Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.235
Filtrar
1.
Chemosphere ; 358: 142222, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714249

RESUMEN

In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties. It was observed that the Support Vector Regression (SVR) presented a poor performance as the ε hyperparameter ignored large error over low concentration levels. Meanwhile, the Artificial Neural Networks (ANN) model was able to provide rough estimations on the expected degradation of the pollutants without requiring information regarding reaction rate constants. The multi-objective optimization analysis suggested a leading role due to ozone kinetic for a rapid degradation of the contaminants and most of the results required intensification with hydrogen peroxide and Fenton process. Although both models were affected by accuracy limitations, this work provided a lightweight model to evaluate different Advanced Oxidation Processes (AOPs) by providing general information regarding the process operational conditions as well as know molecular and catalytic properties.


Asunto(s)
Diclofenaco , Peróxido de Hidrógeno , Ibuprofeno , Aprendizaje Automático , Redes Neurales de la Computación , Diclofenaco/química , Peróxido de Hidrógeno/química , Ibuprofeno/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cafeína/química , Oxidación-Reducción , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Ozono/química , Máquina de Vectores de Soporte , Análisis Costo-Beneficio , Rayos Ultravioleta , Catálisis , Fotólisis
2.
Chemosphere ; 358: 142112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677613

RESUMEN

The treatment of waterborne micropollutants, such as diclofenac, presents a significant challenge to wastewater treatment plants due to their incomplete removal by conventional methods. Ozonation is an effective technique for the degradation of micropollutants. However, incomplete oxidation can lead to the formation of ecotoxic by-products that require a subsequent post-treatment step. In this study, we analyze the susceptibility of micropollutant ozonation products to enzymatic digestion with laccase from Trametes versicolor to evaluate the potential of enzymatic treatment as a post-ozonation step. The omnipresent micropollutant diclofenac is used as an example, and the enzymatic degradation kinetics of all 14 detected ozonation products are analyzed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and tandem mass spectrometry (MS2). The analysis shows that most of the ozonation products are responsive to chemo-enzymatic treatment but show considerable variation in enzymatic degradation kinetics and efficiencies. Mechanistic investigation of representative transformation products reveals that the hydroxylated aromatic nature of the ozonation products matches the substrate spectrum, facilitating their rapid recognition as substrates by laccase. However, after initiation by laccase, the subsequent chemical pathway of the enzymatically formed radicals determines the global degradability observed in the enzymatic process. Substrates capable of forming stable molecular oxidation products inhibit complete detoxification by oligomerization. This emphasizes that it is not the enzymatic uptake of the substrates but the channelling of the reaction of the substrate radicals towards the oligomerization of the substrate radicals that is the key step in the further development of an enzymatic treatment step for wastewater applications.


Asunto(s)
Diclofenaco , Lacasa , Oxidación-Reducción , Ozono , Aguas Residuales , Contaminantes Químicos del Agua , Diclofenaco/química , Diclofenaco/metabolismo , Lacasa/metabolismo , Lacasa/química , Ozono/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales/química , Cinética , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Polyporaceae
3.
Chemosphere ; 356: 141956, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604514

RESUMEN

Emerging micropollutants, such as pharmaceuticals and microplastics (MPs), have become a pressing water environmental concern. The aim of this study is to synthesize chitosan sponges using graphene oxide (GO) and genipin (GP) for the removal of pharmaceuticals (diclofenac (DCF) and triclosan (TCS)) and MPs, verify their adsorption mechanisms, evaluate the effects of temperature, pH, and salinity on their adsorption capacities, and determine their reusability. The GO5/CS/GP sponge exhibited a macroporous nature (porosity = 95%, density = 32.6 mg/cm3). GO and cross-linker GP enhanced the adsorption of DCF, TCS, and polystyrene (PS) MPs onto the CS sponges. The adsorption of DCF, TCS, and PS MPs involved multiple steps: surface diffusion and pore diffusion of the sponge. The adsorption isotherms demonstrated that Langmuir model was the most fitted well model to explain adsorption of TCS (qm = 7.08 mg/g) and PS MPs (qm = 7.42 mg/g) on GO5/CS/GP sponge, while Freundlich model suited for DCF adsorption (qm = 48.58 mg/g). DCF adsorption was thermodynamically spontaneous and endothermic; however, the adsorption of TCS and PS MPs was exothermic (283-313 K). The optimal pH was 5.5-7 due to the surface charge of the GO5/CS/GP sponge (pHzpc = 5.76) and ionization of DCF, TCS, and PS MPs. As the salinity increased, DCF removal efficiency drastically decreased due to the weakening of electrostatic interactions; however, TCS removal efficiency remained stable because TCS adsorption was mainly caused by hydrophobic and π-π interactions rather than electrostatic interaction. The removal of PS MPs was enhanced by the electrostatic screening effects of high Na+ ions. PS nanoplastics (average size = 26 nm) were removed by the GO5/CS/GP sponge at a rate of 73.0%, which was better than that of PS MPs (41.5%). In addition, the GO5/CS/GP sponge could be recycled over five adsorption-desorption cycles.


Asunto(s)
Quitosano , Diclofenaco , Grafito , Iridoides , Microplásticos , Triclosán , Contaminantes Químicos del Agua , Grafito/química , Diclofenaco/química , Quitosano/química , Adsorción , Contaminantes Químicos del Agua/química , Triclosán/química , Microplásticos/química , Iridoides/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
4.
Chemosphere ; 357: 141970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608776

RESUMEN

The extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from water bodies is imperative due to the potential harm to humans and the ecosystem caused by NSAID-contaminated water. Quaternary amino-functionalized epichlorohydrin cross-linked chitosan fibers (QECFs), an economical and eco-friendly adsorbent, were successfully prepared using a simple and gentle method for efficient diclofenac (DCF) adsorption. Additionally, the optimized factors for the preparation of QECFs included epichlorohydrin concentration, pH, temperature, and (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHTAC) concentration. QECFs demonstrated excellent adsorption performance for DCF across a broad pH range of 7-12. The calculated maximum adsorption capacity and the amount of adsorbed DCF per adsorption site were determined to be 987.5 ± 20.1 mg/g and 1.2 ± 0.2, respectively, according to the D-R and Hill isotherm models, at pH 7 within 180 min. This performance surpassed that of previously reported adsorbents. The regeneration of QECFs could be achieved using a 0.5 mol/L NaOH solution within 90 min, with QECFs retaining their original fiber form and experiencing only a 9.18% reduction in adsorption capacity after 5 cycles. The Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy were used to study the characterization of QECFs, the preparation mechanism of QECFs, and the adsorption mechanism of DCF by QECFs. Quaternary ammonium groups (R4N+) were well developed in QECFs through the reaction between amino/hydroxyl groups on chitosan and CHTAC, and approximately 0.98 CHTAC molecule with 0.98 R4N+ group were immobilized on each chitosan monomer. Additionally, these R4N+ on QECFs played a crucial role in the removal of DCF.


Asunto(s)
Antiinflamatorios no Esteroideos , Quitosano , Diclofenaco , Aguas Residuales , Contaminantes Químicos del Agua , Quitosano/química , Diclofenaco/química , Adsorción , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Concentración de Iones de Hidrógeno , Antiinflamatorios no Esteroideos/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Temperatura , Epiclorhidrina/química
5.
Int J Biol Macromol ; 268(Pt 1): 131476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614181

RESUMEN

This study involved creating oligomeric conjugates of 3-hydroxy fatty acids and diclofenac, named Dic-oligo(3HAs). Advanced NMR techniques confirmed no free diclofenac in the mix. We tested diclofenac release under conditions resembling healthy and chronic wound skin. These oligomers were used to make P(3HO) blends, forming patches for drug delivery. Their preparation used the solvent casting/porogen leaching (SCPL) method. The patches' properties like porosity, roughness, and wettability were thoroughly analysed. Antimicrobial assays showed that Dic-oligo(3HAs) exhibited antimicrobial activity against reference (S. aureus, S. epidermis, S. faecalis) and clinical (Staphylococcus spp.) strains. Human keratinocytes (HaCaT) cell line tests, as per ISO 10993-5, showed no toxicity. A clear link between material roughness and HaCaT cell adhesion was found. Deep cell infiltration was verified using DAPI and phalloidin staining, observed under confocal microscopy. SEM also confirmed HaCaT cell growth on these scaffolds. The strong adhesion and proliferation of HaCaT cells on these materials indicate their potential as wound dressing layers. Additionally, the successful diclofenac release tests point to their applicability in treating both normal and chronic wounds.


Asunto(s)
Diclofenaco , Piel , Diclofenaco/farmacología , Diclofenaco/química , Humanos , Piel/efectos de los fármacos , Regeneración/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/citología , Células HaCaT , Cicatrización de Heridas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fenómenos Químicos , Línea Celular , Polímeros/química , Porosidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
6.
Int J Pharm ; 655: 124034, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38531433

RESUMEN

The current investigation emphasizes the use of fucoidan and sericin as dual-role biomaterials for obtaining novel nanohybrid systems for the delivery of diclofenac sodium (DS) and the potential treatment of chronic inflammatory diseases. The innovative formulations containing 4 mg/ml of fucoidan and 3 mg/ml of sericin showed an average diameter of about 200 nm, a low polydispersity index (0.17) and a negative surface charge. The hybrid nanosystems demonstrated high stability at various pHs and temperatures, as well as in both saline and glucose solutions. The Rose Bengal assay evidenced that fucoidan is the primary modulator of relative surface hydrophobicity with a two-fold increase of this parameter when compared to sericin nanoparticles. The interaction between the drug and the nanohybrids was confirmed through FT-IR analysis. Moreover, the release profile of DS from the colloidal systems showed a prolonged and constant drug leakage over time both at pH 5 and 7. The DS-loaded nanohybrids (DIFUCOSIN) induced a significant decrease of IL-6 and IL-1ß with respect to the active compound in human chondrocytes evidencing a synergistic action of the individual components of nanosystems and the drug and demonstrating the potential application of the proposed nanomedicine for the treatment of inflammation.


Asunto(s)
Nanopartículas , Polisacáridos , Sericinas , Humanos , Diclofenaco/química , Sericinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Preparaciones Farmacéuticas , Cloruro de Sodio
7.
Int J Biol Macromol ; 265(Pt 1): 130758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462106

RESUMEN

Diclofenac sodium (DCF) was reported as an important emerging environmental pollutant and its removal from wastewater is very urgent. In this study, different alkyl substituted ionic liquids (1-alkyl -3-vinyl- imidazolium bromide [CnVIm]Br, n = 4, 6, 8, 10, 12) functionalized tragacanth gum (TG-CnBr) are prepared by radiation induced grafting and crosslinking polymerization. The adsorption behaviors of ionic liquids functionalized tragacanth gum for diclofenac sodium from aqueous solutions are examined. The adsorption capacity of TG-CnBr for diclofenac sodium increases with the increasing of alkyl chain length of the imidazolium cation and the hydrophobicity of the hydrogels. The maximum adsorption capacity by TG-C12Br for diclofenac sodium at 30, 40 and 50 °C were 327.87, 310.56 and 283.29 mg/g, respectively. The adsorption of TG-C12Br towards diclofenac sodium was little decreased with NaCl increasing. The removal efficiency was still remained 94.55 % within 5 adsorption-desorption cycles by 1 M HCl. Also, the adsorption mechanism including electrostatic attraction, hydrophobic interaction, hydrogen bonding, and π - π interaction was proposed.


Asunto(s)
Líquidos Iónicos , Tragacanto , Contaminantes Químicos del Agua , Diclofenaco/química , Tragacanto/química , Hidrogeles/química , Agua , Adsorción , Contaminantes Químicos del Agua/química
8.
Environ Sci Technol ; 58(8): 4019-4028, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38366980

RESUMEN

Humic acid (HA) ubiquitously existing in aquatic environments has been reported to significantly impact permanganate (KMnO4) decontamination processes. However, the underlying mechanism of the KMnO4/HA system remained elusive. In this study, an enhancing effect of HA on the KMnO4 oxidation of diclofenac (DCF) was observed over a wide solution pH range of 5-9. Surprisingly, the mechanism of HA-induced enhancement varied with solution pH. Quenching and chemical probing experiments revealed that manganese intermediates (Mn(III)-HA and MnO2) were responsible for the enhancement under acidic conditions but not under neutral and alkaline conditions. By combining KMnO4 decomposition, galvanic oxidation process experiments, electrochemical tests, and FTIR and XPS analysis, it was interestingly found that HA could effectively mediate the electron transfer from DCF to KMnO4 in neutral and alkaline solutions, which was reported for the first time. The formation of an organic-catalyst complex (i.e., HA-DCF) with lower reduction potential than the parent DCF was proposed to be responsible for the accelerated electron transfer from DCF to KMnO4. This electron transfer likely occurred within the complex molecule formed through the interaction between HA-DCF and KMnO4 (i.e., HA-DCF-KMnO4). These results will help us gain a more comprehensive understanding of the role of HA in the KMnO4 oxidation processes.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Óxidos/química , Compuestos de Manganeso/química , Sustancias Húmicas/análisis , Diclofenaco/química , Electrones , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
9.
Biol Pharm Bull ; 47(1): 213-220, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38057117

RESUMEN

Diclofenac instillation is useful in preventing intraoperative miosis and macular edema caused by postoperative inflammation in cataract surgery; however, optimum efficacy is not attained when the instilled diclofenac strongly binds to albumin in patients' aqueous humor. Therefore, a method that inhibits diclofenac binding and increases the concentration of its free fraction is needed. We conducted a basic study regarding the effects of inhibitors on the binding of instilled diclofenac to albumin and endogenous substances in aqueous humor. Aqueous humor samples from 16 patients were pooled together for analysis. The free fraction of diclofenac was measured using ultrafiltration methods in various experiments with pooled and mimic aqueous humor. Free fraction of diclofenac, a site II drug, in pooled aqueous humor was 0.363 ± 0.013. The binding of diclofenac in the presence of phenylbutazone (PB), a site I inhibitor, was significantly inhibited (free fraction = 0.496 ± 0.013); however, no significant inhibition by ibuprofen, a site II inhibitor, (free fraction = 0.379 ± 0.004), was observed. The unexpected result was due to free fatty acids (FFAs; palmitic acid (PA)) and L-tryptophan (Trp). The inhibition of diclofenac binding by PB in the mimic aqueous humor containing these endogenous substances revealed significant binding inhibition in the presence of PA and Trp. Diclofenac is strongly rebound from site II to site I in the presence of FFAs and Trp in the aqueous humor because FFAs and Trp induce a conformational change in albumin. Therefore, PB significantly inhibits the binding of diclofenac to albumin.


Asunto(s)
Catarata , Diclofenaco , Humanos , Diclofenaco/farmacología , Diclofenaco/uso terapéutico , Diclofenaco/química , Antiinflamatorios no Esteroideos/química , Humor Acuoso/metabolismo , Catarata/tratamiento farmacológico , Albúminas/metabolismo
10.
IEEE Trans Nanobioscience ; 23(1): 63-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37428669

RESUMEN

The current study developed a drug delivery system through the green chemistry-based synthesis of a biologically friendly metal-organic framework (bio-MOF) called Asp-Cu, which included copper ions and the environmentally friendly molecule L(+)-aspartic acid (Asp). For the first time, diclofenac sodium (DS) was loaded onto the synthesized bio-MOF simultaneously. The system's efficiency was then improved by encapsulating it with sodium alginate (SA). FT-IR, SEM, BET, TGA, and XRD analyses confirmed that DS@Cu-ASP was successfully synthesized. DS@Asp-Cu was found to release the total load within 2 h when used with simulated stomach media. This challenge was overcome by coating DS@Cu-ASP with SA (SA@DS@Cu-ASP). SA@DS@Cu-ASP displayed limited drug release at pH 1.2, and a higher percentage of the drug was released at pH 6.8 and 7.4 due to the pH-responsive nature of SA. In vitro cytotoxicity screening showed that SA@DS@Cu-ASP could be an appropriate biocompatible carrier with >90% cell viability. The on-command drug carrier was observed to be more applicable biocompatible with lower toxicity, as well as adequate loading properties and responsiveness, indicating its applicability as a feasible drug carrier with controlled release.


Asunto(s)
Diclofenaco , Estructuras Metalorgánicas , Diclofenaco/farmacología , Diclofenaco/química , Estructuras Metalorgánicas/química , Cobre/química , Espectroscopía Infrarroja por Transformada de Fourier , Portadores de Fármacos/química , Alginatos/química , Concentración de Iones de Hidrógeno
11.
J Inorg Biochem ; 249: 112400, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844532

RESUMEN

The recently isolated Sclerotinia sclerotiorum laccase was used for the degradation of sodium diclofenac, a nonsteroidal anti-inflammatory drug widely found in the aquatic environment. The Michaelis-Menten parameters, half-life of diclofenac at different pH values in presence of this enzyme and potential inhibitors were evaluated. Diclofenac-based radicals formed in presence of laccase were spin-trapped and detected using EPR spectroscopy. Almost complete diclofenac degradation (> 96%) occurred after a 30-h treatment via radical-based generated oligomers and their rapid precipitation, thus ensuring an unprecedented green formula suitable not only for degradation but also for straightforward removal of the degradation products. High performance liquid chromatography coupled with atmospheric pressure chemical ionization-ion trap mass spectrometry (HPLC-APCI-MS) analyses of the degradation products of diclofenac in aqueous dosage revealed the presence of at least seven products while HR Orbitrap MS analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical oligomerization mechanism of diclofenac. The enzymatically formed products precipitated and its constituting components were also characterized using UV-vis spectroscopy, infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA).


Asunto(s)
Diclofenaco , Lacasa , Diclofenaco/química , Lacasa/metabolismo , Antiinflamatorios no Esteroideos/química , Cromatografía Líquida de Alta Presión
12.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762616

RESUMEN

Alkali-activated persulfate (PS) is widely used in situ in chemical oxidation processes; however, studies on the innovation of the alkali activation process are very limited. Two supported solid superbases, namely KNO3/γ-Al2O3 (KAl) and KNO3/SBA-15/MgO (KSM), respectively, were prepared and used to activate persulfate to degrade DCF in this work. The results showed that the superbases elevated the solution pH once added and thus could catalyze persulfate to degrade diclofenac efficiently above pH 10.5. The catalytic efficiency of KAl was close to that of sodium hydroxide, and that of KSM was the highest. The mechanism might be that, in addition to raising the solution pH, some potassium existed as K2O2, which had a strong oxidizing effect and was conducive to DCF removal. Hydroxyl, sulfate and superoxide radicals were all found in the reaction system, among which hydroxyl might play the most important role. The material composition ratio, common anion and humic acid all had some influences on the catalytic efficiency. A total of five intermediates were found in the KSM/PS oxidation system, and six oxidation pathways, which were hydroxylation, dehydrogen, dechlorination, dehydration, decarboxylation, and C-N bond breakage, might be involved in the reaction process. Several highly toxic oxidation products that should be paid attention to were also proposed.


Asunto(s)
Diclofenaco , Contaminantes Químicos del Agua , Diclofenaco/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Sulfatos/química , Hidróxido de Sodio , Radical Hidroxilo/química
13.
Chemosphere ; 343: 140265, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758074

RESUMEN

A new class of environmental pollutants that have become a significant concern for the entire world's population over the last few decades are pharmaceutical contaminants due to the potential risks they pose to the environment and human health. An investigation on the photocatalytic degradation of four different model pharmaceutical contaminants: Tetracycline (TCT), Sulfamethoxazole (SMX), Chloroquine (CLQ), and Diclofenac (DCF) has been carried out using ZnO nanoparticles as the photocatalyst, and sunlight as the source of energy in a batch photocatalytic reactor. This process resulted in the degradation of about 51% for TCT, 65% for SMX, 61% for CLQ, and 55% for DCF within 30 min of solar irradiation. Complete degradation and COD reduction were achieved after a prolonged irradiation. The slow decay is attributed to the evolution of the intermediate compounds, which were identified using the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) method. The possible intermediates formed were identified for each molecule (i.e., TCT having 6 products, SMX, having 4 products, DCF having 8 products and CLQ having 8 products), and the mechanism for each pollutant is proposed. The effect on distinct operational parameters, like catalyst loading, and pH, environmentally relevant parameters such as ionic effect, and multiple contaminants system were investigated. It was found that the anions such as Cl-, SO42-, CO32-, HCO3-, NO3-, F-, Br-, and I-both individually as well as in combination had no effect on the degradation except for SMX. For multiple component systems, when two pollutants are mixed, each pollutant affects the degradation of the other and in the case of CLQ/TCT system, CLQ inhibits the degradation of TCT drastically. The study demonstrates that ZnO is an effective and convenient option for photocatalytic decontamination of water sources contaminated with a variety of pharmaceutical contaminants.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Óxido de Zinc , Humanos , Luz Solar , Óxido de Zinc/química , Agua , Descontaminación , Diclofenaco/química , Sulfametoxazol , Contaminantes Ambientales/análisis , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis
14.
Int J Pharm ; 644: 123353, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37647976

RESUMEN

In recent years, advancements in bioengineering and materials science have witnessed increasing interest in synthetic polymers capable of fulfilling various applications. Owing to their distinctive properties, Pluronics can be used as nano-drug carriers, to deliver poorly water-soluble drugs, and as model systems to study colloidal science by tuning amphiphilic properties. In this work, we investigated the effect of diclofenac sodium on the self-assembly and thermoresponsive crystallization of Pluronic F68 in water solutions, by employing experimental rheology and Nuclear Magnetic Resonance (NMR). We built a complete phase diagram as a function of temperature and concentration for 45 wt% Pluronic F68 with various amounts of diclofenac sodium in water. The morphological transitions were followed as a function of temperature via linear rheology. We extrapolated the transition temperatures - identifying distinct phases - as a function of the drug concentration and proposed an empirical model for their prediction. NMR analysis provided further information on the structural characteristics of the systems, shedding light on the interactions between F68 and diclofenac sodium. Although dealing with a pharmaceutical salt, the study is focused on a colloidal system and its interaction with a binding molecule, that is of general interest for colloidal science.


Asunto(s)
Transición de Fase , Diclofenaco/química , Soluciones/química , Poloxámero/química , Reología , Temperatura , Espectroscopía de Resonancia Magnética , Difusión
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122952, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37270976

RESUMEN

The preparation of diclofenac sodium spheres by fluidized bed is a common production mode for the pharmaceutical preparations at present, but the critical material attributes in the production process is mostly analyzed off-line, which is time-consuming and laborious, and the analysis results lag behind. In this paper, the real-time in-line prediction of drug loading of diclofenac sodium and the release rate during the coating process was realized by using near infrared spectroscopy. For the best near infrared spectroscopy (NIRS) model of drug loading, R2cv, R2p, RMSECV, RMSEP were 0.9874, 0.9973, 0.002549 mg/g, 0.001515 mg/g respectively. For the best NIRS model of three release time points, the R2cv, R2p, RMSECV and RMSEP were 0.9755, 0.9823, 3.233%, 4.500%; 0.9358, 0.9965, 2.598%, 0.7939% and 0.9867, 0.9927, 0.4085%, 0.4726% respectively. And the analytical ability of these model was verified. The organic combination of these two parts of work constituted an important basis for ensuring the safety and effectiveness of diclofenac sodium spheres from the perspective of production process.


Asunto(s)
Diclofenaco , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Diclofenaco/química , Análisis de los Mínimos Cuadrados
16.
Chemosphere ; 333: 138847, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37187374

RESUMEN

In this work, it is studied the photolysis, electrolysis, and photo-electrolysis of a mixture of pharmaceutics (sulfadiazine, naproxen, diclofenac, ketoprofen and ibuprofen) contained in two very different types of real water matrices (obtained from surface and porewater reservoirs), trying to clarify the role of the matrix on the degradation of the pollutants. To do this, a new metrological approach was also developed for screening of pharmaceuticals in waters by capillary liquid chromatography mass spectrometry (CLC-MS). This allows the detection at concentrations lower than 10 ng mL-1. Results obtained in the degradation tests demonstrate that inorganic composition of the water matrix directly influences on the efficiency of the drugs removal by the different EAOPs and better degradation results were obtained for experiments carried out with surface water. The most recalcitrant drug studied was ibuprofen for all processes evaluated, while diclofenac and ketoprofen were found to be the easiest drugs for being degraded. Photo-electrolysis was found to be more efficient than photolysis and electrolysis, and the increase in the current density was found to attain a slight improvement in the removal although with an associated huge increase in the energy consumption. The main reaction pathways for each drug and technology were also proposed.


Asunto(s)
Cetoprofeno , Contaminantes Químicos del Agua , Diclofenaco/química , Cetoprofeno/análisis , Ibuprofeno/análisis , Agua/química , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas
17.
J Hazard Mater ; 456: 131657, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245362

RESUMEN

Oxidative degradation can effectively degrade aromatic emerging contaminants (ECs). However, the degradability of lone inorganic/biogenic oxides or oxidases is typically limited when treating polycyclic ECs. Herein, we report a dual-dynamic oxidative system comprising engineered Pseudomonas and biogenic Mn oxides (BMO), which completely degrades diclofenac (DCF), a representative halogen-containing polycyclic EC. Correspondingly, recombinant Pseudomonas sp. MB04R-2 was constructed via gene deletion and chromosomal insertion of a heterologous multicopper oxidase cotA, allowing for enhanced Mn(II)-oxidizing activity and rapid formation of the BMO aggregate complex. Additionally, we characterized it as a micro/nanostructured ramsdellite (MnO2) composite using multiple-phase composition and fine structure analyses. Furthermore, using real-time quantitative polymerase chain reaction, gene knockout, and expression complementation of oxygenase genes, we demonstrated the central and associative roles of intracellular oxygenases and cytogenic/BMO-derived free radicals (FRs) in degrading DCF and determined the effects of FR excitation and quenching on the DCF degradation efficiency. Finally, after identifying the degraded intermediates of 2H-labeled DCF, we constructed the DCF metabolic pathway. In addition, we evaluated the degradation and detoxification effects of the BMO composite on DCF-containing urban lake water and on biotoxicity in zebrafish embryos. Based on our findings, we proposed a mechanism for oxidative degradation of DCF by associative oxygenases and FRs.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Animales , Óxidos/química , Diclofenaco/toxicidad , Diclofenaco/química , Compuestos de Manganeso/química , Pseudomonas/genética , Pseudomonas/metabolismo , Oxigenasas/metabolismo , Pez Cebra/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
18.
Chemosphere ; 334: 138998, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37211167

RESUMEN

The demand for efficient wastewater treatment is becoming increasingly urgent due to the rising threat of pharmaceutical residues in water. As a sustainable advanced oxidation process, cold plasma technology is a promising approach for water treatment. However, the adoption of the technology encounters several challenges, including the low treatment efficiency and the potentially unknown environmental impact. Here, microbubble generation was integrated with cold plasma system to enhance treatment of wastewater contaminated with diclofenac (DCF). The degradation efficiency depended on the discharge voltage, gas flow, initial concentration, and pH value. The best degradation efficiency was 90.9% after 45 min plasma-bubble treatment under the optimum process parameters. The hybrid plasma-bubble system exhibited strongly synergistic performance heralded by up to seven-times higher DCF removal rates than the two systems operated separately. The plasma-bubble treatment remains effective even after addition of SO42-, Cl-, CO32-, HCO3-, and humic acid (HA) as interfering background substances. The contributions of •O2-, O3, •OH, and H2O2 reactive species to the DCF degradation process were specified. The synergistic mechanisms for DCF degradation were deduced through the analysis of the degradation intermediates. Further, the plasma-bubble treated water was proven safe and effective to stimulate seed germination and plant growth for sustainable agriculture applications. Overall, these findings provide new insights and a feasible approach with a highly synergistic removal effect for the plasma-enhanced microbubble wastewater treatment, without generating secondary contaminants.


Asunto(s)
Gases em Plasma , Contaminantes Químicos del Agua , Aguas Residuales , Diclofenaco/química , Microburbujas , Peróxido de Hidrógeno/química , Gases em Plasma/análisis , Contaminantes Químicos del Agua/análisis , Agricultura
19.
Environ Pollut ; 331(Pt 2): 121850, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37211229

RESUMEN

In this study, plain seaweed biochar (SW) and boron-doped seaweed biochar (BSW) were prepared through a simple pyrolysis process using Undaria pinnatifida (algae biomass) and boric acid. The BSW catalyst was utilized to degrade organic pollutants in aqueous environments by activating peroxymonosulfate (PMS). Surface characterization of the BSW demonstrated successful doping of boron into the biochar materials. BSW600 exhibited greater catalytic activity than SW600, as evidenced by the former's maximum adsorption capacity of diclofenac (DCF) onto BSW600 (qmax = 30.01 mg g-1) and the activation of PMS. Complete degradation of DCF was achieved in 30 min using 100 mg L-1 BSW600, 0.5 mM PMS, and 6.5 initial solution pH as critical parameters. The pseudo-first-order kinetic model accurately described the DCF degradation kinetics. The scavenger experiment displayed that radical and non-radical reactive oxygen species (ROS) formed in the BSW600/PMS system. Furthermore, the generation of ROS in the BSW600/PMS system was confirmed by electron spin resonance spectroscopy (ESR). The percentage contribution of ROS was assessed to be 12.3, 45.0, and 42.7% for HO•, SO4•-, and 1O2, respectively. Additionally, the electron transfer pathway was also confirmed by electrochemical analysis. Moreover, the influence of water matrics on the BSW600/PMS system was demonstrated. The co-existence of anions and humic acid (HA) did not affect the catalytic activity of the BSW600/PMS system. The recyclability of BSW600 was assessed by DCF removal (86.3%) after three cycles. Ecological structure-activity relationships software was used to assess by-product toxicity. This study demonstrates the efficacy of non-metallic heteroatom-doped biochar materials as eco-friendly catalysts in groundwater applications.


Asunto(s)
Boro , Diclofenaco , Diclofenaco/química , Especies Reactivas de Oxígeno , Peróxidos/química , Metales , Agua
20.
Environ Res ; 227: 115640, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933636

RESUMEN

Currently, the pharmaceutical and personal care products (PPCPs) have posed great challenge to advanced oxidation techniques (AOTs). In this study, we decorated sponge iron (s-Fe0) with Cu and Pd (s-Fe0-Cu-Pd) and further optimized the synthesis parameters with a response surface method (RSM) to rapidly degrade diclofenac sodium (DCF). Under the RSM-optimized conditions of Fe: Cu: Pd = 100: 4.23: 0.10, initial solution pH of 5.13, and input dosage of 38.8 g/L, 99% removal of DCF could be obtained after 60 min of reaction. Moreover, the morphological structure of trimetal was characterized with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS). Electron spin resonance (ESR) signals have also been applied to capture reactive hydrogen atoms (H*), superoxygen anions, hydroxyl radicals, and single state oxygen (1O2). Furthermore, the variations of DCF and its selective degradation products over a series of s-Fe0-based bi(tri)metals have been compared. Additionally, the degradation mechanism of DCF has also been explored. To our best knowledge, this is the first report revealing the selective dechlorination of DCF with low toxicity over Pd-Cu co-doped s-Fe0 trimetal.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Diclofenaco/química , Aniones , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...