Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 145(2): 145-157, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32632533

RESUMEN

Bacterial reaction centers (BRC) from Rhodobacter sphaeroides were found to accelerate, about 100-fold, the reaction between tetryl (2,4,6-trinitrophenylmethylnitramine) explosive and n-lauryl-N-N-dimethylamine-N-oxide (LDAO) that results in the formation of picric acid-like product with characteristic UV-VIS absorption spectrum with peaks at 345 and 415 nm. Moreover, this product also affects the spectra of BRC cofactors in the NIR spectral region and stabilizes the conformational changes associated with slow charge recombination. The evolution of the NIR absorption changes correlated with the kinetics of the product formation. Comparison between the wild-type and the R26 carotenoid-less strain indicates that tetryl-LDAO reaction is roughly five times faster for R26, which allows for identifying the carotenoid binding site as the optimal reaction site. Another, less-defined reaction site is located in the BRC's hydrophobic cavity. These effects are highly selective for tetryl and not observed for several other widespread nitric explosives; slowed-down charge recombination allows for distinguishing between tetryl and QB-site herbicides. The current limit of detection is in the ppb range or ~ 100 nM. Details of the molecular mechanisms of the reactions and perspectives of using these effects in bioassays or biosensors for explosives detection are also discussed.


Asunto(s)
Compuestos de Anilina/metabolismo , Detergentes/metabolismo , Dimetilaminas/metabolismo , Sustancias Explosivas/metabolismo , Nitrobencenos/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Compuestos de Anilina/química , Carotenoides/metabolismo , Detergentes/química , Dimetilaminas/química , Transporte de Electrón , Sustancias Explosivas/química , Cinética , Límite de Detección , Nitrobencenos/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química
2.
Arch Biochem Biophys ; 676: 108136, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604072

RESUMEN

The flavoprotein trimethylamine dehydrogenase is a member of a small class of flavoproteins that catalyze amine oxidation and transfer the electrons through an Fe/S center to an external oxidant. The mechanism of amine oxidation by this family of enzymes has not been established. Here, we describe the use of pH and kinetic isotope effects with the slow substrate dimethylamine to study the mechanism. The data are consistent with the neutral amine being the form of the substrate that binds productively at the pH optimum, since the pKa seen in the kcat/Kamine pH profile for a group that must be unprotonated matches the pKa of dimethylamine. The D(kcat/Kamine) value decreases to unity as the pH decreases. This suggests the presence of an alternative pathway at low pH, in which the protonated substrate binds and is then deprotonated by an active-site residue prior to oxidation. The kcat and Dkcat values both decrease to limiting values at low pH with similar pKa values. This is consistent with a step other than amine oxidation becoming rate-limiting for turnover.


Asunto(s)
Deuterio/química , Dimetilaminas/química , Dimetilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Biocatálisis , Concentración de Iones de Hidrógeno , Cinética , Methylophilus methylotrophus/enzimología , Unión Proteica , Especificidad por Sustrato
3.
Sci Rep ; 8(1): 12154, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108263

RESUMEN

Acute kidney injury (AKI) and metabolic dysfunction are critical complications in sepsis syndrome; however, their pathophysiological mechanisms remain poorly understood. Therefore, we evaluated whether the pharmacological properties of 6-gingerol (6G) and 10-gingerol (10G) could modulate AKI and metabolic disruption in a rat model of sepsis (faecal peritonitis). Animals from the sham and AKI groups were intraperitoneally injected with 6G or 10G (25 mg/kg). Septic AKI decreased creatinine clearance and renal antioxidant activity, but enhanced oxidative stress and the renal mRNA levels of tumour necrosis factor-α, interleukin-1ß, and transforming growth factor-ß. Both phenol compounds repaired kidney function through antioxidant activity related to decreased oxidative/nitrosative stress and proinflammatory cytokines. Metabolomics analysis indicated different metabolic profiles for the sham surgery group, caecal ligation and puncture model alone group, and sepsis groups treated with gingerols. 1H nuclear magnetic resonance analysis detected important increases in urinary creatine, allantoin, and dimethylglycine levels in septic rats. However, dimethylamine and methylsulfonylmethane metabolites were more frequently detected in septic animals treated with 6G or 10G, and were associated with increased survival of septic animals. Gingerols attenuated septic AKI by decreasing renal disturbances, oxidative stress, and inflammatory response through a mechanism possibly correlated with increased production of dimethylamine and methylsulfonylmethane.


Asunto(s)
Lesión Renal Aguda/prevención & control , Catecoles/administración & dosificación , Alcoholes Grasos/administración & dosificación , Peritonitis/complicaciones , Sepsis/complicaciones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/mortalidad , Animales , Dimetilsulfóxido/metabolismo , Dimetilaminas/metabolismo , Modelos Animales de Enfermedad , Heces/microbiología , Humanos , Inyecciones Intraperitoneales , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Peritonitis/metabolismo , Peritonitis/microbiología , Peritonitis/mortalidad , Ratas , Ratas Wistar , Sepsis/metabolismo , Sepsis/microbiología , Sepsis/mortalidad , Sulfonas/metabolismo , Análisis de Supervivencia , Resultado del Tratamiento
4.
PLoS Comput Biol ; 14(8): e1006295, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30071012

RESUMEN

Several channels, ranging from TRP receptors to Gap junctions, allow the exchange of small organic solute across cell membrane. However, very little is known about the molecular mechanism of their permeation. Cyclic Nucleotide Gated (CNG) channels, despite their homology with K+ channels and in contrast with them, allow the passage of larger methylated and ethylated ammonium ions like dimethylammonium (DMA) and ethylammonium (EA). We combined electrophysiology and molecular dynamics simulations to examine how DMA interacts with the pore and permeates through it. Due to the presence of hydrophobic groups, DMA enters easily in the channel and, unlike the alkali cations, does not need to cross any barrier. We also show that while the crystal structure is consistent with the presence of a single DMA ion at full occupancy, the channel is able to conduct a sizable current of DMA ions only when two ions are present inside the channel. Moreover, the second DMA ion dramatically changes the free energy landscape, destabilizing the crystallographic binding site and lowering by almost 25 kJ/mol the binding affinity between DMA and the channel. Based on the results of the simulation the experimental electron density maps can be re-interpreted with the presence of a second ion at lower occupancy. In this mechanism the flexibility of the channel plays a key role, extending the classical multi-ion permeation paradigm in which conductance is enhanced by the plain interaction between the ions.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Transporte de Catión Orgánico/fisiología , Animales , Fenómenos Biofísicos , Cationes/metabolismo , Simulación por Computador , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Dimetilaminas/metabolismo , Uniones Comunicantes/metabolismo , Potenciales de la Membrana/fisiología , Simulación de Dinámica Molecular , Oocitos/fisiología , Compuestos de Amonio Cuaternario/metabolismo , Sodio/metabolismo , Xenopus laevis
5.
J Biochem Mol Toxicol ; 32(9): e22196, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30015991

RESUMEN

Glutathione-S-transferases (GSTs) have a function in xenobiotic metabolism. They are a significant multifunctional family with a wide variety of catalytic activities. In the current study, we determined in vitro inhibition effects of 2,4-dichlorophenoxyacetic acid dimethylamine salt (2,4-D DMA), haloxyfop-P-methyl, glyphosate isopropylamine, dichlorvos, and λ-cyhalothrin on purified GST. For this purpose, GST were purified from Van Lake fish (Chalcalburnus tarichii Pallas) liver with 29.25 EU mg-1 specific activity and 10.76% yield using GSH-agarose affinity chromatographic method. The pesticides were tested at various concentrations on in vitro GST activity. Ki constants were calculated as 0.17 ± 0.01, 0.25 ± 0.05, 3.72 ± 0.32, 0.42 ± 0.06, and 0.025 ± 0.004 mM, for 2,4-D DMA, haloxyfop-P-methyl, glyphosate isopropylamine, dichlorvos, and λ-cyhalothrin, respectively. λ-Cyhalothrin showed a better inhibitory effect compared to the other pesticides. The inhibition mechanisms of λ-cyhalothrin were competitive, while the other pesticides were noncompetitive.


Asunto(s)
Cyprinidae , Inhibidores Enzimáticos/toxicidad , Proteínas de Peces/antagonistas & inhibidores , Glutatión Transferasa/antagonistas & inhibidores , Hígado/enzimología , Plaguicidas/farmacología , Contaminantes Químicos del Agua/farmacología , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Animales , Unión Competitiva , Cyprinidae/crecimiento & desarrollo , Diclorvos/metabolismo , Diclorvos/farmacología , Dimetilaminas/metabolismo , Dimetilaminas/farmacología , Inhibidores Enzimáticos/metabolismo , Proteínas de Peces/química , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/metabolismo , Fungicidas Industriales/metabolismo , Fungicidas Industriales/farmacología , Glutatión Transferasa/química , Glutatión Transferasa/aislamiento & purificación , Glutatión Transferasa/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/farmacología , Cinética , Lagos , Hígado/crecimiento & desarrollo , Peso Molecular , Nitrilos/metabolismo , Nitrilos/farmacología , Plaguicidas/metabolismo , Piretrinas/metabolismo , Piretrinas/farmacología , Piridinas/metabolismo , Piridinas/farmacología , Aguas Salinas , Especificidad de la Especie , Turquía , Contaminantes Químicos del Agua/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-29405834

RESUMEN

The objective of this study was to assess reactivity of Minocycline (MNC) towards ozone and determine the effects of ozone dose, pH value, and water matrix on MNC degradation as well as to characterize N-Nitrosodimethylamine (NDMA) formation from MNC ozonation. The MNC initial concentration of the solution was set in the range of 2-20 mg/L to investigate NDMA formation during MNC ozonation. Four ozone doses (22.5, 37.2, 58.0, and 74.4 mg/min) were tested to study the effect of ozone dose. For the evaluation of effects of pH value, pH was adjusted from 5 to 9 in the presence of phosphate buffer. MNC ozonation experiments were also conducted in natural water to assess the influence of water matirx. The influence of the typical component of natural water was also investigated with the addition of HA and NaHCO3 solution. Results indicated that ozone was effective in MNC removal. Consequently, NDMA and dimethylamine (DMA) were generated from MNC oxidation. Increasing pH value enhanced MNC removal but led to greater NDMA generation. Water matrices, such as HCO3- and humic acid, affected MNC degradation. Conversely, more NDMA accumulated due to the inhibition of NDMA oxidation by oxidant consumption. Though ⋅OH can enhance MNC degradation, ozone molecules were heavily involved in NDMA production. Seven transformation products were identified. However, only DMA and the unidentified tertiary amine containing DMA group contributed to NDMA formation.


Asunto(s)
Dimetilnitrosamina/metabolismo , Minociclina/aislamiento & purificación , Minociclina/farmacocinética , Ozono/metabolismo , Purificación del Agua/métodos , Biodegradación Ambiental , Dimetilaminas/metabolismo , Dimetilnitrosamina/química , Concentración de Iones de Hidrógeno , Oxidantes/metabolismo , Oxidación-Reducción , Ozono/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacocinética
7.
Water Res ; 126: 361-371, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972939

RESUMEN

The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 µg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 µg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a few weeks in the continued presence of these compounds. Strain ENV425 appeared to be replaced by native propanotrophs over time based on qPCR analysis, but contaminant treatment was not diminished. The results suggest that a FBR can be a viable alternative to UV treatment for removing NDMA from groundwater.


Asunto(s)
Reactores Biológicos , Dimetilaminas/metabolismo , Dimetilnitrosamina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Agua Subterránea , Oxígeno/metabolismo , Propano/metabolismo , Tricloroetileno/metabolismo
8.
J Pharm Sci ; 106(9): 2551-2557, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28483424

RESUMEN

Chronic kidney disease (CKD) is characterized by the accumulation of uremic solutes; however, little is known about how these solutes affect drug absorption and disposition. The goal of this study is to evaluate the effect of uremic solutes on the organic cation transporter, OCT2, which plays a key role in the renal secretion of many basic drugs. As a second goal, we reviewed the literature to determine whether there was evidence for the effect of CKD on the renal secretion of basic drugs. We first screened 72 uremic solutes as inhibitors of [14C]-labeled metformin uptake by OCT2. Seven were identified as inhibitors and 3 of them were determined to be clinically relevant. Of the 7 solutes, dimethylamine, malondialdehyde, trimethylamine, homocysteine, indoxyl-ß-d-glucuronide, and glutathione disulfide were novel OCT2 inhibitors. For 6 drugs that are known OCT2 substrates, both secretory clearance and glomerular filtration rate declined in parallel with progression of CKD from stage 2 to 4, suggesting that selective effects of uremic solutes on net tubular secretion of organic cations do not occur. Further clinical studies are warranted with a broader range of OCT2 substrates to determine whether CKD may differentially affect tubular secretion of drugs especially in patients with advanced CKD.


Asunto(s)
Riñón/efectos de los fármacos , Transportador 2 de Cátion Orgánico/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Transporte Biológico , Dimetilaminas/química , Dimetilaminas/metabolismo , Tasa de Filtración Glomerular , Glucuronatos/química , Glucuronatos/metabolismo , Disulfuro de Glutatión/química , Disulfuro de Glutatión/metabolismo , Células HEK293 , Homocisteína/química , Homocisteína/metabolismo , Humanos , Indoles/química , Indoles/metabolismo , Riñón/metabolismo , Malondialdehído/química , Malondialdehído/metabolismo , Metformina/química , Metformina/metabolismo , Metilaminas/química , Metilaminas/metabolismo , Uremia
9.
Nature ; 539(7630): 593-597, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27851736

RESUMEN

The universal Per-ARNT-Sim (PAS) domain functions as a signal transduction module involved in sensing diverse stimuli such as small molecules, light, redox state and gases. The highly evolvable PAS scaffold can bind a broad range of ligands, including haem, flavins and metal ions. However, although these ligands can support catalytic activity, to our knowledge no enzymatic PAS domain has been found. Here we report characterization of the first PAS enzyme: a haem-dependent oxidative N-demethylase. Unrelated to other amine oxidases, this enzyme contains haem, flavin mononucleotide, 2Fe-2S and tetrahydrofolic acid cofactors, and specifically catalyses the NADPH-dependent oxidation of dimethylamine. The structure of the α subunit reveals that it is a haem-binding PAS domain, similar in structure to PAS gas sensors. The dimethylamine substrate forms part of a highly polarized oxygen-binding site, and directly assists oxygen activation by acting as both an electron and proton donor. Our data reveal that the ubiquitous PAS domain can make the transition from sensor to enzyme, suggesting that the PAS scaffold can support the development of artificial enzymes.


Asunto(s)
Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/metabolismo , Pseudomonas mendocina/enzimología , Sitios de Unión , Coenzimas/metabolismo , Cristalografía por Rayos X , Dimetilaminas/metabolismo , Mononucleótido de Flavina/metabolismo , Hemo/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , NADP/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Tetrahidrofolatos/metabolismo
10.
Drug Des Devel Ther ; 10: 2959-2972, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695293

RESUMEN

BACKGROUND: Evaluating the potential risk of metabolic drug-drug interactions (DDIs) is clinically important. OBJECTIVE: To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. METHODS: The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. RESULTS: The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing significant DDIs associated with CYP2D6 inhibition. CONCLUSION: This study demonstrated the feasibility of applying the PBPK approach to predicting the DDI potential between sarpogrelate hydrochloride and drugs metabolized by CYP2D6. Therefore, it would be beneficial in designing and optimizing clinical DDI studies using sarpogrelate as an in vivo CYP2D6 inhibitor.


Asunto(s)
Citocromo P-450 CYP2D6/química , Dimetilaminas/farmacocinética , Propanoles/farmacocinética , Succinatos/farmacocinética , Simulación por Computador , Citocromo P-450 CYP2D6/metabolismo , Dimetilaminas/química , Dimetilaminas/metabolismo , Interacciones Farmacológicas , Humanos , Modelos Biológicos , Propanoles/química , Propanoles/metabolismo , Succinatos/química , Succinatos/metabolismo
11.
Pest Manag Sci ; 72(10): 1965-76, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26818964

RESUMEN

BACKGROUND: Biobeds are used for on-farm bioremediation of pesticides in sprayer rinsate and from spills during sprayer filling. Using locally sourced materials from Saskatchewan, Canada, a biobed matrix was evaluated for its effectiveness for mineralising and degrading 2,4-dichlorophenoxyacetic acid dimethylamine salt (2,4-D DMA) compared with the topsoil used in the biobed matrix. RESULTS: Applying 2,4-D DMA to the biobed matrix caused a 2-3 day lag in CO2 production not observed when the herbicide was applied to topsoil. Despite the initial lag, less residual 2,4-D was measured in the biobed (0%) matrix than in the topsoil (57%) after a 28 day incubation. When the herbicide was applied 5 times to the biobed matrix, net CO2 increased immediately after each 2,4-D DMA application. Mineralisation of 2,4-D DMA was 61.9% and residual 2,4-D in the biobed matrix was 0.3% after 60 days, compared with corresponding values of 32.9 and 70.9% in topsoil. CONCLUSION: The biobed matrix enhanced the mineralisation and degradation of 2,4-D DMA, indicating the potential for successful implementation of biobeds under Canadian conditions. The biobed matrix was more effective for mineralising and degrading the herbicide compared with the topsoil used in the biobed matrix. By correcting for biobed matrix and formulation blank, CO2 evolution was a reliable indicator of 2,4-D DMA mineralisation. © 2016 Society of Chemical Industry.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Dimetilaminas/metabolismo , Herbicidas/metabolismo , Suelo/química , Biodegradación Ambiental , Dióxido de Carbono/química , Contaminación Ambiental/prevención & control , Saskatchewan
12.
Environ Sci Pollut Res Int ; 22(15): 11543-57, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25827651

RESUMEN

From screening 23 plant species, it was found that Pterocarpus indicus (C3) and Sansevieria trifasciata (crassulacean acid metabolism (CAM)) were the most effective in polar gaseous trimethylamine (TMA) uptake, reaching up to 90% uptake of initial TMA (100 ppm) within 8 h, and could remove TMA at cycles 1-4 without affecting photosystem II (PSII) photochemistry. Up to 55 and 45% of TMA was taken up by S. trifasciata stomata and leaf epicuticular wax, respectively. During cycles 1-4, interestingly, S. trifasciata changed its stomata apertures, which was directly induced by gaseous TMA and light treatments. In contrast, for P. indicus the leaf epicuticular wax and stem were the major pathways of TMA removal, followed by stomata; these pathways accounted for 46, 46, and 8%, respectively, of TMA removal percentages. Fatty acids, particularly tetradecanoic (C14) acid and octadecanoic (C18) acid, were found to be the main cuticular wax components in both plants, and were associated with TMA removal ability. Moreover, the plants could degrade TMA via multiple metabolic pathways associated with carbon/nitrogen interactions. In CAM plants, one of the crucial pathways enabled 78% of TMA to be transformed directly to dimethylamine (DMA) and methylamine (MA), which differed from C3 plant pathways. Various metabolites were also produced for further detoxification and mineralization so that TMA was completely degraded by plants.


Asunto(s)
Metilaminas/metabolismo , Pterocarpus/metabolismo , Sansevieria/metabolismo , Contaminantes Atmosféricos/metabolismo , Biodegradación Ambiental , Dimetilaminas/metabolismo , Gases , Odorantes , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
13.
Biochemistry ; 54(9): 1807-18, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25654171

RESUMEN

HydE and HydG are radical S-adenosyl-l-methionine enzymes required for the maturation of [FeFe]-hydrogenase (HydA) and produce the nonprotein organic ligands characteristic of its unique catalytic cluster. The catalytic cluster of HydA (the H-cluster) is a typical [4Fe-4S] cubane bridged to a 2Fe-subcluster that contains two carbon monoxides, three cyanides, and a bridging dithiomethylamine as ligands. While recent studies have shed light on the nature of diatomic ligand biosynthesis by HydG, little information exists on the function of HydE. Herein, we present biochemical, spectroscopic, bioinformatic, and molecular modeling data that together map the active site and provide significant insight into the role of HydE in H-cluster biosynthesis. Electron paramagnetic resonance and UV-visible spectroscopic studies demonstrate that reconstituted HydE binds two [4Fe-4S] clusters and copurifies with S-adenosyl-l-methionine. Incorporation of deuterium from D2O into 5'-deoxyadenosine, the cleavage product of S-adenosyl-l-methionine, coupled with molecular docking experiments suggests that the HydE substrate contains a thiol functional group. This information, along with HydE sequence similarity and genome context networks, has allowed us to redefine the presumed mechanism for HydE away from BioB-like sulfur insertion chemistry; these data collectively suggest that the source of the sulfur atoms in the dithiomethylamine bridge of the H-cluster is likely derived from HydE's thiol containing substrate.


Asunto(s)
Clostridium acetobutylicum/enzimología , Dimetilaminas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Procesamiento Proteico-Postraduccional , Azufre/metabolismo , Catálisis , Dominio Catalítico , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Deuterio/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/química , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Simulación del Acoplamiento Molecular , Espectrofotometría Ultravioleta , Azufre/química
14.
Chemosphere ; 119: 935-940, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25280176

RESUMEN

Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization.


Asunto(s)
Bacterias/metabolismo , Dimetilaminas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/clasificación , Bacterias/genética , Carbono/metabolismo , ADN Bacteriano/análisis , Agua Potable , Nitrógeno/metabolismo , Purificación del Agua
15.
Environ Microbiol ; 17(7): 2477-91, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25471524

RESUMEN

Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli K-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re-programming was mediated by 20 TFs, including the transient inactivation of the two-component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell-free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E. coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively.


Asunto(s)
Adaptación Fisiológica , Cobre/metabolismo , Escherichia coli K12/metabolismo , Metilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Dimetilaminas/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Formaldehído/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Vitamina K 2/metabolismo
16.
J Environ Manage ; 141: 70-6, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24768836

RESUMEN

Laboratory-scale experiments were conducted using poultry manure (PM) from a laying hen farm. Six strains of bacteria and one strain of yeast, selected on the base of the previous study, were investigated to evaluate their activity in the removal of odorous compounds from poultry manure: pure cultures of Bacillus subtilis subsp. spizizenii LOCK 0272, Bacillus megaterium LOCK 0963, Pseudomonas sp. LOCK 0961, Psychrobacter faecalis LOCK 0965, Leuconostoc mesenteroides LOCK 0964, Streptomyces violaceoruber LOCK 0967, and Candida inconspicua LOCK 0272 were suspended in water solution and applied for PM deodorization. The most active strains in the removal of volatile odorous compounds (ammonia, hydrogen sulfide, dimethylamine, trimethylamine, isobutyric acid) belonged to B. subtilis subsp. spizizenii, L. mesenteroides, C. inconspicua, and P. faecalis. In the next series of experiments, a mixed culture of all tested strains was immobilized on a mineral carrier being a mixture of perlite and bentonite (20:80 by weight). That mixed culture applied for PM deodorization was particularly active against ammonia and hydrogen sulfide, which were removed from the exhaust gas by 20.8% and 17.5%, respectively. The experiments also showed that during deodorization the microorganisms could reduce the concentrations of proteins and amino acids in PM. In particular, the mixed culture was active against cysteine and methionine, which were removed from PM by around 45% within 24 h of deodorization.


Asunto(s)
Estiércol , Odorantes , Aves de Corral , Administración de Residuos/métodos , Contaminantes Atmosféricos/metabolismo , Óxido de Aluminio , Aminoácidos/metabolismo , Amoníaco/metabolismo , Animales , Bacterias/metabolismo , Bentonita , Candida/metabolismo , Dimetilaminas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Isobutiratos/metabolismo , Metilaminas/metabolismo , Proteínas/metabolismo , Dióxido de Silicio
17.
Appl Environ Microbiol ; 80(1): 289-93, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162571

RESUMEN

Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.


Asunto(s)
Betaína/metabolismo , Metano/metabolismo , Methanosarcinaceae/metabolismo , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , Dimetilaminas/metabolismo , Metabolismo Energético , Methanosarcinaceae/crecimiento & desarrollo , Metilaminas/metabolismo
18.
Xenobiotica ; 44(1): 36-47, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23786350

RESUMEN

1. Dimethylamine borane (DMAB) is used as a reducing agent in the manufacturing of a variety of products and in chemical synthesis. National Toxicology Program is evaluating the toxicity of DMAB in rodents following dermal application. The objective of this study was to evaluate the metabolism and disposition of DMAB in male Harlan Sprague Dawley (HSD) rats. 2. Disposition of radioactivity was similar between gavage and intravenous administration of 1.5 mg/kg [(14)C] DMAB, with nearly 84%-89% of the administered radioactivity recovered in urine 24 h post dosing. At 72 h, only 1% or less was recovered in feces, 0.3% as CO2, and 0.5%-1.4% as volatiles and 0.3%-0.4 % in tissues. 3. The absorption of [(14)C]DMAB following dermal application was moderate; percent dose absorbed increased with the dose, with 23%, 32% and 46% of dose absorbed at 0.15, 1.5 and 15 mg/kg, respectively. Urinary and fecal excretion ranged from 18%-37% and 2%-4% of dose, respectively, and 0.1%-0.2% as CO2, and 1%-3% as volatiles. Tissue retention of the radiolabel was low ∼1%, but was higher than following the gavage or intravenous administration. 4. Following co-adminsitration of DMAB and sodium nitrite by gavage, N-nitrosodimethylamine was not detected in blood or urine above the limit of quantitation of the analytical method of 10 ng/mL. 5. Absorption of DMAB in fresh human skin in vitro was ∼41% of the applied dose: the analysis of the receptor fluid shows that the intact DMAB complex can be absorbed through the skin.


Asunto(s)
Boranos/administración & dosificación , Boranos/metabolismo , Dimetilaminas/administración & dosificación , Dimetilaminas/metabolismo , Administración Cutánea , Administración Intravenosa , Animales , Boranos/farmacocinética , Radioisótopos de Carbono/administración & dosificación , Radioisótopos de Carbono/farmacocinética , Radioisótopos de Carbono/orina , Dimetilaminas/farmacocinética , Dimetilnitrosamina/sangre , Dimetilnitrosamina/orina , Heces/química , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Nitrito de Sodio/administración & dosificación
19.
J Contam Hydrol ; 150: 45-53, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23673086

RESUMEN

Aerobic biotransformation of N-nitrosodimethylamine (NDMA), an emerging contaminant of concern, and its structural analog N-nitrodimethylamine (DMN), was evaluated in benzene and methane amended groundwater passed through laboratory scale soil columns. Competitive inhibition models were used to model the kinetics for NDMA and DMN cometabolism accounting for the concurrent degradation of the growth and cometabolic substrates. Transformation capacities for NDMA and DMN with benzene (13 and 23µg (mgcells)(-1)) and methane (0.14 and 8.4µg (mgcells)(-1)) grown cultures, respectively are comparable to those presented in the literature, as were first order endogenous decay rates estimated to be 2.1×10(-2)±1.7×10(-3)d(-1) and 6.5×10(-1)±7.1×10(-1)d(-1) for the methane and benzene amended cultures, respectively. These studies highlight possible attenuation mechanisms and rates for NDMA and DMN biotransformation in aerobic aquifers undergoing active remediation, natural attenuation or managed aquifer recharge with treated wastewater (i.e., reclaimed water).


Asunto(s)
Benceno/metabolismo , Dimetilaminas/metabolismo , Dimetilnitrosamina/metabolismo , Metano/metabolismo , Contaminantes Químicos del Agua/metabolismo , Aerobiosis , Bacterias/metabolismo , Biodegradación Ambiental , Agua Subterránea , Modelos Teóricos , Suelo
20.
Nat Commun ; 3: 1252, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23212381

RESUMEN

Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes.


Asunto(s)
Canales Iónicos/fisiología , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/fisiología , Animales , Canales de Calcio/genética , Canales de Calcio/fisiología , Permeabilidad de la Membrana Celular/fisiología , Dimetilaminas/metabolismo , Humanos , Canales Iónicos/química , Canales Iónicos/genética , Sustancias Macromoleculares/metabolismo , Magnesio/metabolismo , Metilaminas/metabolismo , Ratones , Estructura Terciaria de Proteína , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Alineación de Secuencia , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...