Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.232
Filtrar
1.
Biosensors (Basel) ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38920570

RESUMEN

Blood tests are widely used in modern medicine to diagnose certain illnesses and evaluate the overall health of a patient. To enable testing in resource-limited areas, there has been increasing interest in point-of-care (PoC) testing devices. To process blood samples, liquid mixing with active pumps is usually required, making PoC blood testing expensive and bulky. We explored the possibility of processing approximately 2 µL of whole blood for image flow cytometry using capillary structures that allowed test times of a few minutes without active pumps. Capillary pump structures with five different pillar shapes were simulated using Ansys Fluent to determine which resulted in the fastest whole blood uptake. The simulation results showed a strong influence of the capillary pump pillar shape on the chip filling time. Long and thin structures with a high aspect ratio exhibited faster filling times. Microfluidic chips using the simulated pump design with the most efficient blood uptake were fabricated with polydimethylsiloxane (PDMS) and polyethylene oxide (PEO). The chip filling times were tested with 2 µL of both water and whole blood, resulting in uptake times of 24 s for water and 111 s for blood. The simulated blood plasma results deviated from the experimental filling times by about 35% without accounting for any cell-induced effects. By comparing the flow speed induced by different pump pillar geometries, this study offers insights for the design and optimization of passive microfluidic devices for inhomogenous liquids such as whole blood in sensing applications.


Asunto(s)
Microfluídica , Sistemas de Atención de Punto , Humanos , Técnicas Biosensibles , Dimetilpolisiloxanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Citometría de Flujo
2.
Biosensors (Basel) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38920598

RESUMEN

A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate.


Asunto(s)
Sudor , Humanos , Sudor/química , Hipoglucemia , Glucosa/análisis , Técnicas Biosensibles , Microfluídica , Dimetilpolisiloxanos/química , Glucemia/análisis
3.
J R Soc Interface ; 21(215): 20230696, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842440

RESUMEN

In the area of surgical applications, understanding the interaction between medical device materials and tissue is important since this interaction may cause complications. The interaction often consists of a cell monolayer touching the medical device that can be mimicked in vitro. Prominent examples of this are contact lenses, where epithelial cells interact with the contact lens, or stents and catheters, which are in contact with endothelial cells. To investigate those interactions, in previous studies, expensive microtribometers were used to avoid pressures in the contact area far beyond physiologically relevant levels. Here, we aim to present a new methodology that is cost- and time-efficient, more accessible than those used previously and allows for the application of more realistic pressures, while permitting a quantification of the damage caused to the monolayer. For this, a soft polydimethylsiloxane is employed that better mimics the mechanical properties of blood vessels than materials used in other studies. Furthermore, a technique to account for misalignments within the experiment set-up is presented. This is carried out using the raw spatial and force data recorded by the tribometer and adjusting for misalignments. The methodology is demonstrated using an endothelial cell (human umbilical vein endothelial cells) monolayer.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Fricción , Dimetilpolisiloxanos/química
4.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893504

RESUMEN

The chemical industry explosion in the 20th century has led to increased environmental pollution, affecting fauna, flora, and waterways. These substances alter water's taste, color, and smell, making it unfit for consumption or toxic. Agricultural water networks face threats from pollution before and after treatment. Some chemical contaminants, like pesticides, are embedded in natural biogeochemical cycles. In this study, we developed a simple and low-cost procedure for the fabrication of needles coated with polydimethylsiloxane (PDMS) as an efficient sorbent for the microextraction of organic pollutant traces from water. The prepared needles were used as an alternative for commercial solid-phase micro-extraction (SPME) devices in analytical chemistry. The PDMS polymeric phase was characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry (TGA), and scanning electron microscopy (SEM). The PDMS-coated needles were used for extraction of thirteen pesticides by direct-immersion solid-phase microextraction (DI-SPME) from contaminated waters, followed by determination with gas chromatography-mass spectrometry (GC-MS). The developed analytical method showed limits of detection (LODs) between 0.3 and 2.5 ng mL-1 and RSDs in the range of 0.8-12.2%. The homemade needles were applied for the extraction of pesticides in surface and ground aqueous samples collected from an agricultural area. Several target pesticides were identified and quantified in the investigated water samples.


Asunto(s)
Plaguicidas , Microextracción en Fase Sólida , Contaminantes Químicos del Agua , Microextracción en Fase Sólida/métodos , Plaguicidas/análisis , Plaguicidas/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Agricultura , Dimetilpolisiloxanos/química , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Límite de Detección , Agujas
5.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894053

RESUMEN

The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.


Asunto(s)
Electrodos , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Dimetilpolisiloxanos/química , Espectroscopía Dieléctrica , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Impedancia Eléctrica , Glicerol/química , Fenómenos Electrofisiológicos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
6.
ACS Appl Mater Interfaces ; 16(24): 31807-31816, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38847366

RESUMEN

Wearable smart textile sensors for monitoring vital signs are fast, noninvasive, and highly desirable for personalized health management to diagnose health anomalies such as cardiovascular diseases and respiratory dysfunction. Traditional biosignal sensors, with power consumption issues, constrain the use of wearable medical devices. This study introduces an autonomous triboelectric smart textile sensor (AUTS) made of reduced graphene oxide/manganese dioxide/polydimethylsiloxane (RGO-M-PDMS) and polytetrafluoroethylene (TEFLON)-knitted silver electrode, offering promise for vital sign monitoring with self-powering, flexibility, and wearability. The sensor exhibits impressive output performance, with a sensitivity of 7.8 nA/kPa, response time of ≈40 ms, good stability of >15,000 cycles, stretchability of up to 40%, and machine washability of >20 washes. The AUTS has been integrated to the TriBreath respiratory belt for monitoring respiratory signals and pulse strap for pulse signals concurrently at different body pulse points. These sensors wirelessly transmitted the acquired biosignals to a smartphone, demonstrating the potential of a self-powered and real-time vital sign monitoring system.


Asunto(s)
Grafito , Óxidos , Textiles , Signos Vitales , Dispositivos Electrónicos Vestibles , Grafito/química , Humanos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Óxidos/química , Compuestos de Manganeso/química , Dimetilpolisiloxanos/química , Politetrafluoroetileno/química , Electrodos , Plata/química
7.
J Vis Exp ; (208)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38912772

RESUMEN

Neuronal cultures have been a reference experimental model for several decades. However, 3D cell arrangement, spatial constraints on neurite outgrowth, and realistic synaptic connectivity are missing. The latter limits the study of structure and function in the context of compartmentalization and diminishes the significance of cultures in neuroscience. Approximating ex vivo the structured anatomical arrangement of synaptic connectivity is not trivial, despite being key for the emergence of rhythms, synaptic plasticity, and ultimately, brain pathophysiology. Here, two-photon polymerization (2PP) is employed as a 3D printing technique, enabling the rapid fabrication of polymeric cell culture devices using polydimethyl-siloxane (PDMS) at the micrometer scale. Compared to conventional replica molding techniques based on microphotolitography, 2PP micro-scale printing enables rapid and affordable turnaround of prototypes. This protocol illustrates the design and fabrication of PDMS-based microfluidic devices aimed at culturing modular neuronal networks. As a proof-of-principle, a two-chamber device is presented to physically constrain connectivity. Specifically, an asymmetric axonal outgrowth during ex vivo development is favored and allowed to be directed from one chamber to the other. In order to probe the functional consequences of unidirectional synaptic interactions, commercial microelectrode arrays are chosen to monitor the bioelectrical activity of interconnected neuronal modules. Here, methods to 1) fabricate molds with micrometer precision and 2) perform in vitro multisite extracellular recordings in rat cortical neuronal cultures are illustrated. By decreasing costs and future widespread accessibility of 2PP 3D-printing, this method will become more and more relevant across research labs worldwide. Especially in neurotechnology and high-throughput neural data recording, the ease and rapidity of prototyping simplified in vitro models will improve experimental control and theoretical understanding of in vivo large-scale neural systems.


Asunto(s)
Técnicas de Cultivo de Célula , Neuronas , Impresión Tridimensional , Neuronas/citología , Animales , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Dimetilpolisiloxanos/química , Polimerizacion , Ratas
8.
ACS Appl Mater Interfaces ; 16(25): 32702-32712, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870327

RESUMEN

Herein, we report a dual-functional flexible sensor (DFFS) using a magnetic conductive polymer composed of nickel (Ni), carbon black (CB), and polydimethylsiloxane (PDMS). The material selection for the DFFS utilizes the excellent elasticity of the PDMS matrix and the synergistic interaction between Ni and CB. The DFFS has a wide strain range of 0-170%, a high sensitivity of 74.13 (140-170%), and a low detection limit of 0.3% strain. The DFFS based on superior performance can accurately detect microstrain/microvibration, oncoming/contacting objects, and bicycle riding speed. Additionally, the DFFS can be used for comprehensive monitoring of human movements. Therefore, the DFFS of this work shows significant value for implementation in intelligent wearable devices and noncontact intelligent control.


Asunto(s)
Dimetilpolisiloxanos , Microesferas , Níquel , Hollín , Dispositivos Electrónicos Vestibles , Dimetilpolisiloxanos/química , Humanos , Níquel/química , Hollín/química , Movimiento , Conductividad Eléctrica
9.
Medicine (Baltimore) ; 103(24): e38414, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875398

RESUMEN

To investigate the efficacy of 3 root canal sealants such as AH Plus, GuttaFlow and iRoot SP combined with warm gutta-percha vertical compression technique in the treatment of dental pulp disease. This was a single-center retrospective study. 180 patients with dental pulp disease were divided into AH Plus group (n = 60), GuttaFlow group (n = 60) and iRoot SP group (n = 60) according to the different treatment methods. Patients in different groups were treated with corresponding root canal sealant combined with warm gutta-percha vertical compression technique. The quality of root canal filling, filling time, filling area ratio, the incidence of pain after operation, serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and efficacy at 6 months after operation were compared among the 3 groups, respectively. The filling time in the GuttaFlow group and the iRoot SP group was significantly shorter than that in the AH Plus group (P < .001). There were significant differences in pain grade (P = .015) and pain rate (P = .016) among the 3 groups, and the pain rate in the GuttaFlow group and the iRoot SP group was significantly lower than that in the AH Plus group (P = .016). The time-point effect, intergroup effect and time-groups effect of serum TNF-α and IL-6 were significantly different (P < .001), and the levels of the 3 groups after treatment were significantly lower than those before treatment (P < .05), and the levels were significantly lower in the GuttaFlow group and the iRoot SP group (P < .05). There were significant differences in efficacy grading and effective rate among the 3 groups (P = .028), and the effective rate of iRoot SP group was significantly higher than that of AH Plus group (P < .05). The iRoot SP or GuttaFlow as root canal sealant combined with warm gutta-percha vertical compression technique in the treatment of dental pulp disease is better than AH Plus, and the former one can shorten the filling time, relieve the postoperative pain and improve the inflammatory response, but the long-term apical sealing effect of iRoot SP is better than GuttaFlow.


Asunto(s)
Gutapercha , Materiales de Obturación del Conducto Radicular , Humanos , Femenino , Masculino , Estudios Retrospectivos , Adulto , Materiales de Obturación del Conducto Radicular/uso terapéutico , Gutapercha/uso terapéutico , Enfermedades de la Pulpa Dental/terapia , Interleucina-6/sangre , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/sangre , Resultado del Tratamiento , Adulto Joven , Combinación de Medicamentos , Dimetilpolisiloxanos
10.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900168

RESUMEN

Oxygen levels vary in the environment. Oxygen availability has a major effect on almost all organisms, and oxygen is far more than a substrate for energy production. However, less is known about related biological processes under hypoxic conditions and about the adaptations to changing oxygen concentrations. The yeast Saccharomyces cerevisiae can adapt its metabolism for growth under different oxygen concentrations and can grow even under anaerobic conditions. Therefore, we developed a microfluidic device that can generate serial, accurately controlled oxygen concentrations for single-cell studies of multiple yeast strains. This device can construct a broad range of oxygen concentrations, [O2] through on-chip gas-mixing channels from two gases fed to the inlets. Gas diffusion through thin polydimethylsiloxane (PDMS) can lead to the equilibration of [O2] in the medium in the cell culture layer under gas cover regions within 2 min. Here, we established six different and stable [O2] varying between ~0.1 and 20.9% in the corresponding layers of the device designed for multiple parallel single-cell culture of four different yeast strains. Using this device, the dynamic responses of different yeast transcription factors and metabolism-related proteins were studied when the [O2] decreased from 20.9% to serial hypoxic concentrations. We showed that different hypoxic conditions induced varying degrees of transcription factor responses and changes in respiratory metabolism levels. This device can also be used in studies of the aging and physiology of yeast under different oxygen conditions and can provide new insights into the relationship between oxygen and organisms. Integration, innovation and insight: Most living cells are sensitive to the oxygen concentration because they depend on oxygen for survival and proper cellular functions. Here, a composite microfluidic device was designed for yeast single-cell studies at a series of accurately controlled oxygen concentrations. Using this device, we studied the dynamic responses of various transcription factors and proteins to changes in the oxygen concentration. This study is the first to examine protein dynamics and temporal behaviors under different hypoxic conditions at the single yeast cell level, which may provide insights into the processes involved in yeast and even mammalian cells. This device also provides a base model that can be extended to oxygen-related biology and can acquire more information about the complex networks of organisms.


Asunto(s)
Oxígeno , Saccharomyces cerevisiae , Análisis de la Célula Individual , Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Dimetilpolisiloxanos/química , Dispositivos Laboratorio en un Chip , Proteínas de Saccharomyces cerevisiae/metabolismo , Diseño de Equipo , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica
11.
Mikrochim Acta ; 191(6): 301, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709350

RESUMEN

In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective 'gateway' over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of ⁓60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene's overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.


Asunto(s)
Dimetilpolisiloxanos , Grafito , Dispositivos Electrónicos Vestibles , Grafito/química , Humanos , Dimetilpolisiloxanos/química , Movimiento
12.
Colloids Surf B Biointerfaces ; 239: 113963, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759294

RESUMEN

Among various biomimetic polymer materials, polydimethylsiloxane (PDMS) stands out as an ideal matrix for surface-enhanced Raman scattering (SERS) due to its unique intrinsic Raman signal and tenacity. In order to realize the precise detection of prostate-specific antigen (PSA), we proposed a sandwich-type SERS-active immunostructure composed of PDMS@silver nanoparticles (Ag NPs)@ZIF-67 biomimetic film as the immunosubstrate and gold nanorods (Au NRs) as immunoprobes. Due to the synergistic effect of electromagnetic enhancement facilitated by biomimetic surfaces and chemical enhancement achieved by ZIF-67, this structure enabled an ultrasensitive and selective detection of PSA across a broad range from 10-3 to 10-9 mg/mL. The achieved limit of detection was as low as 3.0 × 10-10 mg/mL. Particularly, the intrinsic Raman signal of PDMS matrix at 2905 cm-1 was employed as a potential internal standard (IS) in the detection, achieving a high coefficient of determination (R2) value of 0.996. This multifunctional SERS substrate-mediated immunoassay holds vast potential for early diagnosis of prostate cancer, offering promising prospects for clinical applications.


Asunto(s)
Dimetilpolisiloxanos , Nanopartículas del Metal , Antígeno Prostático Específico , Plata , Espectrometría Raman , Plata/química , Espectrometría Raman/métodos , Inmunoensayo/métodos , Antígeno Prostático Específico/análisis , Nanopartículas del Metal/química , Dimetilpolisiloxanos/química , Humanos , Oro/química , Materiales Biomiméticos/química , Propiedades de Superficie , Límite de Detección , Nanotubos/química , Masculino , Tamaño de la Partícula , Imidazoles , Zeolitas
13.
Colloids Surf B Biointerfaces ; 239: 113977, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776594

RESUMEN

Adoptive T cell therapy has undergone remarkable advancements in recent decades; nevertheless, the rapid and effective ex vivo expansion of tumor-reactive T cells remains a formidable challenge, limiting their clinical application. Artificial antigen-presenting substrates represent a promising avenue for enhancing the efficiency of adoptive immunotherapy and fostering T cell expansion. These substrates offer significant potential by providing flexibility and modularity in the design of tailored stimulatory environments. Polydimethylsiloxane (PDMS) silicone elastomer stands as a widely utilized biomaterial for exploring the varying sensitivity of T cell activation to substrate properties. This paper explores the optimization of PDMS surface modification and formulation to create customized stimulatory surfaces with the goal of enhancing T cell expansion. By employing soft PDMS elastomer functionalized through silanization and activating agent, coupled with site-directed protein immobilization techniques, a novel T cell stimulatory platform is introduced, facilitating T cell activation and proliferation. Notably, our findings underscore that softer modified elastomers (Young' modulus E∼300 kPa) exhibit superior efficacy in stimulating and activating mouse CD4+ T cells compared to their stiffer counterparts (E∼3 MPa). Furthermore, softened modified PDMS substrates demonstrate enhanced capabilities in T cell expansion and Th1 differentiation, offering promising insights for the advancement of T cell-based immunotherapy.


Asunto(s)
Proliferación Celular , Dimetilpolisiloxanos , Activación de Linfocitos , Propiedades de Superficie , Dimetilpolisiloxanos/química , Animales , Activación de Linfocitos/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Ratones Endogámicos C57BL
14.
Arch Biochem Biophys ; 757: 110028, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768746

RESUMEN

Biomechanical signals in the extracellular niche are considered promising for programming the lineage specification of stem cells. Recent studies have reported that biomechanics, such as the microstructure of nanomaterials, can induce adipose-derived stem cells (ASCs) to differentiate into osteoblasts, mediating gene regulation at the epigenetic level. Therefore, in this study, transcriptome expression levels of histone demethylases in ASCs were screened after treatment with different matrix stiffnesses, and histone lysine demethylase 3B (KDM3B) was found to promote osteogenic differentiation of ASCs in response to matrix stiffness, indicating a positive modulatory effect on this biological process. ASCs exhibited widespread and polygonal shapes with a distinct bundle-like expression of vinculin parallel to the axial cytoskeleton along the cell margins on the stiff matrix rather than round shapes with a smeared and shorter expression on the soft matrix. Comparatively rigid polydimethylsiloxane material directed ASCs into an osteogenic phenotype in inductive culture media via the upregulation of osteocalcin, alkaline phosphatase, and runt-related transcription factor 2. Treatment with KDM3B-siRNA decreased the expression of osteogenic differentiation markers and impaired mitochondrial dynamics and mitochondrial membrane potential. These results illustrate the critical role of KDM3B in the biomechanics-induced osteogenic commitment of ASCs and provide new avenues for the further application of stem cells as potential therapeutics for bone regeneration.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Histona Demetilasas con Dominio de Jumonji , Osteogénesis , Células Madre , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Dimetilpolisiloxanos/química
15.
Biomater Sci ; 12(13): 3401-3410, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38804980

RESUMEN

Cell encapsulation devices are expected to be promising tools that can control the release of therapeutic proteins secreted from transplanted cells. The protein permeability of the device membrane is important because it allows the isolation of transplanted cells while enabling the effectiveness of the device. In this study, we investigated free-standing polymeric ultra-thin films (nanosheets) as an intrinsically semi-permeable membrane made from polydimethylsiloxane (PDMS). The PDMS nanosheet with a thickness of 600 nm showed intrinsic protein permeability, and the device fabricated with the PDMS nanosheet showed that VEGF secreted from implanted adipose tissue-derived stem cells (ASCs) could be released for at least 5 days. The ASC encapsulation device promoted angiogenesis and the development of granulation tissue 1 week after transplantation to the subcutaneous area of a mouse. This cell encapsulation device consisting of PDMS nanosheets provides a new method for pre-vascularization of the subcutaneous area in cell transplantation therapy.


Asunto(s)
Tejido Adiposo , Dimetilpolisiloxanos , Neovascularización Fisiológica , Células Madre , Dimetilpolisiloxanos/química , Tejido Adiposo/citología , Animales , Ratones , Células Madre/citología , Neovascularización Fisiológica/efectos de los fármacos , Nanoestructuras/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/química , Permeabilidad , Angiogénesis
16.
Talanta ; 276: 126145, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723473

RESUMEN

Due to the common contamination of multiple mycotoxins in food, which results in stronger toxicity, it is particularly important to simultaneously test for various mycotoxins for the protection of human health. In this study, a disposable immunosensor array with low-cost was designed and fabricated using cellulose paper, polydimethylsiloxane (PDMS), and semiconducting single-walled carbon nanotubes (s-SWCNTs), which was modified with specific antibodies for mycotoxins AFB1 and FB1 detection. The strategy for fabricating the immunosensor array with two individual channels involved a two-step protocol starting with the form of two kinds of carbon films by depositing single-wall carbon nanotubes (SWCNTs) and s-SWCNTs on the cellulose paper as the conductive wire and sensing element, followed by the assembly of chemiresistive biosensor with SWCNTs strip as the wire and s-SWCNTs as the sensing element. After immobilizing AFB1-bovine serum albumin (AFB1-BSA) and FB1-bovine serum albumin (FB1-BSA) separately on the different sensing regions, the formation of mycotoxin-BSA-antibody immunocomplexes transfers to electrochemical signal, which would change with the different concentrations of free mycotoxins. Under optimal conditions, the immunosensor array achieved a limit of detection (LOD) of 0.46 pg/mL for AFB1 and 0.34 pg/mL for FB1 within a wide dynamic range from 1 pg/mL to 20 ng/mL. Furthermore, the AFB1 and FB1 spiked in the ground corn and wheat extracts were detected with satisfactory recoveries, demonstrating the excellent practicality of this established method for simultaneous detection of mycotoxins.


Asunto(s)
Aflatoxina B1 , Técnicas Biosensibles , Celulosa , Nanotubos de Carbono , Técnicas Biosensibles/métodos , Celulosa/química , Aflatoxina B1/análisis , Aflatoxina B1/inmunología , Nanotubos de Carbono/química , Inmunoensayo/métodos , Papel , Albúmina Sérica Bovina/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Contaminación de Alimentos/análisis , Límite de Detección , Micotoxinas/análisis , Micotoxinas/inmunología , Dimetilpolisiloxanos
17.
Anal Chem ; 96(21): 8648-8656, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38716690

RESUMEN

Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (µIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 µm/min in CA-IEF, 2.5 µm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 µm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. µIPG is a promising and stable technique for studying proteoforms from small volumes.


Asunto(s)
Dimetilpolisiloxanos , Focalización Isoeléctrica , Focalización Isoeléctrica/métodos , Humanos , Dimetilpolisiloxanos/química , Concentración de Iones de Hidrógeno , Electrodos , Técnicas Analíticas Microfluídicas/instrumentación , Fuerza Protón-Motriz , Dispositivos Laboratorio en un Chip , Geles/química
18.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692247

RESUMEN

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Análisis de los Alimentos , Límite de Detección , Molibdeno , Nitritos , Molibdeno/química , Técnicas Biosensibles/instrumentación , Nitritos/análisis , Análisis de los Alimentos/instrumentación , Humanos , Dimetilpolisiloxanos/química , Electrodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Contaminación de Alimentos/análisis
19.
ACS Appl Mater Interfaces ; 16(21): 27728-27740, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38758746

RESUMEN

In recent decades, extensive research has been directed toward mitigating microbial contamination and preventing biofilm formation. However, many conventional antibiofilm methods rely on hazardous and toxic substances, neglecting potential risks to human health and the environment. Moreover, these approaches often rely on single-strategy mechanisms, utilizing either bactericidal or fouling-resistant agents, which have shown limited efficacy in long-term biofilm suppression. In this study, we propose an efficient and sustainable biofilm-resistant slippery hybrid slippery composite. This composite integrates nontoxic and environmentally friendly materials including chitosan, silicone oil-infused polydimethylsiloxane, and mesoporous silica nanoparticles in a synergistic manner. Leveraging the bacteria-killing properties of chitosan and the antifouling capabilities of the silicone oil layer, the hybrid composite exhibits robust antibiofilm performance against both Gram-positive and Gram-negative bacteria. Furthermore, the inclusion of mesoporous silica nanoparticles enhances the oil absorption capacity and self-replenishing properties, ensuring exceptional biofilm inhibition even under harsh conditions such as exposure to high shear flow and prolonged incubation (7 days). This approach offers promising prospects for developing effective biofilm-resistant materials with a reduced environmental impact and improved long-term performance.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Dimetilpolisiloxanos , Nanopartículas , Dióxido de Silicio , Biopelículas/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Porosidad , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacología , Pruebas de Sensibilidad Microbiana
20.
ACS Appl Mater Interfaces ; 16(20): 26943-26953, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718354

RESUMEN

The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.


Asunto(s)
Nanocables , Plata , Humanos , Nanocables/química , Plata/química , Presión Sanguínea/fisiología , Grafito/química , Determinación de la Presión Sanguínea/instrumentación , Determinación de la Presión Sanguínea/métodos , Masculino , Dimetilpolisiloxanos/química , Nanoestructuras/química , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...