein folding is disrupted or toxins are present ­ is well-studied. But how it reacts to the activation of mTORC1 is less clear. To bridge this gap, Torrence et al. studied mouse embryonic cells and human prostate cancer cells grown in the laboratory, to see whether mTORC1 influenced the behavior of ATF4 differently than cellular stress. Cells were treated either with insulin, which activates mTORC1, or an antibiotic that sparks the stress response. The cells were then analyzed using a molecular tool to see which genes were switched on by ATF4 following treatment. This revealed that less than 10% of the genes activated by ATF4 during cellular stress are also activated in response to mTORC1-driven growth. Many of the genes activated in both scenarios were involved in synthesizing and preparing the building blocks that make up proteins. This was consistent with the discovery that ATF4 helps mTORC1 stimulate growth by promoting protein synthesis. Torrence et al. also found that mTORC1's regulation of ATF4 stimulated the synthesis of glutathione, the most abundant antioxidant in cells. The central role mTORC1 plays in controlling cell growth means it is important to understand how it works and how it can lead to uncontrolled growth in human diseases. mTORC1 is activated in many overgrowth syndromes and the majority of human cancers. These new findings could provide insight into how tumors coordinate their drive for growth while adapting to cellular stress, and reveal new drug targets for cancer treatment.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Glutatión/biosíntesis , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Factor de Transcripción Activador 4/genética , Animales , Línea Celular , Línea Celular Tumoral , Embrión de Mamíferos , Fibroblastos , Humanos , Insulina/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Transducción de Señal
5.
Behav Brain Res ; 400: 113040, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33279634

RESUMEN

Several lines of evidence have consistently indicated that physical exercise has antidepressant effects by improving hippocampal function, although the signaling pathways underpinning these responses are not well established. Therefore, this study investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and fibronectin type III domain-containing protein 5 (FNDC5)/irisin signaling in the antidepressant-like effect of physical exercise. We showed that physical exercise (treadmill running - 45 min/day/5 days/week for 4 weeks) produced an antidepressant-like effect as indicated by a reduction on the immobility time in mice subjected to the forced swimming test (FST) without altering locomotor activity in the open field test (OFT). Rapamycin (a selective mTORC1 inhibitor, 0.2 nmol/site, i.c.v.) administration completely abolished the antidepressant-like effect of physical exercise in the FST, suggesting that mTORC1 activation plays a role for its behavioral effect. Accordingly, physical exercise increased the number of phosphorylated mTORC1 (Ser2448)-positive cells in the entire and ventral subgranular zone of the hippocampal dentate gyrus. Physical exercise was also effective in augmenting the hippocampal FNDC5/irisin immunocontent, but rapamycin administration did not alter this effect. Our results reinforce the notion that physical exercise exerts an antidepressant-like effect and identifies the mTORC1-mediated signaling pathway as a target for its behavioral effects. This study provides additional evidence that physical exercise increases hippocampal FNDC5/irisin immunocontent, but this effect seems to be independent on hippocampal mTORC1 activation. Altogether the results contribute to elucidate possible molecular targets implicated in the antidepressant effects of physical exercise and highlight the role of mTORC1 signaling for its behavioral response.


Asunto(s)
Fibronectinas/metabolismo , Hipocampo/metabolismo , Locomoción/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Condicionamiento Físico Animal/fisiología , Transducción de Señal/fisiología , Sirolimus/farmacología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Femenino , Hipocampo/efectos de los fármacos , Locomoción/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación
6.
Peptides ; 133: 170375, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32771373

RESUMEN

Lipotoxicity has been implicated in many disease processes, and prolonged exposure to high lipid levels often leads to the activation of a variety of abnormal signals, which in turn leads to the induction of inflammation. The aim of our study was to explore the correlation between mammalian target of rapamycin (mTOR) and inflammation by studying high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats and palmitate (PA)-induced inflammation (lipotoxicity) in HepG2 cells. In addition, we investigated whether the glucagon-like peptide-1 (GLP-1) analogue liraglutide can protect rats and HepG2 cells from lipotoxicity. Our results showed that an HFD and PA significantly increased inflammation by activating the mTORC1 pathway in vitro and in vivo. Treatment with rapamycin (an mTOR inhibitor) inhibited some effects of PA on inflammation. Furthermore, we observed that liraglutide inhibited PA-induced inflammation by inactivating mTORC1 signalling molecules. Overall, our findings demonstrated that mTORC1 signalling pathways were involved primarily in high lipid level-induced inflammation. Importantly, liraglutide may protect against lipotoxicity-induced inflammation by regulating mTORC1-dependent pathways.


Asunto(s)
Hepatitis/tratamiento farmacológico , Liraglutida/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Células Hep G2 , Hepatitis/etiología , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Resistencia a la Insulina , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Palmitatos/toxicidad , Ratas Sprague-Dawley
7.
Toxicology ; 442: 152538, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32693121

RESUMEN

Cadmium (Cd) is one of worldwide environmental pollutants that causes bone homeostasis, which depends on the resorption of bones by osteoclasts and formation of bones by the osteoblasts (OB). However, the Cd toxicity on OB and its mechanism are unclear. Autophagy is an evolutionarily conserved degradation process in which domestic intracellular components are selectively digested for the recycling of nutrients and energy. This process is indispensable for cell homeostasis maintenance and stress responses. Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases, including osteoporosis. TAK1 has been recently emerged as an activator of AMPK and hence an autophagy inducer. AMPK is a key molecule that induces autophagy and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by mTORC1. In this study, we found that Cd treatment caused the formation of autophagosomes, LC3-II lipidation and p62 downregulation, and the increased autophagic flux, indicating that Cd treatment induced autophagy in OBs. Cd treatment induced TAK1 activation mediated AMPK phosphorylation, which promoted autophagy via phosphorylation of ULK1 at S317. Meanwhile, Cd treatment dramatically decreased mTORC1, S6K1, 4E-BP1, S6, ULK1S555 and ULK1S757 phosphorylation, suggesting that mTORC1 activity was inhibited and inactive mTORC1 prevents ULK1 activation by phosphorylating ULK1 at SerS555 and Ser757. Our data strongly suggest that TAK1 mediates AMPK activation, which activates ULK1 by phosphorylating ULK1S317 and suppressing mTORC1-mediated ULK1S555 and ULK1S757 phosphorylation. Our study has revealed a signaling mechanism for TAK1 in Cd-induced autophagy in OBs.


Asunto(s)
Autofagia/efectos de los fármacos , Cadmio/toxicidad , Quinasas Quinasa Quinasa PAM/genética , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/efectos de los fármacos , Células Cultivadas , Femenino , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley
8.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484794

RESUMEN

Chronic kidney disease is the main cause of mortality in patients with tuberous sclerosis complex (TSC) disease. The mechanisms underlying TSC cystic kidney disease remain unclear, with no available interventions to prevent cyst formation. Using targeted deletion of TSC1 in nephron progenitor cells, we showed that cysts in TSC1-null embryonic kidneys originate from injured proximal tubular cells with high mTOR complex 1 activity. Injection of rapamycin to pregnant mice inhibited the mTOR pathway and tubular cell proliferation in kidneys of TSC1-null offspring. Rapamycin also prevented renal cystogenesis and prolonged the life span of TSC newborns. Gene expression analysis of proximal tubule cells identified sets of genes and pathways that were modified secondary to TSC1 deletion and rescued by rapamycin administration during nephrogenesis. Inflammation with mononuclear infiltration was observed in the cystic areas of TSC1-null kidneys. Dexamethasone administration during pregnancy decreased cyst formation by not only inhibiting the inflammatory response, but also interfering with the mTORC1 pathway. These results reveal mechanisms of cystogenesis in TSC disease and suggest interventions before birth to ameliorate cystic disease in offspring.


Asunto(s)
Dexametasona/farmacología , Enfermedades Renales Quísticas/prevención & control , Sirolimus/farmacología , Esclerosis Tuberosa/prevención & control , Animales , Femenino , Riñón/metabolismo , Enfermedades Renales Quísticas/tratamiento farmacológico , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Ratones Transgénicos , Embarazo , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/efectos de los fármacos , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética
9.
Exp Biol Med (Maywood) ; 245(11): 983-993, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32408765

RESUMEN

IMPACT STATEMENT: Our study provided new insight into the mechanism underlying the preservation of the peritoneum by valsartan. The results demonstrated that the mice receiving chronic high glucose (HG) peritoneal dialysis solution infusion showed a typical feature of peritoneal fibrosis (PF), as well as higher expression of α-smooth muscle actin (α-SMA) and collagen I. In vitro, HG increased the protein expression of α-SMA and collagen I in a dose-dependent manner, while valsartan significantly ameliorated these pathological changes. Interestingly, there was a parallel decrease in the activity of mammalian target of rapamycin complex 1 (mTORC1) and the protein expression levels of α-SMA and collagen I upon treatment with valsartan in vivo and in vitro. Moreover, the mTOR agonist MHY1485 reversed the downregulation of α-SMA and collagen I in vitro, even in the presence of valsartan. Altogether, our findings reported for the first time that valsartan exerts a protective effect against HG-induced PF by inhibiting the activity of the mTORC1 pathway.


Asunto(s)
Soluciones para Diálisis/toxicidad , Glucosa/toxicidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibrosis Peritoneal/inducido químicamente , Fibrosis Peritoneal/prevención & control , Valsartán/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Soluciones para Diálisis/química , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Diálisis Peritoneal/métodos , Fibrosis Peritoneal/metabolismo , Peritoneo/efectos de los fármacos , Peritoneo/patología , Transducción de Señal/efectos de los fármacos
10.
Alcohol Clin Exp Res ; 44(6): 1329-1336, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32333810

RESUMEN

BACKGROUND: Gestational alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), an array of cognitive, behavioral, and physical developmental impairments. Mammalian target of rapamycin (mTOR) plays a key role in regulating protein synthesis in response to neuronal activity, thereby modulating synaptic plasticity and long-term memory formation in the brain. Based on our previous quantitative mass spectrometry proteomic studies, we hypothesized that gestational chronic binge alcohol exposure alters mTOR signaling and downstream pathways in the fetal hippocampus. METHODS: Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol (peak BAC, 216 mg/dl) from GD 5-10 and progressed to 6 g/kg alcohol (peak BAC, 289 mg/dl) from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. RESULTS: In the Alcohol group, following this exposure paradigm, fetal body weight and crown-rump length were decreased. The phosphorylation level of mTOR (P-mTOR) in the fetal hippocampus was decreased in the Alcohol group compared with controls. Alcohol exposure resulted in dysregulation of fetal hippocampal mTORC1 signaling, as evidenced by an increase in total 4E-BP1 expression. Phosphorylation levels of 4E-BP1 and p70 S6K were also increased following alcohol exposure. P-mTOR and P-4E-BP1 were exclusively detected in the dentate gyrus and oriens layer of the fetal hippocampus, respectively. DEPTOR and RICTOR expression levels in the fetal hippocampus were increased; however, RAPTOR was not altered by chronic binge alcohol exposure. CONCLUSION: We conclude that chronic binge alcohol exposure during pregnancy alters mTORC1 signaling pathway in the fetal hippocampus. We conjecture that this dysregulation of mTOR protein expression, its activity, and downstream proteins may play a critical role in FASD neurobiological phenotypes.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Feto/efectos de los fármacos , Hipocampo/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Animales , Largo Cráneo-Cadera , Desarrollo Fetal/efectos de los fármacos , Peso Fetal/efectos de los fármacos , Feto/metabolismo , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/efectos de los fármacos , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Ratas , Proteína Reguladora Asociada a mTOR/efectos de los fármacos , Proteína Reguladora Asociada a mTOR/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
11.
Cancer Cell ; 37(2): 183-199.e5, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31978326

RESUMEN

We developed neratinib-resistant HER2-mutant cancer cells by gradual dose escalation. RNA sequencing identified TORC1 signaling as an actionable mechanism of drug resistance. Primary and acquired neratinib resistance in HER2-mutant breast cancer patient-derived xenografts (PDXs) was also associated with TORC1 hyperactivity. Genetic suppression of RAPTOR or RHEB ablated P-S6 and restored sensitivity to the tyrosine kinase inhibitor. The combination of the TORC1 inhibitor everolimus and neratinib potently arrested the growth of neratinib-resistant xenografts and organoids established from neratinib-resistant PDXs. RNA and whole-exome sequencing revealed RAS-mediated TORC1 activation in a subset of neratinib-resistant models. DNA sequencing of HER2-mutant tumors clinically refractory to neratinib, as well as circulating tumor DNA profiling of patients who progressed on neratinib, showed enrichment of genomic alterations that converge to activate the mTOR pathway.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Quinolinas/farmacología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/efectos de los fármacos , Receptor ErbB-2/genética , Transducción de Señal/efectos de los fármacos
12.
Nat Metab ; 2(1): 41-49, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993556

RESUMEN

Central to cellular metabolism and cell proliferation are highly conserved signalling pathways controlled by mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK)1,2, dysregulation of which are implicated in pathogenesis of major human diseases such as cancer and type 2 diabetes. AMPK pathways leading to reduced cell proliferation are well established and, in part, act through inhibition of TOR complex-1 (TORC1) activity. Here we demonstrate reciprocal regulation, specifically that TORC1 directly down-regulates AMPK signalling by phosphorylating the evolutionarily conserved residue Ser367 in the fission yeast AMPK catalytic subunit Ssp2, and AMPK α1Ser347/α2Ser345 in the mammalian homologs, which is associated with reduced phosphorylation of activation loop Thr172. Genetic or pharmacological inhibition of TORC1 signalling led to AMPK activation in the absence of increased AMP:ATP ratios; under nutrient stress conditions this was associated with growth limitation in both yeast and human cell cultures. Our findings reveal fundamental, bi-directional regulation between two major metabolic signalling networks and uncover new opportunity for cancer treatment strategies aimed at suppressing cell proliferation in the nutrient-poor tumor microenvironment.


Asunto(s)
Adenilato Quinasa/antagonistas & inhibidores , Proliferación Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Nutrientes/metabolismo , Estrés Fisiológico , Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Dominio Catalítico , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Activación Enzimática , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Neoplasias/metabolismo , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/fisiología
13.
Circ Res ; 126(1): 25-37, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31647755

RESUMEN

RATIONALE: Through localized delivery of rapamycin via a biomimetic drug delivery system, it is possible to reduce vascular inflammation and thus the progression of vascular disease. OBJECTIVE: Use biomimetic nanoparticles to deliver rapamycin to the vessel wall to reduce inflammation in an in vivo model of atherosclerosis after a short dosing schedule. METHODS AND RESULTS: Biomimetic nanoparticles (leukosomes) were synthesized using membrane proteins purified from activated J774 macrophages. Rapamycin-loaded nanoparticles were characterized using dynamic light scattering and were found to have a diameter of 108±2.3 nm, a surface charge of -15.4±14.4 mV, and a polydispersity index of 0.11 +/ 0.2. For in vivo studies, ApoE-/- mice were fed a high-fat diet for 12 weeks. Mice were injected with either PBS, free rapamycin (5 mg/kg), or rapamycin-loaded leukosomes (Leuko-Rapa; 5 mg/kg) once daily for 7 days. In mice treated with Leuko-Rapa, flow cytometry of disaggregated aortic tissue revealed fewer proliferating macrophages in the aorta (15.6±9.79 %) compared with untreated mice (30.2±13.34 %) and rapamycin alone (26.8±9.87 %). Decreased macrophage proliferation correlated with decreased levels of MCP (monocyte chemoattractant protein)-1 and IL (interleukin)-b1 in mice treated with Leuko-Rapa. Furthermore, Leuko-Rapa-treated mice also displayed significantly decreased MMP (matrix metalloproteinases) activity in the aorta (mean difference 2554±363.9, P=9.95122×10-6). No significant changes in metabolic or inflammation markers observed in liver metabolic assays. Histological analysis showed improvements in lung morphology, with no alterations in heart, spleen, lung, or liver in Leuko-Rapa-treated mice. CONCLUSIONS: We showed that our biomimetic nanoparticles showed a decrease in proliferating macrophage population that was accompanied by the reduction of key proinflammatory cytokines and changes in plaque morphology. This proof-of-concept showed that our platform was capable of suppressing macrophage proliferation within the aorta after a short dosing schedule (7 days) and with a favorable toxicity profile. This treatment could be a promising intervention for the acute stabilization of late-stage plaques.


Asunto(s)
Aortitis/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Placa Aterosclerótica/prevención & control , Sirolimus/administración & dosificación , 1,2-Dipalmitoilfosfatidilcolina/administración & dosificación , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Aortitis/complicaciones , Aortitis/patología , Apolipoproteínas E/deficiencia , Aterosclerosis/patología , Biomimética , Proteína C-Reactiva/metabolismo , Microscopía por Crioelectrón , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas de la Membrana/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Neovascularización Patológica/prevención & control , Especificidad de Órganos , Fosfatidilcolinas/administración & dosificación , Distribución Aleatoria , Sirolimus/farmacología , Sirolimus/uso terapéutico
14.
Exp Neurol ; 324: 113117, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31734315

RESUMEN

Previous studies have shown that simvastatin (Sim) has neuroprotective effects in a neonatal model of hypoxia-ischemia (HI)-induced brain injury when administered before but not after HI, pointing to the preconditioning (PC)-like effects of the statin. The present study aimed to gain more insight into the PC-like effect of Sim by studying the role of autophagy and its modulation by mTOR and SIRT1 in neuroprotection. Sim potentiated the autophagy response induced by neonatal HI, as shown by the increased expression of both microtubule-associated protein 1 light chain 3 (LC3) and beclin 1, increased monodansylcadaverine (MDC) labeling, and reduced expression of p62. The autophagy inhibitor 3-methyladenine (3MA) completely blocked the neuroprotective effect of Sim. Two hours after HI, there was a reduction in the activity of mTORC1 and a concomitant increase in that of mTORC2. Sim preconditioning further decreased the activity of mTORC1, but did not affect that of mTORC2. However, 24 h after injury, mTORC2 activity was significantly preserved in Sim-treated rats. Sim preconditioning also prevented the depletion of SIRT1 induced by HI, an effect that was completely blocked by 3MA. These data show that Sim preconditioning may modulate autophagy and survival pathways by affecting mTORC1, mTORC2, and SIRT1 activities. This study provides further preclinical evidence of the PC-like effect of statins in brain tissue, supporting their beneficial effects in improving stroke outcome after prophylactic treatments.


Asunto(s)
Autofagia/efectos de los fármacos , Daño Encefálico Crónico/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Simvastatina/farmacología , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Animales Recién Nacidos , Daño Encefálico Crónico/etiología , Daño Encefálico Crónico/patología , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/patología , Precondicionamiento Isquémico , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratas , Ratas Sprague-Dawley , Simvastatina/antagonistas & inhibidores
15.
Proc Natl Acad Sci U S A ; 116(39): 19523-19529, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31492813

RESUMEN

The mTORC1 pathway regulates cell growth and proliferation by properly coupling critical processes such as gene expression, protein translation, and metabolism to the availability of growth factors and hormones, nutrients, cellular energetics, oxygen status, and cell stress. Although multiple cytoplasmic substrates of mTORC1 have been identified, how mTORC1 signals within the nucleus remains incompletely understood. Here, we report a mechanism by which mTORC1 modulates the phosphorylation of multiple nuclear events. We observed a significant nuclear enrichment of GSK3 when mTORC1 was suppressed, which promotes phosphorylation of several proteins such as GTF2F1 and FOXK1. Importantly, nuclear localization of GSK3 is sufficient to suppress cell proliferation. Additionally, expression of a nuclear exporter of GSK3, FRAT, restricts the nuclear localization of GSK3, represses nuclear protein phosphorylation, and prevents rapamycin-induced cytostasis. Finally, we observe a correlation between rapamycin resistance and FRAT expression in multiple-cancer cell lines. Resistance to Food and Drug Administration (FDA)-approved rapamycin analogs (rapalogs) is observed in many tumor settings, but the underling mechanisms remain incompletely understood. Given that FRAT expression levels are frequently elevated in various cancers, our observations provide a potential biomarker and strategy for overcoming rapamycin resistance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sirolimus/farmacología , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Animales , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Citoplasma/metabolismo , Resistencia a Antineoplásicos/fisiología , Células Madre Embrionarias , Factores de Transcripción Forkhead/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Ratones , Proteínas de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
16.
Med Hypotheses ; 131: 109320, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31443769

RESUMEN

In animal experiments, neuroprotective, anticonvulsive and antidepressant-like properties have been increasingly attributed to administrations of ascorbic acid (AA, vitamin C) in at least medium (low millimolar) doses, which however await validation in well controlled clinical studies. In mammalian cortical and subcortical neurons, small to modest acidification (<0.4-0.5 pH-units) is belonging to the key strategies for controlling local excitability and is associated with neuroprotection, e.g. by limiting excitotoxicity. Such acidifications are furthermore involved in the mechanisms of some anticonvulsants and antidepressants. As AA-transport and regulation of intracellular pH (pHi) are closely interwoven on the level of special transmembrane solute carriers, I suppose that the aforementioned beneficial AA-effects might be based upon a discrete "hormetic" acidification of cortical and or subcortical neurons via an AA-mediated weakening of their pHi-regulation. This assumption is supported by findings in non-neuronal cells suggesting both, intracellular acidification and inhibition of a core-element of the pHi-regulation apparatus by millimolar AA. In mammalian subcortical neurons, there is already first evidence of a modest acidification after adding low millimolar AA.


Asunto(s)
Anticonvulsivantes/farmacología , Antidepresivos/farmacología , Ácido Ascórbico/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Líquido Intracelular/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Anticonvulsivantes/uso terapéutico , Antidepresivos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ácido Ascórbico/uso terapéutico , Encéfalo/citología , Proteínas Portadoras/metabolismo , Cationes/metabolismo , Ácido Deshidroascórbico/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Humanos , Líquido Intracelular/química , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Oxidación-Reducción
17.
Apoptosis ; 24(9-10): 798-811, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31321634

RESUMEN

Sirtuins have emerged as a promising novel class of anti-cancer drug targets. Inhibition of SIRT1 and SIRT2 induces apoptosis in cancer cells and they play multifaceted roles in regulating autophagy. In the present study, we found that salermide, a SIRT1/2-specific inhibitor or small interfering RNAs (siRNAs) to block SIRT1/2 expression could induce autophagy in human NSCLC cells. Moreover, SIRT1/2 inhibition increased the expression levels of ATF4 and DDIT4 and downregulated p-RPS6KB1 and p-EIF4EBP1, two downstream molecules of mTORC1. Moreover, ATF4 or DDIT4 knockdown attenuated salermide-induced autophagy, suggesting that SIRT1/2 inhibition induced autophagy through the ATF4-DDIT4-mTORC1 axis. Mechanistically, SIRT1/2 inhibition led to HSPA5 acetylation and dissociation from EIF2AK3, leading to ER stress response and followed by upregulation of ATF4 and DDIT4, triggering autophagy. Silencing of the autophagic gene ATG5 in lung cancer cells resulted in increased apoptotic cell death induced by SIRT1/2 inhibition. Our data show that inhibition of SIRT1/2 induces pro-survival autophagy via acetylation of HSPA5 and subsequent activation of ATF4 and DDIT4 to inhibit the mTOR signaling pathway in NSCLC cells. These findings suggest that combinatorial treatment with SIRT1/2 inhibitors and pharmacological autophagy inhibitors is an effective therapeutic strategy for cancer therapy.


Asunto(s)
Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Naftoles/farmacología , Fenilpropionatos/farmacología , Sirtuinas/genética , Factor de Transcripción Activador 4/efectos de los fármacos , Factor de Transcripción Activador 4/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Expresión Génica/efectos de los fármacos , Células HEK293 , Proteínas de Choque Térmico/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Interferencia de ARN , Transducción de Señal , Sirtuina 1/efectos de los fármacos , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 2/efectos de los fármacos , Sirtuina 2/genética , Sirtuina 2/metabolismo , Sirtuinas/efectos de los fármacos , Sirtuinas/metabolismo , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo
18.
FEBS J ; 286(18): 3701-3717, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31120172

RESUMEN

Development of the salivary gland is characterized by extensive branching morphogenesis. Although various molecules have been implicated in salivary gland development, the role of the mammalian target of rapamycin (mTOR) signalling pathway, including both mTOR complexes 1 and 2 (mTORC1 and 2), in salivary gland development is unknown. Here, we examined protein expression levels related to the mTOR signalling pathway using an ex vivo submandibular salivary gland (SMG) organ culture. We showed that branching buds in the salivary glands were substantially decreased and phosphorylation of mTORC1 signalling pathway related proteins (mTOR, p70 ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1) was inhibited by rapamycin (an mTOR inhibitor). In addition, AKT, which is an upstream protein kinase of mTORC1 and is downstream of mTORC2, is inhibited by LY294002 (a phosphatidylinositol 3-kinase inhibitor), but not by rapamycin. Moreover, rapamycin-treated ICR neonatal mice exhibited a reduction in both body weight and salivary glands compared with vehicle-treated neonatal mice. The present data indicate that the mTOR signalling pathway, including both mTORC1 and mTORC2, plays a critical role in salivary gland development both in ex vivo SMG organ culture and ICR neonatal mice in vivo.


Asunto(s)
Desarrollo Embrionario/genética , Glándulas Salivales/metabolismo , Glándula Submandibular/metabolismo , Serina-Treonina Quinasas TOR/genética , Animales , Animales Recién Nacidos , Cromonas/farmacología , Embrión de Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/efectos de los fármacos , Ratones , Morfogénesis/genética , Morfolinas/farmacología , Técnicas de Cultivo de Órganos , Fosforilación/efectos de los fármacos , Glándulas Salivales/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Glándula Submandibular/crecimiento & desarrollo
19.
J Am Heart Assoc ; 8(9): e010662, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31020916

RESUMEN

Background The mechanistic target of rapamycin complex 1 ( mTORC 1) is an important intracellular energy sensor that regulates gene expression and protein synthesis through its downstream signaling components, the S6-kinase and the ribosomal S6 protein. Recently, signaling arising from mTORC 1 has been implicated in regulation of the cardiovascular system with implications for disease. Here, we examined the contribution of mTORC 1 signaling to the regulation of vascular function. Methods and Results Activation of mTORC 1 pathway in aortic rings with leucine or an adenoviral vector expressing a constitutively active S6-kinase reduces endothelial-dependent vasorelaxation in an mTORC 1-dependent manner without affecting smooth muscle relaxation responses. Moreover, activation of mTORC 1 signaling in endothelial cells increases reactive oxygen species ( ROS ) generation and ROS gene expression resulting in a pro-oxidant gene environment. Blockade of ROS signaling with Tempol restores endothelial function in vascular rings with increased mTORC 1 activity indicating a crucial interaction between mTORC 1 and ROS signaling. We then tested the role of nuclear factor-κB transcriptional complex in connecting mTORC 1 and ROS signaling in endothelial cells. Blockade of inhibitor of nuclear factor κ-B kinase subunit ß activity with BMS -345541 prevented the increased ROS generation associated with increased mTORC 1 activity in endothelial cells but did not improve vascular endothelial function in aortic rings with increased mTORC 1 and ROS signaling. Conclusions These results implicate mTORC 1 as a critical molecular signaling hub in the vascular endothelium in mediating vascular endothelial function through modulation of ROS signaling.


Asunto(s)
Aorta/metabolismo , Células Endoteliales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Arterias Mesentéricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/fisiopatología , Óxidos N-Cíclicos/farmacología , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Quinasa I-kappa B/antagonistas & inhibidores , Imidazoles/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiopatología , Ratones , Miografía , Técnicas de Cultivo de Órganos , Quinoxalinas/farmacología , Transducción de Señal , Marcadores de Spin , Vasodilatación/efectos de los fármacos
20.
Metabolism ; 96: 33-45, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31028762

RESUMEN

BACKGROUND: Renal fibrosis promotes the development of diabetic nephropathy (DN). A growing number of studies have reported that Yin Yang 1 (YY1), which is involved in cellular proliferation and differentiation, plays a crucial role in the pathogenesis of many diseases, such as pulmonary fibrosis, hepatic steatosis and cancer. METHODS: We detected the expression of YY1 under various glucose concentration and time gradient conditions. Rapamycin was used to verify the mTORC1/p70S6K/YY1 signaling pathway in HK-2 cells. We used db/db mice to examine the connection between renal fibrosis and YY1. A luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to identify whether YY1 directly regulated α-SMA by binding to the α-SMA promoter. RNA silencing and overexpression were performed by using a YY1 expression/knockdown plasmid to investigate the function of YY1 in renal fibrosis of DN. RESULTS: YY1 expression and subsequent nuclear translocation were upregulated in a glucose- and time-dependent manner via the mTORC1/p70S6K signaling pathway in HK-2 cells. YY1 expression and nuclear translocation was significantly upregulated in db/db mice. Furthermore, YY1 upregulated α-SMA expression and activity in high-glucose-cultured HK-2 cells. Overexpression of YY1 promoted renal fibrosis in db/m mice mainly by upregulating α-SMA expression and inducing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Finally, downregulation of YY1 reversed renal fibrosis by improving EMT in vivo and in vitro. CONCLUSIONS: These results reveal that upregulation of YY1 plays a critical role in HG-induced deregulation of EMT-associated protein expression, which finally results in renal fibrosis of DN. Therefore, decreasing YY1 expression might represent a new therapeutic target for diabetic nephropathy-induced renal fibrosis.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Factor de Transcripción YY1/efectos de los fármacos , Actinas/metabolismo , Animales , Línea Celular , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Glucosa/farmacología , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción YY1/biosíntesis , Factor de Transcripción YY1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...