Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1860(2): 586-599, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29179995

RESUMEN

Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1H NMR and 31P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F0 sector, and thereby increase ATP synthesis.


Asunto(s)
Cardiolipinas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Diciclohexilcarbodiimida/metabolismo , Espectroscopía de Resonancia Magnética , Mitocondrias Cardíacas/metabolismo , Modelos Biológicos , Simulación del Acoplamiento Molecular , Unión Proteica , Protones , Liposomas Unilamelares/metabolismo
2.
Biochimie ; 93(7): 1157-64, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21530606

RESUMEN

Tributyltin (TBT), a persistent lipophilic contaminant found especially in the aquatic environment, is known to be toxic to mitochondria with the F(1)F(0)-ATPase as main target. Recently our research group pointed out that in mussel digestive gland mitochondria TBT, apart from decreasing the catalytic efficiency of Mg-ATPase activity, at concentrations ≥1.0 µM in the ATPase reaction medium lessens the enzyme inhibition promoted by the specific inhibitor oligomycin. The present work aims at casting light on the mechanisms involved in the TBT-driven enzyme desensitization to inhibitors, a poorly explored field. The mitochondrial Mg-ATPase desensitization is shown to be confined to inhibitors of transmembrane domain F(0), namely oligomycin and N,N'-dicyclohexylcarbodiimide (DCCD). Accordingly, quercetin, which binds to catalytic portion F(1), maintains its inhibitory efficiency in the presence of TBT. Among the possible mechanisms involved in the Mg-ATPase desensitization to oligomycin by ≥1.0 µM TBT concentrations, a structural detachment of the two F(1) and F(0) domains does not occur according to experimental data. On the other hand TBT covalently binds to thiol groups on the enzyme structure, which are apparently only available at TBT concentrations approaching 20 µM. TBT is able to interact with multiple sites on the enzyme structure by bonds of different nature. While electrostatic interactions with F(0) proton channel are likely to be responsible for the ATPase activity inhibition, possible changes in the redox state of thiol groups on the protein structure due to TBT binding may promote structural changes in the enzyme structure leading to the observed F(1)F(0)-ATPase oligomycin sensitivity loss.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Mytilus/enzimología , Oligomicinas/toxicidad , Compuestos de Trialquiltina/toxicidad , Algoritmos , Animales , Antioxidantes/metabolismo , Antioxidantes/toxicidad , Sitios de Unión , Biocatálisis/efectos de los fármacos , Diciclohexilcarbodiimida/metabolismo , Diciclohexilcarbodiimida/toxicidad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Cinética , Magnesio/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Oligomicinas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Unión Proteica , Quercetina/metabolismo , Quercetina/toxicidad , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Trialquiltina/metabolismo
3.
J Microbiol Biotechnol ; 19(1): 37-41, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19190406

RESUMEN

Previous studies have demonstrated that Shewanella decolorationis S12 can grow on the azo compound amaranth as the sole electron acceptor. Thus, to explore the mechanism of energy generation in this metabolism, membranous vesicles (MVs) were prepared and the mechanism of energy generation investigated. The membrane, which was fragmentized during preparation, automatically formed vesicles ranging from 37.5-112.5 nm in diameter under electron micrograph observation. Energy was conserved when coupling the azoreduction by the MVs of an azo compound or Fe(III) as the sole electron acceptor with H2, formate, or lactate as the electron donor. The amaranth reduction by the vesicles was found to be inhibited by specific respiratory inhibitors, including Cu(2+) ions, dicumarol, stigmatellin, and metyrapone, indicating that the azoreduction was indeed a respiration reaction. This finding was further confirmed by the fact that the ATP synthesis was repressed by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). Therefore, this study offers solid evidence of a mechanism of microbial dissimilatory azoreduction on a subcell level.


Asunto(s)
Colorante de Amaranto/metabolismo , Shewanella/metabolismo , Adenosina Trifosfato/biosíntesis , Antibacterianos/farmacología , Membrana Celular/ultraestructura , Cobre/farmacología , Dicumarol/farmacología , Diciclohexilcarbodiimida/metabolismo , Transporte de Electrón/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Compuestos Férricos/metabolismo , Isótopos , Metirapona/farmacología , Oxidación-Reducción , Polienos/farmacología , Sustancias Reductoras/metabolismo , Shewanella/ultraestructura , Oligoelementos , Desacopladores/farmacología
4.
J Biol Chem ; 284(16): 10747-54, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19240022

RESUMEN

This paper describes the role of alpha-subunit VISIT-DG sequence residues alphaSer-347 and alphaGly-351 in catalytic sites of Escherichia coli F(1)F(o) ATP synthase. X-ray structures show the very highly conserved alpha-subunit VISIT-DG sequence in close proximity to the conserved phosphate-binding residues alphaArg-376, betaArg-182, betaLys-155, and betaArg-246 in the phosphate-binding subdomain. Mutations alphaS347Q and alphaG351Q caused loss of oxidative phosphorylation and reduced ATPase activity of F(1)F(o) in membranes by 100- and 150-fold, respectively, whereas alphaS347A mutation showed only a 13-fold loss of activity and also retained some oxidative phosphorylation activity. The ATPase of alphaS347Q mutant was not inhibited, and the alphaS347A mutant was slightly inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium, in contrast to wild type and alphaG351Q mutant. Whereas 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl) inhibited wild type and alphaG351Q mutant ATPase essentially completely, ATPase in alphaS347A or alphaS347Q mutant was inhibited maximally by approximately 80-90%, although reaction still occurred at residue betaTyr-297, proximal to the alpha-subunit VISIT-DG sequence, near the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts inbetaE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type and alphaG351Q mutant but not in alphaS347Q or alphaS347A mutant. The results demonstrate that alphaSer-347 is an additional residue involved in phosphate-binding and transition state stabilization in ATP synthase catalytic sites. In contrast, alphaGly-351, although strongly conserved and clearly important for function, appears not to play a direct role.


Asunto(s)
Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/genética , Escherichia coli/enzimología , Glicina/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Serina/metabolismo , 4-Cloro-7-nitrobenzofurazano/metabolismo , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico , Diciclohexilcarbodiimida/metabolismo , Ditiotreitol/metabolismo , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/metabolismo , Alineación de Secuencia
5.
Folia Microbiol (Praha) ; 53(3): 237-40, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18661300

RESUMEN

The biochemical basis of a defective bioenergetic system was attempted to be determined in N,N'-dicyclohexylcarbodiimide (DCCD)-resistant mutant of Methanothermobacter thermautotrophicus. Components participating in the maintenance of methanoarchaeal membrane structure and function, such as the composition of the mixture of squalene and its hydrosqualene derivatives and also properties of membrane-associated proteins were compared in wild-type and mutant cells. The impairment of the bioenergetic system in DCCD-resistant mutant was detectable in the membrane-protein profile; it was also accompanied by changes in proportions of squalene-hydrosqualenes.


Asunto(s)
Membrana Celular/metabolismo , Diciclohexilcarbodiimida/farmacología , Farmacorresistencia Microbiana , Proteínas de la Membrana/metabolismo , Methanobacteriaceae/efectos de los fármacos , Escualeno/metabolismo , Diciclohexilcarbodiimida/metabolismo , Metabolismo Energético , Proteínas de la Membrana/genética , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Mutación , Escualeno/química
6.
Anal Sci ; 24(7): 895-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18614832

RESUMEN

An amperometric horseradish peroxidase (HRP) inhibition biosensor has been substantially constructed by the help of N,N-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS). The preparation steps and the biosensor response to phenylhydrazine were monitored by electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and chronoamperometry. The proposed biosensor could be applied to determine phenylhydrazine in a 0.10 M phosphate buffer solution containing 1.2 mM hydroquinone and 0.50 mM H(2)O(2) by phenylhydrazine, inhibiting the catalytic activity of the HRP enzyme in the reduction of H(2)O(2). The system was optimized to realize a reliable determination of phenylhydrazine in the range of 2.5 x 10(-7) to 1.1 x 10(-6) M with a detection limit of 8.2 x 10(-8) M and a correlation coefficient of 0.999. The modified electrode displayed good reproducibility, sensitivity and stability for the determination of phenylhydrazine.


Asunto(s)
Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/antagonistas & inhibidores , Fenilhidrazinas/análisis , Análisis Espectral/métodos , Técnicas Biosensibles/instrumentación , Tampones (Química) , Catálisis , Diciclohexilcarbodiimida/química , Diciclohexilcarbodiimida/metabolismo , Impedancia Eléctrica , Electroquímica , Enzimas Inmovilizadas , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Soluciones , Análisis Espectral/instrumentación , Succinimidas/química , Succinimidas/metabolismo
7.
J Biol Chem ; 283(13): 8434-45, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18070876

RESUMEN

The photosystem II subunit PsbS is essential for excess energy dissipation (qE); however, both lutein and zeaxanthin are needed for its full activation. Based on previous work, two models can be proposed in which PsbS is either 1) the gene product where the quenching activity is located or 2) a proton-sensing trigger that activates the quencher molecules. The first hypothesis requires xanthophyll binding to two PsbS-binding sites, each activated by the protonation of a dicyclohexylcarbodiimide-binding lumen-exposed glutamic acid residue. To assess the existence and properties of these xanthophyll-binding sites, PsbS point mutants on each of the two Glu residues PsbS E122Q and PsbS E226Q were crossed with the npq1/npq4 and lut2/npq4 mutants lacking zeaxanthin and lutein, respectively. Double mutants E122Q/npq1 and E226Q/npq1 had no qE, whereas E122Q/lut2 and E226Q/lut2 showed a strong qE reduction with respect to both lut2 and single glutamate mutants. These findings exclude a specific interaction between lutein or zeaxanthin and a dicyclohexylcarbodiimide-binding site and suggest that the dependence of nonphotochemical quenching on xanthophyll composition is not due to pigment binding to PsbS. To verify, in vitro, the capacity of xanthophylls to bind PsbS, we have produced recombinant PsbS refolded with purified pigments and shown that Raman signals, previously attributed to PsbS-zeaxanthin interactions, are in fact due to xanthophyll aggregation. We conclude that the xanthophyll dependence of qE is not due to PsbS but to other pigment-binding proteins, probably of the Lhcb type.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Xantófilas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Dicroismo Circular , Diciclohexilcarbodiimida/metabolismo , Genotipo , Mutación/genética , Fenotipo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Espectrometría Raman
8.
Biochemistry ; 46(42): 11800-9, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17910472

RESUMEN

The F1F0 ATP synthase utilizes energy stored in an electrochemical gradient of protons (or Na+ ions) across the membrane to synthesize ATP from ADP and phosphate. Current models predict that the protonation/deprotonation of specific acidic c ring residues is at the core of the proton translocation mechanism by this enzyme. To probe the mode of proton binding, we measured the covalent modification of the acidic c ring residues with the inhibitor dicyclohexylcarbodiimide (DCCD) over the pH range from 5 to 11. With the H+-translocating ATP synthase from the archaeum Halobacterium salinarium or the Na+-translocating ATP synthase from Ilyobacter tartaricus, the pH profile of DCCD labeling followed a titration curve with a pKa around neutral, reflecting protonation of the acidic c ring residues. However, with the ATP synthases from Escherichia coli, mitochondria, or chloroplasts, a clearly different, bell-shaped pH profile for DCCD labeling was observed which is not compatible with carboxylate protonation but might be explained by the coordination of a hydronium ion as proposed earlier [Boyer, P. D. (1988) Trends Biochem. Sci. 13, 5-7]. Upon site-directed mutagenesis of single binding site residues of the structurally resolved c ring, the sigmoidal pH profile for DCCD labeling could be converted to a more bell-shaped one, demonstrating that the different ion binding modes are based on subtle changes in the amino acid sequence of the protein. The concept of two different binding sites in the ATP synthase family is supported by the ATP hydrolysis pH profiles of the investigated enzymes.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Subunidades de Proteína/química , Protones , Sodio/química , Adenosina Trifosfato/biosíntesis , Animales , ATPasas de Translocación de Protón Bacterianas/genética , Sitios de Unión , Bovinos , Membrana Celular/metabolismo , Cloroplastos/enzimología , Diciclohexilcarbodiimida/metabolismo , Diciclohexilcarbodiimida/farmacología , Escherichia coli/enzimología , Escherichia coli/genética , Fusobacterias/enzimología , Fusobacterias/genética , Eliminación de Gen , Halobacterium salinarum/enzimología , Concentración de Iones de Hidrógeno , Hidrólisis , Mitocondrias Cardíacas/enzimología , Modelos Biológicos , Mutación , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Rotación , Sodio/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Spinacia oleracea/citología , Especificidad por Sustrato
9.
BMC Biochem ; 8: 20, 2007 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17949503

RESUMEN

BACKGROUND: Type I hexokinase (HK-I) constitutes the predominant form of the enzyme in the brain, a major portion of which is associated with the outer mitochondrial membrane involving two sets of binding sites. In addition to the glucose-6-phosphate (G6P)-sensitive site (Type A), the enzyme is bound on a second set of sites (Type B) which are, while insensitive to G6P, totally releasable by use of high concentrations of chaotropic salts such as KSCN. Results obtained on release of HK-I from these "sites" suggested the possibility for the existence of distinct populations of the bound enzyme, differing in susceptibility to release by G6P. RESULTS: In the present study, the sensitivity of HK-I toward release by G6P (2 mM) and a low concentration of KSCN (45 mM) was investigated using rat brain, bovine brain and human brain mitochondria. Partial release from the G6P-insensitive site occurred without disruption of the mitochondrial membrane as a whole and as related to HK-I binding to the G6P-sensitive site. While, as expected, the sequential regime release-rebinding-release was observed on site A, no rebinding was detectable on site B, pre-treated with 45 mM KSCN. Also, no binding was detectable on mitochondria upon blocking site A for HK-I binding utilizing dicyclohexylcarbodiimide (DCCD), followed by subsequent treatment with KSCN. These observations while confirmed the previously-published results on the overall properties of the two sites, demonstrated for the first time that the reversible association of the enzyme on mitochondria is uniquely related to the Type A site. CONCLUSION: Use of very low concentrations of KSCN at about 10% of the level previously reported to cause total release of HK-I from the G6P- insensitive site, caused partial release from this site in a reproducible manner. In contrast to site A, no rebinding of the enzyme takes place on site B, suggesting that site A is 'the only physiologically-important site in relation to the release-rebinding of the enzyme which occur in response to the energy requirements of the brain. Based on the results presented, a possible physiological role for distribution of the enzyme between the two sites on the mitochondrion is proposed.


Asunto(s)
Encéfalo/citología , Encéfalo/enzimología , Hexoquinasa/metabolismo , Isoenzimas/metabolismo , Mitocondrias/enzimología , Animales , Sitios de Unión , Bovinos , Diciclohexilcarbodiimida/metabolismo , Glucosa-6-Fosfato/metabolismo , Hexoquinasa/antagonistas & inhibidores , Humanos , Isoenzimas/antagonistas & inhibidores , Membranas Mitocondriales/enzimología , Unión Proteica , Ratas , Tiocianatos/metabolismo
10.
Biochemistry ; 43(38): 12297-305, 2004 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-15379568

RESUMEN

The macrolide antibiotic concanamycin A and a designed derivative of 5-(2-indolyl)-2,4-pentadienamide (INDOL0) are potent inhibitors of vacuolar H(+)-ATPases, with IC(50) values in the low and medium nanomolar range, respectively. Interaction of these V-ATPase inhibitors with spin-labeled subunit c in the transmembrane V(o)-sector of the ATPase was studied by using the transport-active 16-kDa proteolipid analogue of subunit c from the hepatopancreas of Nephrops norvegicus. Analogous experiments were also performed with vacuolar membranes from Saccharomyces cerevisiae. Membranous preparations of the Nephrops 16-kDa proteolipid were spin-labeled either on the unique cysteine C54, with a nitroxyl maleimide, or on the functionally essential glutamate E140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). These residues were previously demonstrated to be accessible to lipid. Interaction of the inhibitors with these lipid-exposed residues was studied by using both conventional and saturation transfer EPR spectroscopy. Immobilization of the spin-labeled residues by the inhibitors was observed on both the nanosecond and microsecond time scales. The perturbation by INDOL0 was mostly greater than that by concanamycin A. Qualitatively similar but quantitatively greater effects were obtained with the same spin-label reagents and vacuolar membranes in which the Nephrops 16-kDa proteolipid was expressed in place of the native vma3p proteolipid of yeast. The spin-label immobilization corresponds to a direct interaction of the inhibitors with these intramembranous sites on the protein. A mutational analysis on transmembrane segment 4 known to give resistance to concanamycin A also gave partial resistance to INDOL0. The results are consistent with transmembrane segments 2 and 4 of the 16-kDa putative four-helix bundle, and particularly the functionally essential protonation locus, being involved in the inhibitor binding sites. Inhibition of proton transport may also involve immobilization of the overall rotation of the proteolipid subunit assembly.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Animales , Sitios de Unión , Diciclohexilcarbodiimida/análogos & derivados , Diciclohexilcarbodiimida/metabolismo , Diciclohexilcarbodiimida/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Inhibidores Enzimáticos/química , Concentración 50 Inhibidora , Membranas Intracelulares/metabolismo , Macrólidos/metabolismo , Macrólidos/farmacología , Estructura Molecular , Nephropidae/citología , Nephropidae/enzimología , Proteolípidos/química , Proteolípidos/metabolismo , Protones , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Marcadores de Spin , Temperatura , ATPasas de Translocación de Protón Vacuolares/química
11.
Eur J Biochem ; 271(14): 3036-42, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15233800

RESUMEN

Subunit b is indispensable for the formation of a functional H(+)-translocating F(O) complex both in vivo and in vitro. Whereas the very C-terminus of subunit b interacts with F(1) and plays a crucial role in enzyme assembly, the C-terminal region is also considered to be necessary for proper reconstitution of F(O) into liposomes. Here, we show that a synthetic peptide, residues 1-34 of subunit b (b(1-34)) [Dmitriev, O., Jones, P.C., Jiang, W. & Fillingame, R.H. (1999) J. Biol. Chem.274, 15598-15604], corresponding to the membrane domain of subunit b was sufficient in forming an active F(O) complex when coreconstituted with purified ac subcomplex. H(+) translocation was shown to be sensitive to the specific inhibitor N,N'-dicyclohexylcarbodiimide, and the resulting F(O) complexes were deficient in binding of isolated F(1). This demonstrates that only the membrane part of subunit b is sufficient, as well as necessary, for H(+) translocation across the membrane, whereas the binding of F(1) to F(O) is mainly triggered by C-terminal residues beyond Glu34 in subunit b. Comparison of the data with former reconstitution experiments additionally indicated that parts of the hydrophilic portion of the subunit b dimer are not involved in the process of ion translocation itself, but might organize subunits a and c in F(O) assembly. Furthermore, the data obtained functionally support the monomeric NMR structure of the synthetic b(1-34).


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Subunidades de Proteína/metabolismo , Transporte Biológico , Diciclohexilcarbodiimida/metabolismo , Proteínas de Escherichia coli/genética , Liposomas/metabolismo , Sustancias Macromoleculares , ATPasas de Translocación de Protón Mitocondriales/genética , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Protones
12.
Arch Biochem Biophys ; 418(1): 93-7, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-13679087

RESUMEN

In isolated spinach chloroplasts, low concentrations (I(50)=14 microM) of methyl trachyloban-19-oate ester inhibited ATP synthesis and coupled electron transport as well as light-activated membrane-bound Mg(2+)-ATPase activity. Basal (-Pi) and uncoupled electron transport and heat-activated Ca(2+)-dependent ATPase activity of isolated coupling factor proteins were unaffected by methyl trachyloban-19-oate. Thylakoids partially stripped of coupled factor by EDTA were unable to accumulate protons in the light. However, increasing concentrations of methyl trachyloban-19-oate ester restored this ability. It is concluded that the methyl trachyloban-19-oate ester effects result from blocking proton transport through the CF(0) channel. Methyl trachyloban-19-oate ester exhibited non-competitive kinetics with DCCD and triphenyltin. These results suggest that the natural products, DCCD and triphenyltin, access inhibition sites in CF(0). The K(i) is 75 microM.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Diterpenos/metabolismo , Spinacia oleracea/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/química , Cloroplastos/química , Diciclohexilcarbodiimida/química , Diciclohexilcarbodiimida/metabolismo , Diterpenos/química , Compuestos Orgánicos de Estaño/química , Compuestos Orgánicos de Estaño/metabolismo , Spinacia oleracea/química
13.
J Mol Biol ; 325(2): 389-97, 2003 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-12488103

RESUMEN

The Na(+)-translocating ATP synthases from Ilyobacter tartaricus and Propionigenium modestum contain undecameric c subunit rings of unusual stability. These c(11) rings have been isolated from both ATP synthases and crystallized in two dimensions. Cryo-transmission electron microscopy projection maps of the c-rings from both organisms were identical at 7A resolution. Different crystal contacts were induced after treatment of the crystals with dicyclohexylcarbodiimide (DCCD), which is consistent with the binding of the inhibitor to glutamate 65 in the C-terminal helix on the outside of the ring. The c subunits of the isolated c(11) ring of I.tartaricus were modified specifically by incubation with DCCD with kinetics that were indistinguishable from those of the F(1)F(o) holoenzyme. The reaction rate increased with decreasing pH but was lower in the presence of Na(+). From the pH profile of the second-order rate constants, the pK of glutamate 65 was deduced to be 6.6 or 6.2 in the absence or presence of 0.5mM NaCl, respectively. These pK values are identical with those determined for the F(1)F(o) complex. The results indicate that the isolated c-ring retains its native structure, and that the glutamate 65, including binding sites near the middle of the membrane, are accessible to Na(+) from the cytoplasm through access channels within the c-ring itself.


Asunto(s)
Proteínas Bacterianas/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Sodio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Cristalización , Diciclohexilcarbodiimida/metabolismo , Ácido Glutámico/metabolismo , Complejos Multienzimáticos , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , ATPasas de Translocación de Protón/aislamiento & purificación
14.
Curr Microbiol ; 45(4): 261-4, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12192523

RESUMEN

We have investigated the characteristics of zinc biosorption by Aphanothece halophytica. Zinc could be rapidly taken up from aqueous solution by the cells with an equilibrium being reached within 15 min of incubation with 100 mg L(-1) ZnCl(2). The adsorbed zinc was desorbed by treatment with 10 mM EDTA. The presence of glucose, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) did not affect the uptake of zinc. The specific uptake of zinc increased at low cell concentration and decreased when cell concentration exceeded 0.2 g L(-1). The binding of zinc followed Langmuir isotherm kinetics with a maximum zinc binding capacity of 133 mg g(-1) and an apparent zinc binding constant of 28 mg L(-1). The presence of an equimolar concentration of Mn(2+), Mg(2+), Co(2+), K(+), or Na(+) had no effect on zinc biosorption, whereas Ca(2+), Hg(2+), and Pb(2+) showed an inhibitory effect. The biosorption of zinc was low at a pH range from 4 to 6, but increased progressively at pH 6.5 and 7.


Asunto(s)
Cianobacterias/metabolismo , Zinc/metabolismo , Adsorción , Biodegradación Ambiental , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Cianobacterias/clasificación , Diciclohexilcarbodiimida/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Soluciones/química , Factores de Tiempo
15.
J Bioenerg Biomembr ; 34(2): 81-8, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12018891

RESUMEN

Dicyclohexylcarbodiimide (DCCD) binds covalently to an acidic amino acid located in the cd loop connecting membrane-spanning helices C and D of cytochrome b resulting in an inhibition of proton translocation in the cytochrome bc1 complex with minimal effects on the steady state rate of electron transfer. Single turnover studies performed with the yeast cytochrome bc1 complex indicated that the initial phase of cytochrome b reduction was inhibited 25-45% in the DCCD-treated cytochrome bc1 complex, while the rate of cytochrome c1 reduction was unaffected. Simulations by molecular modeling predict that binding of DCCD to glutamate 163 located in the cd2 loop of cytochrome b of chicken liver mitochondria results in major conformational changes in the protein. The conformation of the cd loop and the end of helix C appeared twisted with a concomitant rearrangement of the amino acid residues of both cd1 and cd2 loops. The predicted rearrangement of the amino acid residues of the cd loop results in disruptions of the hydrogen bonds predicted to form between amino acid residues of the cd and ef loops. Simultaneously, two new hydrogen bonds are predicted to form between glutamate 272 and two residues, aspartate 253 and tyrosine 272. Formation of these new hydrogen bonds would restrict the rotation and protonation of glutamate 272, which may be necessary for the release of the second electrogenic proton obtained during ubiquinol oxidation in the bc1 complex.


Asunto(s)
Diciclohexilcarbodiimida/farmacología , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/efectos de los fármacos , Sitios de Unión , Diciclohexilcarbodiimida/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Ácido Glutámico/química , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica/efectos de los fármacos , Protones , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 98(15): 8519-24, 2001 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-11438702

RESUMEN

Subunit rotation within the F(1) catalytic sector of the ATP synthase has been well documented, identifying the synthase as the smallest known rotary motor. In the membrane-embedded F(O) sector, it is thought that proton transport occurs at a rotor/stator interface between the oligomeric ring of c subunits (rotor) and the single-copy a subunit (stator). Here we report evidence for an energy-dependent rotation at this interface. F(O)F(1) was expressed with a pair of substituted cysteines positioned to allow an intersubunit disulfide crosslink between subunit a and a c subunit [aN214C/cM65C; Jiang, W. & Fillingame, R. H. (1998) Proc. Natl. Acad. Sci. USA 95, 6607--6612]. Membranes were treated with N,N'-dicyclohexyl-[(14)C]carbodiimide to radiolabel the D61 residue on less than 20% of the c subunits. After oxidation to form an a--c crosslink, the c subunit properly aligned to crosslink to subunit a was found to contain very little (14)C label relative to other members of the c ring. However, exposure to MgATP before oxidation significantly increased the radiolabel in the a-c crosslink, indicating that a different c subunit was now aligned with subunit a. This increase was not induced by exposure to MgADP/P(i). Furthermore, preincubation with MgADP and azide to inhibit F(1) or with high concentrations of N,N'-dicyclohexylcarbodiimide to label most c subunits prevented the ATP effect. These results provide evidence for an energy-dependent rotation of the c ring relative to subunit a.


Asunto(s)
ATPasas de Translocación de Protón/química , Adenosina Trifosfato/metabolismo , Reactivos de Enlaces Cruzados , Diciclohexilcarbodiimida/metabolismo , Transferencia de Energía , Inhibidores Enzimáticos/metabolismo , Escherichia coli/enzimología , Conformación Proteica , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/metabolismo
17.
Nat Struct Biol ; 7(11): 1055-61, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11062563

RESUMEN

The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Animales , Sitios de Unión , Catálisis/efectos de los fármacos , Dominio Catalítico , Bovinos , Cristalización , Cristalografía por Rayos X , Diciclohexilcarbodiimida/metabolismo , Diciclohexilcarbodiimida/farmacología , Sustancias Macromoleculares , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína , Fuerza Protón-Motriz , ATPasas de Translocación de Protón/antagonistas & inhibidores , Rotación , Relación Estructura-Actividad
18.
J Bioenerg Biomembr ; 32(6): 617-26, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15254375

RESUMEN

The role of subunit III in the function of mitochondrial cytochrome c oxidase is not clearly understood. Previous work has shown that chemical modification of subunit III with N,N'-dicyclohexylcarbodiimide (DCCD) reduced the proton-pumping efficiency of the enzyme by an unknown mechanism. In the current work, we have employed biochemical approaches to determine if a conformational change is occurring within subunit III after DCCD modification. Control and DCCD modified beef heart enzyme were subjected to limited proteolysis in nondenaturing detergent solution. Subunit III in DCCD treated enzyme was more susceptible to chymotrypsin digestion than subunit III in the control enzyme. We also labeled control and DCCD-modified enzyme with iodoacetyl-biotin, a sulfhydryl reagent, and found that subunit III of the DCCD-modified enzyme was more reactive when compared to subunit III of the control enzyme, indicating an increase in reactivity of subunit III upon DCCD binding. The cross linking of subunit III of the enzyme induced by the heterobifunctional reagent, N-succinimidyl(4-azidophenyl -1,3'-dithio)-propionate (SADP), was inhibited by DCCD modification, suggesting that DCCD binding prevents the intersubunit cross linking of subunit III. Our results suggest that DCCD modification of subunit III causes a conformational change, which most likely disrupts critical hydrogen bonds within the subunit and also those at the interface between subunits III and I in the enzyme. The conformational change induced in subunit III by covalent DCCD binding is the most likely mechanism for the previously observed inhibition of proton-pumping activity.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Mitocondrias Cardíacas/enzimología , Animales , Azidas , Biotina , Bovinos , Reactivos de Enlaces Cruzados , Diciclohexilcarbodiimida/metabolismo , Diciclohexilcarbodiimida/farmacología , Complejo IV de Transporte de Electrones/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Electroforesis en Gel de Poliacrilamida , Técnicas In Vitro , Ácido Yodoacético , Conformación Proteica/efectos de los fármacos , Subunidades de Proteína , Reactivos de Sulfhidrilo
19.
Biochem J ; 340 ( Pt 3): 821-8, 1999 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10359669

RESUMEN

alpha-Synuclein is a component of the abnormal protein depositions in senile plaques and Lewy bodies of Alzheimer's disease (AD) and Parkinson's disease respectively. The protein was suggested to provide a possible nucleation centre for plaque formation in AD via selective interaction with amyloid beta/A4 protein (Abeta). We have shown previously that alpha-synuclein has experienced self-oligomerization when Abeta25-35 was present in an orientation-specific manner in the sequence. Here we examine this biochemically specific self-oligomerization with the use of various metals. Strikingly, copper(II) was the most effective metal ion affecting alpha-synuclein to form self-oligomers in the presence of coupling reagents such as dicyclohexylcarbodi-imide or N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline. The size distribution of the oligomers indicated that monomeric alpha-synuclein was oligomerized sequentially. The copper-induced oligomerization was shown to be suppressed as the acidic C-terminus of alpha-synuclein was truncated by treatment with endoproteinase Asp-N. In contrast, the Abeta25-35-induced oligomerizations of the intact and truncated forms of alpha-synuclein were not affected. This clearly indicated that the copper-induced oligomerization was dependent on the acidic C-terminal region and that its underlying biochemical mechanism was distinct from that of the Abeta25-35-induced oligomerization. Although the physiological or pathological relevance of the oligomerization remains currently elusive, the common outcome of alpha-synuclein on treatment with copper or Abeta25-35 might be useful in understanding neurodegenerative disorders in molecular terms. In addition, abnormal copper homoeostasis could be considered as one of the risk factors for the development of disorders such as AD or Parkinson's disease.


Asunto(s)
Cobre/farmacología , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/farmacología , Sitios de Unión , Cationes/farmacología , Cromatografía Líquida de Alta Presión , Diciclohexilcarbodiimida/metabolismo , Endopeptidasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Espectrometría de Masas , Metaloendopeptidasas , Metales/farmacología , Peso Molecular , Proteínas del Tejido Nervioso/química , Enfermedad de Parkinson/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Quinolinas/metabolismo , Sinucleínas , alfa-Sinucleína
20.
EMBO J ; 17(20): 5887-95, 1998 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-9774333

RESUMEN

The mechanism by which ion-flux through the membrane-bound motor module (F0) induces rotational torque, driving the rotation of the gamma subunit, was probed with a Na+-translocating hybrid ATP synthase. The ATP-dependent occlusion of 1 (22)Na+ per ATP synthase persisted after modification of the c subunit ring with dicyclohexylcarbodiimide (DCCD), when 22Na+ was added first and ATP second, but not if the order of addition was reversed. These results support the model of ATP-driven rotation of the c subunit oligomer (rotor) versus subunit a (stator) that stops when either a 22Na+-loaded or a DCCD-modified rotor subunit reaches the Na+-impermeable stator. The ATP synthase with a Na+-permeable stator catalyzed 22Na+out/Na+in-exchange after reconstitution into proteoliposomes, which was not significantly affected by DCCD modification of the c subunit oligomer, but was abolished by the additional presence of ATP or by a membrane potential (DeltaPsi) of 90 mV. We propose that in the idling mode of the motor, Na+ ions are shuttled across the membrane by limited back and forth movements of the rotor against the stator. This motional flexibility is arrested if either ATP or DeltaPsi induces the switch from idling into a directed rotation. The Propionigenium modestum ATP synthase catalyzed ATP formation with DeltaPsi of 60-125 mV but not with DeltapNa+ of 195 mV. These results demonstrate that electric forces are essential for ATP synthesis and lead to a new concept of rotary-torque generation in the ATP synthase motor.


Asunto(s)
ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/biosíntesis , Diciclohexilcarbodiimida/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Bacterias Anaerobias Gramnegativas/enzimología , Bacterias Anaerobias Gramnegativas/genética , Liposomas/química , Liposomas/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sodio/metabolismo , Radioisótopos de Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA