Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.465
Filtrar
1.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580182

RESUMEN

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Asunto(s)
Anestesia , Isoxazoles , Receptores de GABA-A , Animales , Receptores de GABA-A/metabolismo , Masculino , Ratas , Isoxazoles/farmacología , Diazepam/farmacología , Ratas Sprague-Dawley , Núcleo Talámico Mediodorsal/efectos de los fármacos , Núcleo Talámico Mediodorsal/metabolismo , Núcleo Talámico Mediodorsal/fisiología , Reflejo de Enderezamiento/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Tálamo/efectos de los fármacos , Tálamo/metabolismo
2.
Exp Neurol ; 376: 114749, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467356

RESUMEN

Despite special challenges in the medical treatment of women with epilepsy, in particular preclinical animal studies were focused on males for decades and females have only recently moved into the focus of scientific interest. The intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy (TLE) is one of the most studied models in males reproducing electroencephalographic (EEG) and histopathological features of human TLE. Hippocampal paroxysmal discharges (HPDs) were described as drug resistant focal seizures in males. Here, we investigated the IHKA model in female mice, in particular drug-resistance of HPDs and the influence of antiseizure medications (ASMs) on the power spectrum. After injecting kainic acid (KA) unilaterally into the hippocampus of female mice, we monitored the development of epileptiform activity by local field potential (LFP) recordings. Subsequently, we evaluated the effect of the commonly prescribed ASMs lamotrigine (LTG), oxcarbazepine (OXC) and levetiracetam (LEV), as well as the benzodiazepine diazepam (DZP) with a focus on HPDs and power spectral analysis and assessed neuropathological alterations of the hippocampus. In the IHKA model, female mice replicated key features of human TLE as previously described in males. Importantly, HPDs in female mice did not respond to commonly prescribed ASMs in line with the drug-resistance in males, thus representing a suitable model of drug-resistant seizures. Intriguingly, we observed an increased occurrence of generalized seizures after LTG. Power spectral analysis revealed a pronounced increase in the delta frequency range after the higher dose of 30 mg/kg LTG. DZP abolished HPDs and caused a marked reduction over a wide frequency range (delta, theta, and alpha) of the power spectrum. By characterizing the IHKA model of TLE in female mice we address an important gap in basic research. Considering the special challenges complicating the therapeutic management of epilepsy in women, inclusion of females in preclinical studies is imperative. A well-characterized female model is a prerequisite for the development of novel therapeutic strategies tailored to sex-specific needs and for studies on the effect of epilepsy and ASMs during pregnancy.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Hipocampo , Ácido Kaínico , Convulsiones , Animales , Ácido Kaínico/toxicidad , Femenino , Anticonvulsivantes/farmacología , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/patología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Ratones Endogámicos C57BL , Electroencefalografía , Diazepam/farmacología
3.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38527652

RESUMEN

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Asunto(s)
Lesiones Encefálicas , Estado Epiléptico , Ratas , Animales , Diazepam/farmacología , Midazolam/farmacología , Midazolam/uso terapéutico , Isoflurofato/farmacología , Organofosfatos , Enfermedades Neuroinflamatorias , Neuroprotección , Ratas Sprague-Dawley , Encéfalo/metabolismo , Benzodiazepinas/farmacología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Tomografía de Emisión de Positrones , Proteínas Portadoras/metabolismo , Imagen por Resonancia Magnética , Lesiones Encefálicas/metabolismo , Atrofia/patología
4.
Biomed Pharmacother ; 172: 116212, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364734

RESUMEN

Plant polysaccharides have biological activities in the brain and those obtained from Genipa americana leaves present antioxidant and anticonvulsant effects in the mice model of pentylenetetrazole (PTZ)-induced acute seizures. This study aimed to evaluate the polysaccharide-rich extract of Genipa americana leaves (PRE-Ga) in the models of acute seizures and chronic epilepsy (kindling) induced by PTZ. In the acute seizure model, male Swiss mice (25-35 g) received PRE-Ga (1 or 9 mg/kg; intraperitoneal- IP), alone or associated with diazepam (0.01 mg/kg), 30 min before induction of seizures with PTZ (70 mg/kg; IP). In the chronic epilepsy model, seizures were induced by PTZ (40 mg/kg) 30 min after treatment and in alternated days up to 30 days and evaluated by video. Brain areas (prefrontal cortex, hippocampus, striatum) were assessed for inflammatory and oxidative stress markers. Diazepam associated to PRE-Ga (9 mg/kg; i.p.) increased the latency of seizures in acute (222.4 ± 47.57 vs. saline: 62.00 ± 4.709 s) and chronic models (6.267 ± 0.502 vs. saline: 4.067 ± 0.407 s). In hippocampus, PRE-Ga (9 mg/kg) inhibited TNF-α (105.9 ± 5.38 vs. PTZ: 133.5 ± 7.62 pmol/g) and malondialdehyde (MDA) (473.6 ± 60.51) in the chronic model. PTZ increased glial fibrillar acid proteins (GFAP) and Iba-1 in hippocampus, which was reversed by PRE-Ga (GFAP: 1.9 ± 0.23 vs PTZ: 3.1 ± 1.3 and Iba-1: 2.2 ± 0.8 vs PTZ: 3.2 ± 1.4). PRE-Ga presents neuroprotector effect in the mice model of epilepsy induced by pentylenetetrazole reducing seizures, gliosis, inflammatory cytokines and oxidative stress.


Asunto(s)
Epilepsia , Pentilenotetrazol , Animales , Ratones , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/prevención & control , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Estrés Oxidativo , Diazepam/farmacología , Diazepam/uso terapéutico , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
5.
J Subst Use Addict Treat ; 160: 209307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309436

RESUMEN

INTRODUCTION: Precipitated opioid withdrawal syndrome (OWS) is a severe and intolerable situation that may occur by a pharmaceutical agent. Reactivation of inhibited N-methyl-d-aspartate (NMDA) receptor in person with prolonged opioid use can led to severe OWS. We conducted a double-blind, randomized clinical trial to assess the effect of magnesium sulfate (MGSO4) as an NMDA receptor antagonist on OWS. MATERIALS AND METHODS: The study randomly divided forty patients with precipitated OWS due to partial agonist (buprenorphine) use referred to the emergency unit of Toxicology Department of Mashhad University of Medical Sciences, Iran; into two groups. The control group received conventional therapies, including clonidine 0.1 mg tablet each hour, intravenous infusion of 10 mg diazepam every 30 min, and IV paracetamol (Acetaminophen) 1 g, while the intervention group received 3 g of MGSO4 in 20 min and then 10 mg/kg/h up to 2 h, in addition to the conventional treatment. The clinical opiate withdrawal scale (COWS) evaluated OWS at the start of the treatment, 30 min, and 2 h later. RESULTS: Both groups had similar demographic, opiate types, and COWS severity at the start of the intervention. COWS was lower in the intervention than the control group at 30 min (11.20 ± 2.86 and 14.65 ± 2.36, respectively, P = 0.002) and at 2 h (3.2 ± 1.61 and 11.25 ± 3.27, respectively, P < 0.001) after treatment. The intervention group received lesser doses of clonidine (0.12 ± 0.51 and 0.17 ± 0.45 mg, P = 0.003) and Diazepam (13.50 ± 5.87, 24.0 ± 6.80 mg, P = 0.001) than the control group. Serum magnesium levels raised from 1.71 ± 0.13 mmol/L to 2.73 ± 0.13 mmol/L in the intervention group. CONCLUSION: Magnesium can significantly reduce the severity of OWS. Additional studies are required to confirm these results.


Asunto(s)
Buprenorfina , Sulfato de Magnesio , Síndrome de Abstinencia a Sustancias , Humanos , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Buprenorfina/administración & dosificación , Buprenorfina/uso terapéutico , Buprenorfina/efectos adversos , Masculino , Adulto , Femenino , Método Doble Ciego , Sulfato de Magnesio/administración & dosificación , Sulfato de Magnesio/uso terapéutico , Sulfato de Magnesio/farmacología , Sulfato de Magnesio/efectos adversos , Trastornos Relacionados con Opioides/tratamiento farmacológico , Persona de Mediana Edad , Clonidina/administración & dosificación , Clonidina/uso terapéutico , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/uso terapéutico , Quimioterapia Combinada , Irán , Acetaminofén/administración & dosificación , Acetaminofén/uso terapéutico , Acetaminofén/efectos adversos , Diazepam/uso terapéutico , Diazepam/administración & dosificación , Diazepam/efectos adversos , Diazepam/farmacología , Adulto Joven
6.
Neurochem Int ; 175: 105704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395152

RESUMEN

This study aimed to investigate the anticonvulsant effects of citronellal (CIT) and possible underlying mechanisms through an isoniazid (INH)-induced seizure (convulsion) via in vivo and in silico studies. For this, convulsions were induced by the oral administration of INH (300 mg/kg) to the mice. The animals were treated orally with different doses of CIT (50, 100, and 200 mg/kg). Vehicle served as a negative control (NC), while diazepam (DZP) (2 mg/kg) and carbamazepine (CAR) (80 mg/kg) were provided (p.o.) as positive controls (PC). A combination therapy of CIT (middle dose) with DZP and CAR was also given to two separate groups of animals to estimate the synergistic or antagonistic effects. Molecular docking and visualization of ligand-receptor interactions are also estimated through different computational tools. The results of the in vivo study showed that CIT dose-dependently significantly (p < 0.05) exhibited a higher onset of seizures while reducing the frequency and duration of seizures in mice compared to the NC group. Besides these, in combination therapy, CIT significantly antagonized the activity of CAR and DZP, leading to a reduction in the onset of seizures and an increase in their frequency and duration compared to treatment with CAR and DZP alone. Additionally, molecular docking revealed that the CIT exhibited a moderate binding affinity (-5.8 kcal/mol) towards the GABAA receptor and a relative binding affinity (-5.3 kcal/mol) towards the voltage-gated sodium channel receptor by forming several bonds. In conclusion, CIT showed moderate anticonvulsant activity in INH-induced convulsion animals, possibly by enhancing GABAA receptor activity and inhibiting the voltage-gated sodium channel receptor.


Asunto(s)
Monoterpenos Acíclicos , Aldehídos , Anticonvulsivantes , Receptores de GABA-A , Ratones , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Simulación del Acoplamiento Molecular , Diazepam/farmacología , Diazepam/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Benzodiazepinas
7.
Phytother Res ; 38(5): 2198-2214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38414297

RESUMEN

Quercetin is the most common polyphenolic flavonoid present in fruits and vegetables demonstrating versatile health-promoting effects. This study aimed to examine the effects of quercetin (QR) and sclareol (SCL) on the thiopental sodium (TS)-induced sleeping and forced swimming test (FST) mouse models. SCL (1, 5, and 10 mg/kg, p.o.) or QR (50 mg/kg, p.o.) and/or diazepam (DZP) (3 mg/kg, i.p.) were employed. After 30 min of TS induction, individual or combined effects on the animals were checked. In the FST test, the animals were subjected to forced swimming after 30 min of administration of the test and/or controls for 5 min. In this case, immobility time was measured. In silico studies were conducted to evaluate the involvement of GABA receptors. SCL (5 and 10 mg/kg) significantly increased the latency and decreased sleeping time compared to the control in the TS-induced sleeping time study. DZP (3 mg/kg) showed a sedative-like effect in animals in both sleeping and FST studies. QR (50 mg/kg) exhibited a similar pattern of activity as SCL. However, its effects were more prominent than those of SCL groups. SCL (10 mg/kg) altered the DZP-3-mediated effects. SCL-10 co-treated with QR-50 significantly (p < 0.05) increased the latency and decreased sleep time and immobility time, suggesting possible synergistic antidepressant-like effects. In silico studies revealed that SCL and QR demonstrated better binding affinities with GABAA receptor, especially α2, α3, and α5 subunits. Both compounds also exhibited good ADMET and drug-like properties. In animal studies, the both compounds worked synergistically to provide antidepressant-like effects in a slightly different fashion. As a conclusion, the combined administration of SCL and QR may be used in upcoming neurological clinical trials, according to in vivo and in silico findings. However, additional investigation is necessary to verify this behavior and clarify the potential mechanism of action.


Asunto(s)
Antidepresivos , Diazepam , Quercetina , Sueño , Tiopental , Animales , Ratones , Antidepresivos/farmacología , Masculino , Quercetina/farmacología , Diazepam/farmacología , Sueño/efectos de los fármacos , Tiopental/farmacología , Natación , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Hipnóticos y Sedantes/farmacología , Receptores de GABA-A/metabolismo
8.
Horm Behav ; 161: 105518, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422863

RESUMEN

Benzodiazepines undermine the success of exposure therapy in humans with anxiety disorders, and impair the long-term memory of fear extinction (the laboratory basis of exposure therapy) in rodents. However, most rodent studies on fear extinction and benzodiazepines have been conducted in male rodents. In female rodents, the estrous cycle influences the consolidation of fear extinction memories and sensitivity to benzodiazepines. In addition, pregnancy leads to long-term changes in the neurobiological, hormonal, and behavioural features of fear extinction, as well as the responsivity to benzodiazepines. Therefore, the present experiments examined the impact of benzodiazepines on fear extinction in female rats with and without reproductive experience. Age-matched nulliparous (no reproductive experience) and primiparous (one prior reproductive experience; tested one-month post-weaning) rats received fear conditioning to a discrete cue. The next day, rats were administered the benzodiazepine diazepam (2 mg/kg, s.c), or vehicle, prior to or immediately after extinction training. Rats were then tested the next day, drug free, for extinction retention. Similar to previous findings in males, diazepam impaired extinction retention in both nulliparous and primiparous rats when administered either pre- or post-extinction training. These findings may have potential clinical implications as they suggest that benzodiazepine use in conjunction with exposure therapy may undermine long-term treatment success in women with and without reproductive experience, although this remains to be tested in human populations. Moreover, these findings are theoretically important when considered in light of previous studies showing dissociable mechanisms of fear extinction in females pre- versus post-pregnancy.


Asunto(s)
Diazepam , Extinción Psicológica , Miedo , Paridad , Animales , Femenino , Miedo/efectos de los fármacos , Diazepam/farmacología , Extinción Psicológica/efectos de los fármacos , Ratas , Embarazo , Paridad/fisiología , Paridad/efectos de los fármacos , Ansiolíticos/farmacología , Condicionamiento Clásico/efectos de los fármacos , Ratas Sprague-Dawley
9.
Sci Rep ; 14(1): 316, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172353

RESUMEN

Heart rate variability (HRV) is one of the assessments of cardiovascular risk during general anesthesia. This study aimed to assess the effects of an anesthetic drug on HRV in cats and to provide information for clinical applications. Twenty-four healthy client-owned cats of various breeds, 12 females and 12 males scheduled for elective surgery, were enrolled in this study. The cats were premedicated and induced with 4 protocols: protocol 1, diazepam (0.3 mg/kg) and propofol (2-4 mg/kg) IV; protocol 2, diazepam (0.3 mg/kg) and alfaxalone (1-3 mg/kg) IV; protocol 3, diazepam (0.3 mg/kg) and ketamine (3-5 mg/kg) IV; and protocol 4, xylazine (1 mg/kg) and tiletamine/zolazepam (Zoletil) (5 mg/kg) IM. The heart rate and HRV of the 24 cats were collected before and at least 1 h after administering the anesthetic drugs. Echocardiography was performed to evaluate heart function. Oscillometric blood pressure monitoring was used to obtain the mean blood pressure. After anesthetic drug administration, higher heart rates were found in cats premedicated and induced with alfaxalone (p = 0.045) than in the other protocols. The lowest heart rate (HR) values were found in cats in protocol 4 using xylazine and Zoletil. The HRV low frequency (LF) and high frequency (HF) power ratios increased in all protocols except for cats premedicated and intubated with propofol. The standard deviation of the regular sinus beats (SDNN) was higher in cats premedicated and induced with ketamine than in other anesthetic protocols (p = 0.015). An increase in sympathetic activity and reduced HRV is associated with high blood pressure and left atrial dimension. The percentage of fractional shortening (FS) decreased in cats premedicated with ketamine. The results showed that the anesthesia method using diazepam and propofol caused the least disturbance of HRV compared with other anesthesia methods that were used in this study.


Asunto(s)
Anestésicos , Ketamina , Propofol , Humanos , Masculino , Femenino , Animales , Gatos , Ketamina/farmacología , Frecuencia Cardíaca , Propofol/farmacología , Xilazina/farmacología , Anestésicos/farmacología , Diazepam/farmacología , Anestesia General/efectos adversos , Ecocardiografía
10.
Pharmacol Biochem Behav ; 235: 173687, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016594

RESUMEN

Diclazepam, a designer benzodiazepine, is a lesser-known novel anxiolytic substance and a structural analog of diazepam. Although several case studies have reported the adverse effects of diclazepam, their potential impacts remain unknown. Therefore, this study aimed to determine the effects of diclazepam in rodents using drug discrimination, locomotor activity, self-administration (SA), and conditioned place preference (CPP) tests. Sprague-Dawley rats (male, 8 weeks old, weighing 220-450 g, n = 12 per group) and C57BL/6 mice (male, 7 weeks old, weighing 20-25 g, n = 7-8 per group) were administered alprazolam, morphine, and diclazepam. Diclazepam fully elicited alprazolam-appropriate dose-dependent lever responses (>80 %) similar to those of alprazolam. In rats administered 0.5 mg/kg of morphine, a partial substitution (80 %-20 %) was observed. Mice receiving intraperitoneal injections of diclazepam (0.05, 0.2, and 2 mg/kg) showed decreased locomotor activity. In the SA experiment, mice that self-administered intravenous diclazepam (2 µg/kg/infusion) showed significantly higher infusion and active lever responses compared to the vehicle group. No statistically significant rewarding effects of diclazepam at the doses of 0.2 and 2 mg/kg evaluated using the CPP paradigm were found. In conclusion, diclazepam has reinforcing effects and shares the interoceptive effects of alprazolam. Therefore, legal restrictions on the use of diclazepam should be carefully considered.


Asunto(s)
Alprazolam , Benzodiazepinas , Roedores , Ratas , Ratones , Masculino , Animales , Alprazolam/farmacología , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Diazepam/farmacología , Morfina/farmacología , Relación Dosis-Respuesta a Droga
11.
J Ethnopharmacol ; 322: 117597, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38128891

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The recent growing concerns about the multisystemic nature of mental health conditions in the global population are facilitating a new paradigm involving alternative natural, nutritional, and complementary therapies. Herbal remedies despite accounts in literature of their ethnobotanical as alternative remedies for diverse ailments, remain underexplored for psychiatric disorders like anxiety, depression, and insomnia. AIM OF THE STUDY: Hence, the anxiolytic, antidepressant, and antioxidant properties of a hydro-ethanolic leaf extract of Parquetina nigrescens (PN) in male Wistar rats were investigated. MATERIALS AND METHODS: The sedative effect was evaluated using the Diazepam sleeping time test while anxiety was induced with a single intraperitoneal injection of 20 mg/kg pentylenetetrazol (PTZ). This was after pre-treatment with 100, 150, and 250 mg/kg of PN or the standard drugs (1 mg/kg diazepam and 30 mg/kg imipramine) for 14 consecutive days. Behavioral tests (Open Field test, Elevated Plus-Maze test, and Forced Swim test) were performed on days 1 and 14, to evaluate the antidepressant and anxiolytic activities of PN. Oxidative stress and neurochemical markers were determined in the brain homogenates of the animals. RESULTS: The duration of sleep was significantly (p < 0.001) increased in the PN-administered group compared to the control. The behavioral models showed that PN exhibited antidepressant and anxiolytic properties in PTZ-induced animals. Significant reductions were observed in GSH level and SOD activity while MDA, nitrite, and GPx levels were significantly increased in PTZ-induced rats. However, treatment with PN significantly improved brain antioxidant status by ameliorating the PTZ-induced oxidative stress. Dopamine, cortisol, and acetylcholine esterase activity levels were significantly (p < 0.05) elevated while serotonin and brain-derived neurotrophic factors were reduced in PTZ-induced rats compared with the control. CONCLUSION: The PN demonstrated neurotransmitter modulatory ability by ameliorating the PTZ-induced neurochemical dysfunction. Findings from this study showed that PN exhibited sedative, antidepressant, and anxiolytic activities in rats.


Asunto(s)
Ansiolíticos , Humanos , Ratas , Masculino , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ratas Wistar , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Diazepam/farmacología , Diazepam/uso terapéutico , Hipnóticos y Sedantes/farmacología , Conducta Animal , Depresión/tratamiento farmacológico
12.
ASN Neuro ; 15: 17590914231214116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38031405

RESUMEN

Pharmacological stimulation/antagonism of astrocyte glio-peptide octadecaneuropeptide signaling alters ventromedial hypothalamic nucleus (VMN) counterregulatory γ-aminobutyric acid (GABA) and nitric oxide transmission. The current research used newly developed capillary zone electrophoresis-mass spectrometry methods to investigate hypoglycemia effects on VMN octadecaneuropeptide content, along with gene knockdown tools to determine if octadecaneuropeptide signaling regulates these transmitters during eu- and/or hypoglycemia. Hypoglycemia caused dissimilar adjustments in the octadecaneuropeptide precursor, i.e., diazepam-binding-inhibitor and octadecaneuropeptide levels in dorsomedial versus ventrolateral VMN. Intra-VMN diazepam-binding-inhibitor siRNA administration decreased baseline 67 and 65 kDa glutamate decarboxylase mRNA levels in GABAergic neurons laser-microdissected from each location, but only affected hypoglycemic transcript expression in ventrolateral VMN. This knockdown therapy imposed dissimilar effects on eu- and hypoglycemic glucokinase and 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) gene profiles in dorsomedial versus ventrolateral GABAergic neurons. Diazepam-binding-inhibitor gene silencing up-regulated baseline (dorsomedial) or hypoglycemic (ventrolateral) nitrergic neuron neuronal nitric oxide synthase mRNA profiles. Baseline nitrergic cell glucokinase mRNA was up- (ventrolateral) or down- (dorsomedial) regulated by diazepam-binding-inhibitor siRNA, but knockdown enhanced hypoglycemic profiles in both sites. Nitrergic nerve cell AMPKα1 and -α2 transcripts exhibited division-specific responses to this genetic manipulation during eu- and hypoglycemia. Results document the utility of capillary zone electrophoresis-mass spectrometric tools for quantification of ODN in small-volume brain tissue samples. Data show that hypoglycemia has dissimilar effects on ODN signaling in the two major neuroanatomical divisions of the VMN and that this glio-peptide imposes differential control of glucose-regulatory neurotransmission in the VMNdm versus VMNvl during eu- and hypoglycemia.


Asunto(s)
Glucosa , Hipoglucemia , Ratas , Animales , Glucosa/metabolismo , Núcleo Hipotalámico Ventromedial , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , Ratas Sprague-Dawley , Inhibidor de la Unión a Diazepam/metabolismo , Inhibidor de la Unión a Diazepam/farmacología , Glucoquinasa/metabolismo , Glucoquinasa/farmacología , Glucógeno/metabolismo , Hipoglucemia/genética , Hipoglucemia/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Diazepam/metabolismo , Diazepam/farmacología
13.
Biomed Pharmacother ; 169: 115859, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37948993

RESUMEN

Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.


Asunto(s)
Ansiolíticos , Complejo Nuclear Basolateral , Ratas , Animales , Complejo Nuclear Basolateral/metabolismo , Ansiolíticos/farmacología , Lipoilación , Actividad Motora , Ansiedad/metabolismo , Diazepam/farmacología
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 783-788, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37927020

RESUMEN

Objective To explore the inhibitory effects and mechanisms of benzodiazepines on Helicobacter pylori (Hp).Methods The Hp international standard strain ATCC43504 was treated with benzodiazepines diazepam,midazolam,and remimazolam,respectively.The treatments with amoxicillin and clarithromycin were taken as the positive controls,and that with water for injection as the negative control.The inhibition zone of each drug was measured by the disk diffusion method.The minimum inhibitory concentration(MIC)and minimum bactericidal concentration(MBC)of each drug against Hp were determined.Hp suspension was configured and treated with diazepam and midazolam,respectively.The bacterial suspension without drug added was used as the control group.The concentration of K+ in each bacterial suspension was measured by an automatic biochemical analyzer before drug intervention(T0)and 1(T1),2(T2),3(T3),4(T4),5(T5),6(T6),and 7 h(T7)after intervention.Hp urease was extracted and treated with 1/2 MIC diazepam,1 MIC diazepam,2 MIC diazepam,1/2 MIC midazolam,1 MIC midazolam,2 MIC midazolam,1 mg/ml acetohydroxamic acid,and water for injection,respectively.The time required for the rise from pH 6.8 to pH 7.7 in each group was determined by the phenol red coloring method.Results The inhibition zones of diazepam,midazolam,remimazolam,amoxicillin,clarithromycin,and water for injection against Hp were 52.3,42.7,6.0,72.3,60.8,and 6.0 mm,respectively.Diazepam and midazolam showed the MIC of 12.5 µg/ml and 25.0 µg/ml and the MBC of 25 µg/ml and 50 µg/ml,respectively,to Hp.The concentrations of K+ in the diazepam,midazolam,and control groups increased during T1-T7 compared with those at T0(all P<0.01).The concentration of K+ in diazepam and midazolam groups during T1-T4 was higher than that in the control group(all P<0.01).The time of inhibiting urease activity in the 1/2 MIC diazepam,1 MIC diazepam,2 MIC diazepam,1/2 MIC midazolam,1 MIC midazolam,and 2 MIC midazolam groups was(39.86±5.11),(36.52±6.65),(38.58±4.83),(39.25±6.19),(36.36±4.61),and(35.81±6.18)min,respectively,which were shorter than that in the acetohydroxamic acid group(all P<0.01)and had no significance differences from that in the water for injection group(all P>0.05).Conclusion Diazepam and midazolam exerted inhibitory effects on Hp,which may be related to the cleavage of Hp cells rather than inhibiting urease.


Asunto(s)
Helicobacter pylori , Midazolam , Ureasa , Claritromicina/farmacología , Benzodiazepinas/farmacología , Diazepam/farmacología , Amoxicilina , Agua , Antibacterianos/farmacología
15.
Brain Res Bull ; 203: 110768, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739234

RESUMEN

BACKGROUND: Stellaria dichotoma L. var. lanceolata Bge. is renowned for its efficacy in "clearing deficiency heat" and represents a significant traditional Chinese medicine (TCM) resource. Modern pharmacology has demonstrated the anti-anxiety effects of Stellaria dichotoma L. var. lanceolata Bge. polysaccharides (SDPs). SDPs are one of the active constituents of Stellaria dichotoma L. var. lanceolata Bge. This study presents the first extraction of SDPs and investigates their potential molecular mechanisms and anxiolytic effects that are not previously reported. METHODS: First, SDPs were obtained by water extraction and alcohol precipitation and analyzed for their monosaccharide composition by high performance liquid chromatography (HPLC). Male SD rats were subjected to a two-week indeterminate empty bottle stress procedure and a three-day acute restraint stress procedure, during which diazepam (DZP) (1 mg/kg) and SDPs (50, 100 and 200 mg/kg, intragastrically) were administered. A number of behavioral tests, including the elevated plus maze test (EPM), the open field test (OFT) and the light/dark box test (LDB), were used to assess the anti-anxiety potential of SDPs. Serum levels of Corticosterone (CORT) and Adrenocorticotropic hormone (ACTH), as well as the levels of Dopamine (DA) and serotonin (5-HT) found in the hippocampus and frontal cortex, were quantified using commercially available enzyme-linked immunosorbent assay (ELISA) kits. In addition, protein levels of key proteins cAMP-response element binding protein (CREB), phospho-CREB (p-CREB), brain-derived neurotrophic factor (BDNF), ERK½, p-ERK½, and GAPDH expression in rat hippocampus were measured by Western blot analysis, and modulation of the endocannabinoid system was assessed by immunohistochemistry. RESULTS: Following administration of SDPs (50, 100, 200 mg/kg) and diazepam 1 mg/kg, anxiolytic activity was exhibited through an increase in the percentage of arm opening times and arm opening time of rats in the elevated plus maze. Additionally, there was an increase in the number of times and time spent in the open field center, percentage of time spent in the open box, and shuttle times in the LDB. Furthermore, tissue levels of DA and 5-HT were increased in the hippocampus and frontal cortex of rats after treatment with SDPs. In addition, SDPs significantly decreased serum levels of CORT and ACTH in rats. SDPs also effectively regulated the phosphorylation of the extracellular regulated protein kinases (ERK) and CREB-BDNF pathway in the hippocampus. Moreover, the expression levels of CB1 and CB2 proteins were heightened due to SDPs treatment in rats. CONCLUSIONS: The study verified that SDPs alleviate anxiety in the EBS and ARS. The neuroregulatory behavior is accomplished by regulating the Monoamine neurotransmitter, HPA axis, and ECB-ERK-CREB-BDNF signaling pathway.


Asunto(s)
Ansiolíticos , Ratas , Masculino , Animales , Ansiolíticos/farmacología , Ansiolíticos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Sprague-Dawley , Proteínas Quinasas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Serotonina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Transducción de Señal , Hipocampo/metabolismo , Dopamina/metabolismo , Hormona Adrenocorticotrópica , Diazepam/farmacología , Neurotransmisores/metabolismo
16.
Physiol Rep ; 11(17): e15800, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688418

RESUMEN

The aim of our study is to investigate the electrophysiological and anti-inflammatory effects of diclofenac potassium on epileptiform activity, which is the liquid form of diclofenac, and frequently used clinically for inflammatory process by inhibiting cyclooxygenase enzyme (COX). Wistar rats aged 2-4 months were divided into Epilepsy, Diazepam, Diclofenac potassium, and Diazepam+diclofenac potassium groups. Diazepam and diclofenac potassium were administered intraperitoneally 30 min after the epileptiform activity was created with penicillin injected intracortically under anesthesia. After the electrophysiological recording was taken in the cortex for 125 min, interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated by the ELISA in the serums. No change was observed between the groups in serum IL-1ß, IL-6, and TNF-α values. It was observed that the co-administration of diclofenac potassium and diazepam at 51-55, 56-60, 61-65, 111-115, and 116-120 min was more effective in reducing spike amplitude than diclofenac potassium alone (p < 0.05). Single-dose diclofenac potassium did not have an anti-inflammatory effect in epileptiform activity but both diazepam and diclofenac potassium reduced the epileptiform activity.


Asunto(s)
Diclofenaco , Interleucina-6 , Ratas , Animales , Ratas Wistar , Diclofenaco/farmacología , Factor de Necrosis Tumoral alfa , Ciclooxigenasa 2 , Diazepam/farmacología , Antiinflamatorios/farmacología
17.
Neurobiol Dis ; 185: 106248, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536384

RESUMEN

Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Ratones , Animales , Diazepam/farmacología , Receptores de GABA-A/metabolismo , Benzodiazepinas/farmacología , Encéfalo/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/farmacología , Transmisión Sináptica
18.
Psychopharmacology (Berl) ; 240(12): 2515-2528, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37581635

RESUMEN

OVERVIEW: Reproductive experience (pregnancy and motherhood) leads to long-term changes in the neurobiological and hormonal features of anxiety in rats and humans. The aim of this study was to examine whether reproductive experience alters the effects of two pharmacological treatments for anxiety, a benzodiazepine (diazepam) and a selective serotonin reuptake inhibitor (fluoxetine), on animal models of anxiety. METHODS: In Experiment 1, virgin (n = 47) and age-matched mother (n = 50) rats at 1-month post-weaning were injected with diazepam (1.3 mg/kg or 1.7 mg/kg, i.p.) or vehicle, in the proestrus (high estradiol/progesterone/allopregnanolone) or metestrus (low estradiol/progesterone/allopregnanolone) phase of the estrous cycle 30 min prior to the elevated plus maze (EPM). In Experiment 2, virgin (n = 25) and mother rats (n = 20) were administered fluoxetine (10 mg/kg) or vehicle for 2 weeks prior to being tested on a Pavlovian fear conditioning and extinction protocol, and the EPM. RESULTS: Replicating past research, in virgin rats, the low dose of diazepam produced anxiolytic-like effects in proestrus, but only the high dose was anxiolytic-like in metestrus. In contrast, in mother rats, both doses of diazepam were anxiolytic-like irrespective of estrous phase. Fluoxetine produced anxiogenic-like effects in virgin rats during fear extinction and the EPM, but had no behavioural effects in mothers. In contrast, fluoxetine increased plasma corticosterone levels measured 30-min post-EPM in mothers, but not virgin rats. CONCLUSIONS: Reproductive experience alters the dose responsivity and efficacy of common anti-anxiety medications in female rats. These findings highlight the importance of considering reproductive status in studies on anxiety and its treatment.


Asunto(s)
Ansiolíticos , Diazepam , Embarazo , Humanos , Ratas , Femenino , Animales , Diazepam/farmacología , Fluoxetina/farmacología , Miedo , Corticosterona , Ansiolíticos/farmacología , Progesterona/farmacología , Extinción Psicológica , Pregnanolona/farmacología , Ansiedad/tratamiento farmacológico , Estradiol/farmacología
19.
Epilepsy Res ; 195: 107198, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467703

RESUMEN

BACKGROUND: The timely abortion of status epilepticus (SE) is essential to avoid brain damage and long-term neurodevelopmental sequalae. However, available anti-seizure treatments fail to abort SE in 30% of children. Given the role of the tropomyosin-related kinase B (TrkB) receptor in hyperexcitability, we investigated if TrkB blockade with lestaurtinib (CEP-701) enhances the response of SE to a standard treatment protocol and reduces SE-related brain injury. METHODS: SE was induced with intra-amygdalar kainic acid in postnatal day 45 rats under continuous electroencephalogram (EEG). Fifteen min post-SE onset, rats received intraperitoneal (i.p.) CEP-701 (KCEP group) or its vehicle (KV group). Controls received CEP-701 or its vehicle following intra-amygdalar saline. All groups received two i.p. doses of diazepam, followed by i.p. levetiracetam at 15 min intervals post-SE onset. Hippocampal TrkB dimer to monomer ratios were assessed by immunoblot 24 hr post-SE, along with neuronal densities and glial fibrillary acid protein (GFAP) levels. RESULTS: SE duration was 50% shorter in the KCEP group compared to KV (p < 0.05). Compared to controls, SE induced a 1.5-fold increase in TrkB dimerization in KV rats (p < 0.05), but not in KCEP rats which were comparable to controls (p > 0.05). The KCEP group had lower GFAP levels than KV (p < 0.05), and both were higher than controls (p < 0.05). KCEP and KV rats had comparable hippocampal neuronal densities (p > 0.05), and both were lower than controls (p < 0.05). CONCLUSIONS: Given its established human safety, CEP-701 is a promising adjuvant drug for the timely abortion of SE and the attenuation of SE-related brain injury.


Asunto(s)
Lesiones Encefálicas , Estado Epiléptico , Niño , Humanos , Ratas , Animales , Furanos/efectos adversos , Furanos/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Diazepam/farmacología , Diazepam/uso terapéutico , Lesiones Encefálicas/metabolismo , Hipocampo/metabolismo
20.
Brain Res ; 1817: 148481, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429455

RESUMEN

Active avoidance (AA) is an adaptive response to potentially harmful situations while maladapted avoidance that does not extinguish is one of the core symptoms of anxiety and post-traumatic stress disorder. However, the neural mechanisms of AA extinction and its relationship to anxiety remain unclear. We examined AA extinction during three extinction training sessions in two-way active avoidance paradigm and tested the effect of anxiolytic on AA extinction. Then we performed a meta-analysis of rodent studies, identified anxiolytic diazepam facilitates AA acquisition, and tested the same treatment in AA extinction. Diazepam-treated rats significantly reduced avoidance in the first two extinction training, compared with the saline-treated rats, and the reduction in avoidance remained in the third drug-free session. Then we explored extinction associated hippocampal and amygdala activity in saline-and diazepam-treated rats using c-Fos immunostaining following the last extinction session. The density of c-Fos positive cells was higher in dorsal CA3 of the diazepam group than in that of saline-treated animals, and was also higher in the central and basolateral amygdala regions of diazepam-treated rats than in that of saline-treated animals. Combined, these results suggest anxiolytics promotes AA extinction associated with dorsal CA3 and amygdala activity changes.


Asunto(s)
Ansiolíticos , Diazepam , Ratas , Animales , Diazepam/farmacología , Ansiolíticos/farmacología , Extinción Psicológica/fisiología , Amígdala del Cerebelo/metabolismo , Ansiedad/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Reacción de Prevención/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...