Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0135923, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855602

RESUMEN

IMPORTANCE: Non-compliance to lengthy antituberculosis (TB) treatment regimen, associated side effects, and emergence of drug-resistant strains of Mycobacterium tuberculosis (M. tb) emphasize the need to develop more effective anti-TB drugs. Here, we have evaluated the role of M. tb dihydrodipicolinate reductase (DapB), a component of the diaminopimelate pathway, which is involved in the biosynthesis of both lysine and mycobacterial cell wall. We showed that DapB is essential for the in vitro as well as intracellular growth of M. tb. We further utilized M. tb DapB, as a target for identification of inhibitors by employing in silico virtual screening, and conducted various in vitro screening assays to identify inhibitors with potential to inhibit DapB activity and in vitro and intracellular growth of M. tb with no significant cytotoxicity against various mammalian cell lines. Altogether, M. tb DapB serves as an important drug target and a hit molecule, namely, 4-(3-Phenylazoquinoxalin-2-yl) butanoic acid methyl ester has been identified as an antimycobacterial molecule in our study.


Asunto(s)
Mycobacterium tuberculosis , Animales , Dihidrodipicolinato-Reductasa/farmacología , Oxidorreductasas/metabolismo , Sistemas de Liberación de Medicamentos , Antituberculosos/farmacología , Mamíferos
2.
Commun Biol ; 6(1): 550, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217566

RESUMEN

Herbicide resistance represents one of the biggest threats to our natural environment and agricultural sector. Thus, new herbicides are urgently needed to tackle the rise in herbicide-resistant weeds. Here, we employed a novel strategy to repurpose a 'failed' antibiotic into a new and target-specific herbicidal compound. Specifically, we identified an inhibitor of bacterial dihydrodipicolinate reductase (DHDPR), an enzyme involved in lysine biosynthesis in plants and bacteria, that exhibited no antibacterial activity but severely attenuated germination of the plant Arabidopsis thaliana. We confirmed that the inhibitor targets plant DHDPR orthologues in vitro, and exhibits no toxic effects against human cell lines. A series of analogues were then synthesised with improved efficacy in germination assays and against soil-grown A. thaliana. We also showed that our lead compound is the first lysine biosynthesis inhibitor with activity against both monocotyledonous and dicotyledonous weed species, by demonstrating its effectiveness at reducing the germination and growth of Lolium rigidum (rigid ryegrass) and Raphanus raphanistrum (wild radish). These results provide proof-of-concept that DHDPR inhibition may represent a much-needed new herbicide mode of action. Furthermore, this study exemplifies the untapped potential of repurposing 'failed' antibiotic scaffolds to fast-track the development of herbicide candidates targeting the respective plant enzymes.


Asunto(s)
Arabidopsis , Herbicidas , Humanos , Herbicidas/farmacología , Dihidrodipicolinato-Reductasa/farmacología , Lisina , Malezas , Bacterias
3.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118822, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32800924

RESUMEN

Plastocyanin and cytochrome c6, abundant proteins in photosynthesis, are readouts for cellular copper status in Chlamydomonas and other algae. Their accumulation is controlled by a transcription factor copper response regulator (CRR1). The replacement of copper-containing plastocyanin with heme-containing cytochrome c6 spares copper and permits preferential copper (re)-allocation to cytochrome oxidase. Under copper-replete situations, the quota depends on abundance of various cuproproteins and is tightly regulated, except under zinc-deficiency where acidocalcisomes over-accumulate Cu(I). CRR1 has a transcriptional activation domain, a Zn-dependent DNA binding SBP-domain with a nuclear localization signal, and a C-terminal Cys-rich region that represses the zinc regulon. CRR1 activates >60 genes in Chlamydomonas through GTAC-containing CuREs; transcriptome differences are recapitulated in the proteome. The differentially-expressed genes encode assimilatory copper transporters of the CTR/SLC31 family including a novel soluble molecule, redox enzymes in the tetrapyrrole pathway that promote chlorophyll biosynthesis and photosystem 1 accumulation, and other oxygen-dependent enzymes, which may influence thylakoid membrane lipids, specifically polyunsaturated galactolipids and γ-tocopherol. CRR1 also down-regulates 2 proteins in Chlamydomonas: for plastocyanin, by activation of proteolysis, while for the di­iron subunit of the cyclase in chlorophyll biosynthesis, through activation of an upstream promoter that generates a poorly-translated 5' extended transcript containing multiple short ORFs that inhibit translation. The functions of many CRR1-target genes are unknown, and the copper protein inventory in Chlamydomonas includes several whose functions are unexplored. The comprehensive picture of cuproproteins and copper homeostasis in this system is well-suited for reverse genetic analyses of these under-investigated components in copper biology.


Asunto(s)
Chlamydomonas/genética , Cobre/metabolismo , Fotosíntesis/genética , Transcriptoma/genética , Chlamydomonas/metabolismo , Citocromos c6/genética , Dihidrodipicolinato-Reductasa/genética , Complejo IV de Transporte de Electrones/genética , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Plastocianina/genética
4.
Sci Rep ; 8(1): 7936, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29786696

RESUMEN

Dihydrodipicolinate reductase (DHDPR) is a key enzyme in the diaminopimelate- and lysine-synthesis pathways that reduces DHDP to tetrahydrodipicolinate. Although DHDPR uses both NADPH and NADH as a cofactor, the structural basis for cofactor specificity and preference remains unclear. Here, we report that Paenisporosarcina sp. TG-14 PaDHDPR has a strong preference for NADPH over NADH, as determined by isothermal titration calorimetry and enzymatic activity assays. We determined the crystal structures of PaDHDPR alone, with its competitive inhibitor (dipicolinate), and the ternary complex of the enzyme with dipicolinate and NADPH, with results showing that only the ternary complex had a fully closed conformation and suggesting that binding of both substrate and nucleotide cofactor is required for enzymatic activity. Moreover, NADPH binding induced local conformational changes in the N-terminal long loop (residues 34-59) of PaDHDPR, as the His35 and Lys36 residues in this loop interacted with the 2'-phosphate group of NADPH, possibly accounting for the strong preference of PaDHDPR for NADPH. Mutation of these residues revealed reduced NADPH binding and enzymatic activity, confirming their importance in NADPH binding. These findings provide insight into the mechanism of action and cofactor selectivity of this important bacterial enzyme.


Asunto(s)
Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/metabolismo , NADP/metabolismo , Planococcaceae/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Cinética , Modelos Moleculares , NADP/química , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato
5.
Biotechnol Bioeng ; 115(7): 1764-1777, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29574741

RESUMEN

l-lysine is an important amino acid in animals and humans and NADPH is a vital cofactor for maximizing the efficiency of l-lysine fermentation. Dihydrodipicolinate reductase (DHDPR), an NAD(P)H-dependent enzyme, shows a variance in nucleotide-cofactor affinity in bacteria. In this study, we rationally engineered Corynebacterium glutamicum DHDPR (CgDHDPR) to switch its nucleotide-cofactor specificity resulting in an increase in final titer (from 82.6 to 117.3 g L-1 ), carbon yield (from 0.35 to 0.44 g [g glucose]-1 ) and productivity (from 2.07 to 2.93 g L-1 hr-1 ) of l-lysine in JL-6 ΔdapB::Ec-dapBC115G,G116C in fed-batch fermentation. To do this, we comparatively analyzed the characteristics of CgDHDPR and Escherichia coli DHDPR (EcDHDPR), indicating that hetero-expression of NADH-dependent EcDHDPR increased l-lysine production. Subsequently, we rationally modified the conserved structure of cofactor-binding motif, and results indicated that introducing the mutation K11A or R13A in CgDHDPR and introducing the mutation R16A or R39A in EcDHDPR modifies the nucleotide-cofactor affinity of DHDPR. Lastly, the effects of these mutated DHDPRs on l-lysine production were investigated. The highest increase (26.2%) in l-lysine production was observed for JL-6 ΔdapB::Ec-dapBC115G,G116C , followed by JL-6 Cg-dapBC37G,G38C (21.4%) and JL-6 ΔdapB::Ec-dapBC46G,G47C (15.2%). This is the first report of a rational modification of DHDPR that enhances the l-lysine production and yield through the modulation of nucleotide-cofactor specificity.


Asunto(s)
Coenzimas/metabolismo , Corynebacterium glutamicum/enzimología , Dihidrodipicolinato-Reductasa/genética , Dihidrodipicolinato-Reductasa/metabolismo , Lisina/metabolismo , Nucleótidos/metabolismo , Sustitución de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
World J Microbiol Biotechnol ; 34(2): 22, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302824

RESUMEN

Brucellae are intracellular bacterial pathogens that cause Brucellosis, bringing great economic burdens to developing countries. The pathogenic mechanisms of Brucella are still poorly understood. Earlier immune response plays an important role in the Brucella infection. Phosphoglyceromutase (PGM) and dihydrodipicolinate reductase (DapB) were cloned, expressed, purified, and their immunocompetence was analyzed. Cytokines were detected by murine macrophages (RAW 264.7) and splenocytes that stimulated with the two recombinant proteins. The immune responses were analyzed by ELISA from mice with the two recombinant proteins immunized. TNF-α, IL-6 and IL-8 were produced in stimulated RAW 264.7 cells and splenocytes. Th1-type cytokines, IFN-γ and IL-2, induced in RAW 264.7 cells and splenocytes were higher then Th2-type cytokines, IL-4 and IL-5. Th2-related immune response was induced in splenocytes obtained 35 days after mice immunized with the two proteins. The production of IgG1 was higher than IgG2a in immunized mice. Taken together, our results demonstrated that the two proteins could induce Th1 and Th2-type immune responses in vivo and in vitro.


Asunto(s)
Brucella abortus/enzimología , Brucella abortus/inmunología , Brucelosis/inmunología , Dihidrodipicolinato-Reductasa/farmacología , Fosfoglicerato Mutasa/farmacología , Células TH1/efectos de los fármacos , Células Th2/efectos de los fármacos , Animales , Brucella abortus/genética , Brucelosis/microbiología , China , Clonación Molecular , Citocinas/inmunología , Citocinas/metabolismo , Dihidrodipicolinato-Reductasa/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Inmunización , Inmunoglobulina G , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Fosfoglicerato Mutasa/genética , Células RAW 264.7/efectos de los fármacos , Proteínas Recombinantes/inmunología , Células TH1/inmunología , Células Th2/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
7.
Biochem J ; 475(1): 137-150, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29187521

RESUMEN

Dihydrodipicolinate reductase (DHDPR) catalyses the second reaction in the diaminopimelate pathway of lysine biosynthesis in bacteria and plants. In contrast with the tetrameric bacterial DHDPR enzymes, we show that DHDPR from Vitis vinifera (grape) and Selaginella moellendorffii are dimeric in solution. In the present study, we have also determined the crystal structures of DHDPR enzymes from the plants Arabidopsis thaliana and S. moellendorffii, which are the first dimeric DHDPR structures. The analysis of these models demonstrates that the dimer forms through the intra-strand interface, and that unique secondary features in the plant enzymes block tetramer assembly. In addition, we have also solved the structure of tetrameric DHDPR from the pathogenic bacteria Neisseria meningitidis Measuring the activity of plant DHDPR enzymes showed that they are much more prone to substrate inhibition than the bacterial enzymes, which appears to be a consequence of increased flexibility of the substrate-binding loop and higher affinity for the nucleotide substrate. This higher propensity to substrate inhibition may have consequences for ongoing efforts to increase lysine biosynthesis in plants.


Asunto(s)
Proteínas Bacterianas/química , Dihidrodipicolinato-Reductasa/química , Ácidos Picolínicos/química , Proteínas de Plantas/química , Vitis/enzimología , Secuencias de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Dihidrodipicolinato-Reductasa/genética , Dihidrodipicolinato-Reductasa/metabolismo , Expresión Génica , Cinética , Lisina/biosíntesis , Modelos Moleculares , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimología , Ácidos Picolínicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selaginellaceae/química , Selaginellaceae/enzimología , Especificidad de la Especie , Especificidad por Sustrato , Vitis/química
8.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 12): 885-891, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27917836

RESUMEN

In bacteria, the second committed step in the diaminopimelate/lysine anabolic pathways is catalyzed by the enzyme dihydrodipicolinate reductase (DapB). DapB catalyzes the reduction of dihydrodipicolinate to yield tetrahydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of DapB from the human-pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are reported. Protein crystals were grown in conditions consisting of 5%(w/v) PEG 4000, 200 mM sodium acetate, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.3 Šresolution. They belonged to space group P4322, with unit-cell parameters a = 109.38, b = 109.38, c = 176.95 Å. Rr.i.m. was 0.11, Rwork was 0.177 and Rfree was 0.208. The three-dimensional structural features of the enzymes show that DapB from B. henselae is a tetramer consisting of four identical polypeptides. In addition, the substrate NADP+ was found to be bound to one monomer, which resulted in a closed conformational change in the N-terminal domain.


Asunto(s)
Proteínas Bacterianas/química , Bartonella henselae/química , Dihidrodipicolinato-Reductasa/química , NADP/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bartonella henselae/enzimología , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Dihidrodipicolinato-Reductasa/genética , Dihidrodipicolinato-Reductasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , NADP/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
9.
Sci Rep ; 6: 37111, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845445

RESUMEN

Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 Å and 2.83 Å, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.


Asunto(s)
Anabaena variabilis/enzimología , Proteínas Bacterianas/química , Dihidrodipicolinato-Reductasa/química , Hidroliasas/química , Anabaena variabilis/genética , Proteínas Bacterianas/genética , Dicroismo Circular , Cristalografía por Rayos X , Dihidrodipicolinato-Reductasa/genética , Hidroliasas/genética , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
10.
PLoS One ; 11(1): e0146525, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26815040

RESUMEN

The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.


Asunto(s)
Dihidrodipicolinato-Reductasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas Recombinantes de Fusión/biosíntesis , Cromatografía de Afinidad , Clonación Molecular , Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/genética , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina/genética , Histidina/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación
11.
J Microbiol Biotechnol ; 26(2): 226-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26502738

RESUMEN

Dihydrodipicolinate reductase is an enzyme that converts dihydrodipicolinate to tetrahydrodipicolinate using an NAD(P)H cofactor in L-lysine biosynthesis. To increase the understanding of the molecular mechanisms of lysine biosynthesis, we determined the crystal structure of dihydrodipicolinate reductase from Corynebacterium glutamicum (CgDapB). CgDapB functions as a tetramer, and each protomer is composed of two domains, an Nterminal domain and a C-terminal domain. The N-terminal domain mainly contributes to nucleotide binding, whereas the C-terminal domain is involved in substrate binding. We elucidated the mode of cofactor binding to CgDapB by determining the crystal structure of the enzyme in complex with NADP(+) and found that CgDapB utilizes both NADH and NADPH as cofactors. Moreover, we determined the substrate binding mode of the enzyme based on the coordination mode of two sulfate ions in our structure. Compared with Mycobacterium tuberculosis DapB in complex with its cofactor and inhibitor, we propose that the domain movement for active site constitution occurs when both cofactor and substrate bind to the enzyme.


Asunto(s)
Corynebacterium glutamicum/enzimología , Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/metabolismo , Lisina/biosíntesis , NADP/metabolismo , NAD/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Corynebacterium glutamicum/metabolismo , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
J Vis Exp ; (103)2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26437182

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) toxicity may cause region-specific changes in serotonergic mRNA expression due to acute serotonin (5-hydroxytryptamine; 5-HT) syndrome. This hypothesis can be tested using in situ hybridization to detect the serotonin 5-HT2A receptor gene htr2a. In the past, such procedures, utilizing radioactive riboprobe, were difficult because of the complicated workflow that needs several days to perform and the added difficulty that the technique required the use of fresh frozen tissues maintained in an RNase-free environment. Recently, the development of short oligonucleotide probes has simplified in situ hybridization procedures and allowed the use of paraformaldehyde-prefixed brain sections, which are more widely available in laboratories. Here, we describe a detailed protocol using non-radioactive oligonucleotide probes on the prefixed brain tissues. Hybridization probes used for this study include dapB (a bacterial gene coding for dihydrodipicolinate reductase), ppiB (a housekeeping gene coding for peptidylprolyl isomerase B), and htr2a (a serotonin gene coding for 5-HT2A receptors). This method is relatively simply, cheap, reproducible and requires less than two days to complete.


Asunto(s)
Química Encefálica , Hibridación in Situ/métodos , Sondas de Oligonucleótidos , Síndrome de la Serotonina/genética , Animales , Ciclofilinas/genética , Dihidrodipicolinato-Reductasa/genética , Fijadores/química , Formaldehído/química , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Adhesión en Parafina/métodos , Polímeros/química , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Receptor de Serotonina 5-HT2A/genética , Síndrome de la Serotonina/metabolismo , Fijación del Tejido/métodos
13.
PLoS One ; 10(3): e0118861, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25756623

RESUMEN

Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) involved in the global development of the plant. The Arabidopsis genome encodes four homologs of ACR4 that contain sequence similarity and analogous architectural elements to ACR4, termed Arabidopsis CRINKLY4 Related (AtCRRs) proteins. Additionally, a signaling module has been previously proposed including a postulated peptide ligand, CLE40, the ACR4 RLK, and the WOX5 transcription factor that engage in a possible feedback mechanism controlling stem cell differentiation. However, little biochemical evidence is available to ascertain the molecular aspects of receptor heterodimerization and the role of phosphorylation in these interactions. Therefore, we have undertaken an investigation of the in vitro interactions between the intracellular domains (ICD) of ACR4, the CRRs and WOX5. We demonstrate that interaction can occur between ACR4 and all four CRRs in the unphosphorylated state. However, phosphorylation dependency is observed for the interaction between ACR4 and CRR3. Furthermore, sequence analysis of the ACR4 gene family has revealed a conserved 'KDSAF' motif that may be involved in protein-protein interactions among the receptor family. We demonstrate that peptides harboring this conserved motif in CRR3 and CRK1are able to bind to the ACR4 kinase domain. Our investigations also indicate that the ACR4 ICD can interact with and phosphorylate the transcription factor WOX5.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
14.
Artículo en Inglés | MEDLINE | ID: mdl-23722845

RESUMEN

Acinetobacter baumannii is a virulent pathogenic bacterium that is resistant to most currently available antibiotics. Therefore, the design of drugs for the treatment of infections caused by A. baumannii is urgently required. Dihydrodipicolinate reductase (DHDPR) is an important enzyme which is involved in the biosynthetic pathway that leads to the production of L-lysine in bacteria. In order to design potent inhibitors against this enzyme, its detailed three-dimensional structure is required. DHDPR from A. baumannii (AbDHDPR) has been cloned, expressed, purified and crystallized. Here, the preliminary X-ray crystallographic data of AbDHDPR are reported. The crystals were grown using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitating agent The crystals belonged to the orthorhombic space group P222, with unit-cell parameters a = 80.0, b = 100.8, c = 147.6 Å, and contained four molecules in the asymmetric unit. The complete structure determination of AbDHDPR is in progress.


Asunto(s)
Clonación Molecular , Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/genética , Regulación Enzimológica de la Expresión Génica , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular/métodos , Cristalización , Cristalografía por Rayos X , Dihidrodipicolinato-Reductasa/aislamiento & purificación , Datos de Secuencia Molecular
15.
Gene ; 518(1): 52-8, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23270923

RESUMEN

Dynamic information in proteins may provide valuable information for understanding allosteric regulation of protein complexes or long-range effects of the mutations on enzyme activity. Experimental data such as X-ray B-factors or NMR order parameters provide a convenient estimate of atomic fluctuations (or atomic auto-correlated motions) in proteins. However, it is not as straightforward to obtain atomic cross-correlated motions in proteins - one usually resorts to more sophisticated computational methods such as Molecular Dynamics, normal mode analysis or atomic network models. In this report, we show that atomic cross-correlations can be reliably obtained directly from protein structure using X-ray refinement data. We have derived an analytic form of atomic correlated motions in terms of the original TLS parameters used to refine the B-factors of X-ray structures. The correlated maps computed using this equation are well correlated with those of the method based on a mechanical model (the correlation coefficient is 0.75) for a non-homologous dataset comprising 100 structures. We have developed an approach to compute atomic cross-correlations directly from X-ray protein structure. Being in analytic form, it is fast and provides a feasible way to compute correlated motions in proteins in a high throughput way. In addition, avoiding sophisticated computational operations; it provides a quick, reliable way, especially for non-computational biologists, to obtain dynamics information directly from protein structure relevant to its function.


Asunto(s)
Modelos Moleculares , Proteínas/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , Cristalografía por Rayos X , Dihidrodipicolinato-Reductasa/química , Isoenzimas/química , Distribución Normal , Conformación Proteica
16.
Protein Expr Purif ; 85(1): 66-76, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22776412

RESUMEN

Given the rise of multi drug resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to discover new antimicrobial agents. A validated but as yet unexplored target for new antibiotics is dihydrodipicolinate reductase (DHDPR), an enzyme that catalyzes the second step of the lysine biosynthesis pathway in bacteria. We report here the cloning, expression and purification of N-terminally his-tagged recombinant DHDPR from MRSA (6H-MRSA-DHDPR) and compare its secondary and quaternary structure with the wild type (MRSA-DHDPR) enzyme. Comparative analyses demonstrate that recombinant 6H-MRSA-DHDPR is folded and adopts the native tetrameric quaternary structure in solution. Furthermore, kinetic studies show 6H-MRSA-DHDPR is functional, displaying parameters for K(m)(NADH) of 6.0 µM, K(m)(DHDP) of 22 µM, and k(cat) of 21s(-1), which are similar to those reported for the native enzyme. The solution properties and stability of the 6H-MRSA-DHDPR enzyme are also reported in varying physicochemical conditions.


Asunto(s)
Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/metabolismo , Staphylococcus aureus Resistente a Meticilina/enzimología , Clonación Molecular , Dihidrodipicolinato-Reductasa/genética , Dihidrodipicolinato-Reductasa/aislamiento & purificación , Estabilidad de Enzimas , Histidina/química , Histidina/genética , Histidina/aislamiento & purificación , Histidina/metabolismo , Cinética , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/genética , Concentración Osmolar , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
17.
PLoS One ; 7(7): e40318, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792278

RESUMEN

In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS) and dihydrodipicolinate reductase (DHDPR) catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2) has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S)-lysine. Structural studies of At-DHDPS2 show (S)-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2) has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Dihidrodipicolinato-Reductasa/química , Hidroliasas/química , Lisina/biosíntesis , Sitio Alostérico , Arabidopsis/metabolismo , Vías Biosintéticas , Cristalografía por Rayos X , Cinética , Luz , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Homología Estructural de Proteína
18.
FEBS Lett ; 585(16): 2561-7, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21803042

RESUMEN

Lysine biosynthesis proceeds by the nucleotide-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) by dihydrodipicolinate reductase (DHDPR). The S. aureus DHDPR structure reveals different conformational states of this enzyme even in the absence of a substrate or nucleotide-cofactor. Despite lacking a conserved basic residue essential for NADPH interaction, S. aureus DHDPR differs from other homologues as NADPH is a more preferred co-factor than NADH. The structure provides a rationale-Lys35 compensates for the co-factor site mutation. These observations are significant for bi-ligand inhibitor design that relies on ligand-induced conformational changes as well as co-factor specificity for this important drug target.


Asunto(s)
Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/metabolismo , NADP/metabolismo , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dihidrodipicolinato-Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Especificidad por Sustrato
19.
Biochim Biophys Acta ; 1814(12): 1900-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21803176

RESUMEN

To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which contains many more interactions than the well characterized equivalent interface of the mesophilic Escherichia coli DHDPS enzyme. The resulting variants had altered quaternary structure, as shown by analytical ultracentrifugation, gel filtration liquid chromatography, and small angle X-ray scattering, and X-ray crystallographic studies confirmed that one variant existed as an independent monomer, but with few changes to the secondary and tertiary structure. Reduction of higher order assembly resulted in a loss of thermal stability, as measured by a variety of methods, and impaired catalytic function. Binding of pyruvate increased the oligomeric status of the variants, with a concomitant increase in thermal stability, suggesting a role for substrate binding in optimizing stable, higher order structures. The results of this work show that the salt bridges located at the tetramerization interface of DHDPS play a significant role in maintaining higher order structures, and demonstrate the importance of quaternary structure in determining protein stability and in the optimization of enzyme catalysis.


Asunto(s)
Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/metabolismo , Multimerización de Proteína/fisiología , Calibración , Clonación Molecular , Dihidrodipicolinato-Reductasa/genética , Dihidrodipicolinato-Reductasa/aislamiento & purificación , Variación Genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Especificidad por Sustrato/genética , Thermotoga maritima/química , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
20.
Arch Biochem Biophys ; 512(2): 167-74, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21704017

RESUMEN

Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA-DHDPR exhibits a unique nucleotide specificity utilizing NADPH (K(m)=12µM) as a cofactor more effectively than NADH (K(m)=26µM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA-DHDPR has ∼20-fold greater binding affinity for NADPH (K(d)=1.5µM) relative to NADH (K(d)=29µM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP(+). This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA-DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.


Asunto(s)
Dihidrodipicolinato-Reductasa/metabolismo , Staphylococcus aureus Resistente a Meticilina/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calorimetría , Catálisis , Dihidrodipicolinato-Reductasa/antagonistas & inhibidores , Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/genética , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Staphylococcus aureus Resistente a Meticilina/genética , Datos de Secuencia Molecular , NAD/metabolismo , NADP/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...