Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
J Med Chem ; 67(6): 4855-4869, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38489246

RESUMEN

Atopic dermatitis is a chronic relapsing skin disease characterized by recurrent, pruritic, localized eczema, while PDE4 inhibitors have been reported to be effective as antiatopic dermatitis agents. 3',4-O-dimethylcedrusin (DCN) is a natural dihydrobenzofuran neolignan isolated from Magnolia biondii with moderate potency against PDE4 (IC50 = 3.26 ± 0.28 µM) and a binding mode similar to that of apremilast, an approved PDE4 inhibitor for the treatment of psoriasis. The structure-based optimization of DCN led to the identification of 7b-1 that showed high inhibitory potency on PDE4 (IC50 = 0.17 ± 0.02 µM), good anti-TNF-α activity (EC50 = 0.19 ± 0.10 µM), remarkable selectivity profile, and good skin permeability. The topical treatment of 7b-1 resulted in the significant benefits of pharmacological intervention in a DNCB-induced atopic dermatitis-like mice model, demonstrating its potential for the development of novel antiatopic dermatitis agents.


Asunto(s)
Dermatitis Atópica , Lignanos , Inhibidores de Fosfodiesterasa 4 , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Lignanos/farmacología , Lignanos/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/farmacología , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Citocinas/farmacología , Piel
2.
Exp Dermatol ; 33(1): e14970, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37975541

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Recently, exosomes have been considered as potential cell-free medicine for skin defects such as aging, psoriasis and wounds. The aim of this study was to investigate the effects of human dermal fibroblast-neonatal-derived exosome (HDFn-Ex) on AD. HDFn-Ex increased the expression of peroxisome proliferator activated receptor α (PPARα) and alleviated the 1-chloro-2,4-dinitrobenzene (DNCB)-mediated downregulation of filaggrin, involucrin, loricrin, hyaluronic acid synthase 1 (HAS1) and HAS2 in human keratinocyte HaCaT cells. However, these effects were inhibited by the PPARα antagonist GW6471. In the artificial skin model, HDFn-Ex significantly inhibited DNCB-induced epidermal hyperplasia and the decrease in filaggrin and HAS1 levels via a PPARα. In the DNCB-induced AD-like mouse model, HDFn-Ex administration reduced epidermis thickening and mast cell infiltration into the dermis compared to DNCB treatment. Moreover, the decreases in PPARα, filaggrin and HAS1 expression, as well as the increases in IgE and IL4 levels induced by DNCB treatment were reversed by HDFn-Ex. These effects were blocked by pre-treatment with GW6471. Furthermore, HDFn-Ex exhibited an anti-inflammatory effect by inhibiting the DNCB-induced increases in IκBα phosphorylation and TNF-α expression. Collectively, HDFn-Ex exhibited a protective effect on AD. Notably, these effects were regulated by PPARα. Based on our results, we suggest that HDFn-Ex is a potential candidate for treating AD by recovering skin barrier dysfunction and exhibiting anti-inflammatory activity.


Asunto(s)
Dermatitis Atópica , Exosomas , Enfermedades de la Piel , Animales , Ratones , Recién Nacido , Humanos , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , PPAR alfa/metabolismo , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Proteínas Filagrina , Dinitrobencenos/efectos adversos , Dinitrobencenos/metabolismo , Exosomas/metabolismo , Piel/metabolismo , Antiinflamatorios/farmacología , Enfermedades de la Piel/metabolismo , Citocinas/metabolismo , Ratones Endogámicos BALB C
3.
Int Arch Allergy Immunol ; 185(1): 84-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37866360

RESUMEN

INTRODUCTION: Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin disease characterized by Th2 cell-mediated type 2 inflammation. Emerging evidence indicated that AD patients exhibit an increased incidence of oral disorders. In the present study, we sought mechanistic insights into how AD affects periodontitis. METHODS: Onset of AD was induced by 2,4-dinitrochlorobenzene (DNCB). Furthermore, we induced periodontitis (P) in AD mice. The effect of AD in promoting inflammation and bone resorption in gingiva was evaluated. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunofluorescence assay, and flow cytometry were used to investigate histomorphology and cytology analysis, respectively. RNA sequencing of oral mucosa is used tissues to further understand the dynamic transcriptome changes. 16S rRNA microbial analysis is used to profile oral microbial composition. RESULTS: Compared to control group, mice in AD group showed inflammatory signatures and infiltration of a proallergic Th2 (Th2A)-like subset in oral mucosa but not periodontitis, as identified by not substantial changes in mucosa swelling, alveolar bone loss, and TRAP+ osteoclasts infiltration. Similarly, more Th2A-like cell infiltration and interleukin-4 levels were significantly elevated in the oral mucosa of DNCB-P mice compared to P mice. More importantly, AD exacerbates periodontitis when periodontitis has occurred and the severity of periodontitis increased with aggravation of dermatitis. Transcriptional analysis revealed that aggravated periodontitis was positively correlated with more macrophage infiltration and abundant CCL3 secreted. AD also altered oral microbiota, indicating the re-organization of extracellular matrix. CONCLUSIONS: These data provide solid evidence about exacerbation of periodontitis caused by type 2 dermatitis, advancing our understanding in cellular and microbial changes during AD-periodontitis progression.


Asunto(s)
Dermatitis Atópica , Periodontitis , Humanos , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , ARN Ribosómico 16S , Inmunoglobulina E/metabolismo , Antiinflamatorios/farmacología , Piel , Inflamación/metabolismo , Periodontitis/complicaciones , Periodontitis/metabolismo , Ratones Endogámicos BALB C , Citocinas/metabolismo
4.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958804

RESUMEN

Atopic dermatitis (AD) is a relapsing skin disease with persistent inflammation as a causal factor for symptoms and disease progression. Current therapies provide only temporary relief and require long-term usage accompanied by side effects due to persistent relapses. A short peptide, TPS240, has been tested for its potential to subside AD. In this study, we confirmed the anti-atopic effect of TPS240 in vivo and in vitro using a DNCB-induced AD mouse model and TNF-α/IFN-γ-stimulated HaCaT cells. In the AD mouse model, topical treatment with TPS240 diminished AD-like skin lesions and symptoms such as epidermal thickening and mast cell infiltration induced by DNCB, similar to the existing treatment, dexamethasone (Dex). Furthermore, skin atrophy, weight loss, and abnormal organ weight changes observed in the Dex-treated group were not detected in the TPS240-treated group. In TNF-α/IFN-γ-stimulated HaCaT cells, TPS240 reduced the expression of the inflammatory chemokines CCL17 and CCL22 and the pruritic cytokines TSLP and IL-31 by inhibiting NF-κB and STAT3 activation. These results suggest that TPS240 has an anti-atopic effect through immunomodulation of AD-specific cytokines and chemokines and can be used as a candidate drug for the prevention and treatment of AD that can solve the safety problems of existing treatments.


Asunto(s)
Dermatitis Atópica , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Queratinocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Dinitroclorobenceno/farmacología , Línea Celular , Citocinas/metabolismo , Quimiocinas/metabolismo , Piel/metabolismo , Ratones Endogámicos BALB C
5.
Front Immunol ; 14: 1276151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022577

RESUMEN

We have integrated dermal dendritic cell surrogates originally generated from the cell line THP-1 as central mediators of the immune reaction in a human full-thickness skin model. Accordingly, sensitizer treatment of THP-1-derived CD14-, CD11c+ immature dendritic cells (iDCs) resulted in the phosphorylation of p38 MAPK in the presence of 1-chloro-2,4-dinitrobenzene (DNCB) (2.6-fold) as well as in degradation of the inhibitor protein kappa B alpha (IκBα) upon incubation with NiSO4 (1.6-fold). Furthermore, NiSO4 led to an increase in mRNA levels of IL-6 (2.4-fold), TNF-α (2-fold) and of IL-8 (15-fold). These results were confirmed on the protein level, with even stronger effects on cytokine release in the presence of NiSO4: Cytokine secretion was significantly increased for IL-8 (147-fold), IL-6 (11.8-fold) and IL-1ß (28.8-fold). Notably, DNCB treatment revealed an increase for IL-8 (28.6-fold) and IL-1ß (5.6-fold). Importantly, NiSO4 treatment of isolated iDCs as well as of iDCs integrated as dermal dendritic cell surrogates into our full-thickness skin model (SM) induced the upregulation of the adhesion molecule clusters of differentiation (CD)54 (iDCs: 1.2-fold; SM: 1.3-fold) and the co-stimulatory molecule and DC maturation marker CD86 (iDCs ~1.4-fold; SM:~1.5-fold) surface marker expression. Noteworthy, the expression of CD54 and CD86 could be suppressed by dexamethasone treatment on isolated iDCs (CD54: 1.3-fold; CD86: 2.1-fold) as well as on the tissue-integrated iDCs (CD54: 1.4-fold; CD86: 1.6-fold). In conclusion, we were able to integrate THP-1-derived iDCs as functional dermal dendritic cell surrogates allowing the qualitative identification of potential sensitizers on the one hand, and drug candidates that potentially suppress sensitization on the other hand in a 3D human skin model corresponding to the 3R principles ("replace", "reduce" and "refine").


Asunto(s)
Dinitroclorobenceno , Interleucina-8 , Humanos , Dinitroclorobenceno/farmacología , Interleucina-8/metabolismo , Células de Langerhans , Interleucina-6/metabolismo , Células Dendríticas , Citocinas/metabolismo
6.
Biomed Pharmacother ; 168: 115727, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879216

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the mechanism through which rosemary essential oil treats atopic dermatitis. METHODS: A dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model was established and treated with low (1%), medium (2%), and high (4%) doses of Rosmarinus officinalis essential oil (EORO). Serum levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) in each group were determined using enzyme-linked immunosorbent assay (ELISA). Skin tissues were stained with hematoxylin-eosin and toluidine blue. We used network pharmacology and molecular docking techniques to verify the biological activity of essential proteins and their corresponding compounds in the pathway. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics analysis and multivariate statistical analysis of mouse serum to screen differential metabolites and metabolic pathway analysis. Protein expression of p-JAK1, CD4+ cells, and IL-4 in the skin tissue was detected by immunohistochemistry analysis. Protein levels of STAT3, p-STAT3, P65, and p-P65 in damaged skin tissues were detected using western blotting. RESULT: The skin of mice in the model group showed different degrees of erythema, dryness, scratches, epidermal erosion and shedding, and crusting. After treatment, the serum levels of IL-6 and TNF-α in EORO group were significantly decreased, and the expression of p-JAK1,CD4 + cells, IL-4, p-P65 / P65 and p-STAT3 / STAT3 proteins in skin tissues were decreased. CONCLUSION: EORO can effectively improve DNCB-induced AD-like skin lesions in mice by regulating the JAK/STAT/NF-κB signaling pathway, thereby reducing the production of downstream arachidonic acid metabolites, inhibiting skin inflammation, and restoring epidermal barrier function.


Asunto(s)
Dermatitis Atópica , Aceites Volátiles , Rosmarinus , Animales , Ratones , Citocinas/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Dinitroclorobenceno/farmacología , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Transducción de Señal , Piel/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Cell Stress Chaperones ; 28(6): 935-942, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37851180

RESUMEN

Molecular chaperones belonging to the heat shock protein 90 (Hsp90) family are implicated in inflammatory processes and described as potential novel therapeutic targets in autoimmune/inflammatory skin diseases. While the pathological role of circulating Hsp90 has been recently proposed in patients with atopic dermatitis (AD), a chronic inflammatory skin disease characterized by intense itching and recurrent skin lesions, studies aimed at investigating the role of Hsp90 as a potential target of AD therapy have not yet been conducted. Here, the effects of the Hsp90 blocker STA-9090 (Ganetespib) applied systemically or topically were determined in an experimental mouse model of dinitrochlorobenzene (DNCB)-induced AD. Intraperitoneal administration of STA-9090 ameliorated clinical disease severity, histological epidermal thickness, and dermal leukocyte infiltration in AD mice which was associated with reducing the scratching behavior in DNCB-treated animals. Additionally, topically applied STA-9090 led to lowered disease activity in AD mice, reduced serum levels of IgE, and up-regulated filaggrin expression in lesional skin samples. Our observations suggest that Hsp90 may be a promising therapeutic target in atopic dermatitis and potentially other inflammatory or autoimmune dermatoses.


Asunto(s)
Antineoplásicos , Dermatitis Atópica , Humanos , Animales , Ratones , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Inmunoglobulina E , Piel/metabolismo , Inflamación/metabolismo , Antineoplásicos/farmacología , Proteínas de Choque Térmico/metabolismo , Citocinas/metabolismo , Ratones Endogámicos BALB C
8.
Br J Pharmacol ; 180(23): 3059-3070, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37501600

RESUMEN

BACKGROUND AND PURPOSE: Pruritic dermatitis is a disease with a considerable unmet need for treatment and appears to present with not only epidermal but also peripheral neuronal complications. Here, we propose a novel pharmacological modulation targeting both peripheral dorsal root ganglion (DRG) sensory neurons and skin keratinocytes. GPR35 is an orphan G-protein-coupled receptor expressed in DRG neurons and has been predicted to downregulate neuronal excitability when activated. Modulator information is currently increasing for GPR35, and pamoic acid (PA), a salt-forming agent for drugs, has been shown to be an activator solely specific for GPR35. Here, we investigated its effects on dermatitic pathology. EXPERIMENTAL APPROACH: We confirmed GPR35 expression in peripheral neurons and tissues. The effect of PA treatment was pharmacologically evaluated in cultured cells in vitro and in in vivo animal models for acute and chronic pruritus. KEY RESULTS: Local PA application mitigated acute non-histaminergic itch and, consistently, obstructed DRG neuronal responses. Keratinocyte fragmentation under dermatitic simulation was also dampened following PA incubation. Chronic pruritus in 1-chloro-2,4-dinitrobenzene and psoriasis models were also moderately but significantly reversed by the repeated applications of PA. Dermatitic scores in the 1-chloro-2,4-dinitrobenzene and psoriatic models were also improved by its application, indicating that it is beneficial for mitigating disease pathology. CONCLUSION AND IMPLICATIONS: Our findings suggest that pamoic acid activation of peripheral GPR35 can contribute to the improvement of pruritus and its associated diseases.


Asunto(s)
Dermatitis , Dinitroclorobenceno , Animales , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Prurito/tratamiento farmacológico , Prurito/metabolismo , Piel/metabolismo , Dermatitis/metabolismo , Ganglios Espinales/metabolismo
9.
J Cosmet Dermatol ; 22(5): 1602-1612, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36639978

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease with a genetic predisposition, and the traditional Chinese medicine Morinda officinalis and its roots are characterized with anti-inflammatory effects and have been used for the treatment of various disease. However, it is still largely unknown whether Morinda officinalis extract (MOE) can be used for the treatment of AD. OBJECTIVES: In our study we aimed to determine whether MOE could ameliorate 2,4-dinitrochlorobenzene (DNCB)-induced AD and elucidate molecular mechanisms. METHODS: We established an AD mouse model by using DNCB. Skin pathological analysis and ELISA assay were used to detect the effect of MOE on the inflammation of AD model mouse skin and the expression changes of inflammatory factors, and further functional verification was performed in TNF-α/IFN-γ-induced HaCaT cells. RESULTS: Our in vivo experiments confirmed that MOE remarkably reduced DNCB-induced AD lesions and symptoms, such as epidermal and dermal thickness and mast cell infiltration and inflammatory cytokines secretion in the mice models. In addition, the underlying mechanisms by which MOE ameliorated AD had been uncovered, and we verified that MOE inhibited MALAT1 expression in AD, resulting in attenuated expression of C-C chemokine receptor type 7 (CCR7) regulated by MALAT1-sponge miR-590-5p in a competing endogenous RNA (ceRNA) mechanisms-dependent manner, thereby inhibiting TNF-α/IFN-γ-induced cellular proliferation and inflammation.


Asunto(s)
Dermatitis Atópica , MicroARNs , Morinda , ARN Largo no Codificante , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/genética , Morinda/metabolismo , ARN Largo no Codificante/genética , Factor de Necrosis Tumoral alfa/metabolismo , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Receptores CCR7/metabolismo , Receptores CCR7/uso terapéutico , Antiinflamatorios/uso terapéutico , Piel/metabolismo , Inflamación/patología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo , Citocinas/metabolismo
10.
Mar Drugs ; 20(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36354992

RESUMEN

Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Oxazolona/toxicidad , Oxazolona/metabolismo , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Inmunoglobulina E , Extractos Vegetales/farmacología , Administración Tópica , Citocinas/metabolismo , Ratones Endogámicos BALB C , Piel
11.
Clin Immunol ; 244: 109102, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049600

RESUMEN

Atopic dermatitis (AD), a type of skin inflammation, is associated with immune response mediated by T-helper 2 (Th2) cells, and mast cells. Vasicine is an alkaloid isolated from Adhatoda vasica, a popular Ayurvedic herbal medicine used for treating inflammatory conditions. In the present study, the anti-AD effects of vasicine were evaluated on 2,4-dinitrochlorobenzene-induced AD-like skin lesions in BALB/c mice. The potential anti-allergic effects of vasicine were also assessed using the passive cutaneous anaphylaxis (PCA) test. The results showed that the oral administration of vasicine improved the severity of AD-like lesional skin by decreasing histopathological changes and restoring epidermal thickness. Vasicine also inhibited the infiltration of mast cells in the skin and reduced the levels of pro-Th2 and Th2 cytokines as well as immunoglobulin E in the serum. Finally, vasicine inhibited the expression of pro-Th2 and Th2 cytokines in skin tissues, indicating the therapeutic potential of vasicine for AD.


Asunto(s)
Alcaloides , Antialérgicos , Dermatitis Atópica , Enfermedades de la Piel , Alcaloides/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Animales , Antialérgicos/efectos adversos , Citocinas , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Inmunoglobulina E , Ratones , Ratones Endogámicos BALB C , Anafilaxis Cutánea Pasiva , Quinazolinas , Piel , Enfermedades de la Piel/patología
12.
Sci Rep ; 12(1): 7324, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513696

RESUMEN

Atopic dermatitis (AD) is a common inflammatory skin disease, and its pathogenesis is closely associated with microbial homeostasis in the gut, namely the gut-skin axis. Particularly, recent metagenomics studies revealed that the abundance of two major bacterial species in the gut, Faecalibacterium prausnitzii and Akkermansia muciniphila, may play a critical role in the pathogenesis of AD, but the effect of these species in AD has not yet been elucidated. To evaluate the potential beneficial effect of F. prausnitzii or A. muciniphila in AD, we conducted an animal model study where F. prausnitzii EB-FPDK11 or A. muciniphila EB-AMDK19, isolated from humans, was orally administered to 2,5-dinitrochlorobenzene (DNCB)-induced AD models using NC/Nga mice at a daily dose of 108 CFUs/mouse for six weeks. As a result, the administration of each strain of F. prausnitzii and A. muciniphila improved AD-related markers, such as dermatitis score, scratching behavior, and serum immunoglobulin E level. Also, the F. prausnitzii and A. muciniphila treatments decreased the level of thymic stromal lymphopoietin (TSLP), triggering the production of T helper (Th) 2 cytokines, and improved the imbalance between the Th1 and Th2 immune responses induced by DNCB. Meanwhile, the oral administration of the bacteria enhanced the production of filaggrin in the skin and ZO-1 in the gut barrier, leading to the recovery of functions. Taken together, our findings suggest that F. prausnitzii EB-FPDK11 and A. muciniphila EB-AMDK19 have a therapeutic potential in AD, which should be verified in humans.


Asunto(s)
Dermatitis Atópica , Dinitroclorobenceno , Administración Oral , Akkermansia , Animales , Citocinas/farmacología , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/terapia , Dinitroclorobenceno/farmacología , Modelos Animales de Enfermedad , Faecalibacterium prausnitzii , Humanos , Ratones , Piel/patología , Verrucomicrobia
13.
Inflammation ; 45(4): 1680-1691, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35257273

RESUMEN

Atopic dermatitis (AD) is a complex and multifactorial skin disease characterized by skin inflammation and intense pruritus. There are many commercially available treatments such as topical corticosteroids and immunosuppressants to treat of AD, but their effectiveness is limited, and frequent use of these treatments can cause serious side effects. Therefore, the development of new therapeutic agents is necessary for the treatment of AD. Hence, an alternative agent that was derived from natural products that are effective and safe for AD treatment was investigated using experimental models. The biological activity of euscaphic acid has anti-inflammatory, anticoagulant, and antioxidant effects. Despite the various biomedical properties of euscaphic acid, its therapeutic effects on AD have not been well studied. In this study, we investigated the effects of euscaphic acid on skin inflammation and pruritus in AD mouse model. The effects of euscaphic acid were investigated in activated human epidermal keratinocytes and leukemia T lymphoblast cell lines, and Dermatophagoides farina extract and 2,4-dinitrochlorobenzene-induced AD mouse model. Euscaphic acid ameliorated AD properties, such as the expression of inflammatory cytokines and activation of transcription factors. In addition, euscaphic acid reduced critical factors for pruritus such as immunoglobulin E hyperproduction, mast cell invasion, and interleukin-33 expression. Taken together, euscaphic acid could be a potent therapeutic agent for the treatment of AD.


Asunto(s)
Dermatitis Atópica , Animales , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno/farmacología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Prurito/tratamiento farmacológico , Prurito/metabolismo , Piel , Triterpenos
14.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163297

RESUMEN

Oral melatonin supplement has been shown to improve dermatitis severity in children with AD, but the mechanism of the effect is unclear, and it is uncertain whether melatonin has a direct immunomodulatory effect on the dermatitis. Topical melatonin treatment was applied to DNCB-stimulated Balb/c mice, and gross and pathological skin findings, serum IgE, and cytokine levels in superficial lymph nodes were analyzed. Secretion of chemokines and cell proliferative response after melatonin treatment in human keratinocyte HaCaT cells were also studied. We found that in DNCB-stimulated Balb/c mice, topical melatonin treatment improved gross dermatitis severity, reduced epidermal hyperplasia and lymphocyte infiltration in the skin, and decreased IP-10, CCL27, IL-4, and IL-17 levels in superficial skin-draining lymph nodes. Melatonin also reduced cytokine-induced secretion of AD-related chemokines IP-10 and MCP-1 and decreased IL-4-induced cell proliferation in HaCaT cells. Melatonin seems to have an immunomodulatory effect on AD, with IP-10 as a possible target, and topical melatonin treatment is a potentially useful treatment for patients with AD.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inmunología , Melatonina/farmacología , Administración Tópica , Animales , Citocinas , Dinitroclorobenceno/farmacología , Modelos Animales de Enfermedad , Eccema/patología , Femenino , Agentes Inmunomoduladores/farmacología , Inmunomodulación/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Masculino , Melatonina/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Índice de Severidad de la Enfermedad , Piel/patología
15.
Biosci Biotechnol Biochem ; 86(5): 646-654, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35218182

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory and pruritic disease; it can be treated by inhibiting inflammation. Sarcodia suiae sp. is an edible, artificially cultivable red algae with multiple bioactivities. We assessed the anti-inflammatory activity of the ethyl acetate fraction of S. suiae sp. ethanol extract (PD1) on 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions. Results show that PD1 alleviated symptoms and significantly decreased clinical dermatitis score. PD1 inhibited serum immunoglobulin E expression and alleviated swelling in the spleen and subiliac lymph nodes. In skin tissues, PD1 alleviated aberrant hyperplasia, decreased epidermal thickness, and decreased the accumulation of mast cells. PD1 mediated the recovery of skin barrier-related proteins, such as claudin-1 and filaggrin. Our study demonstrated that PD1 has anti-inflammatory effects, alleviates AD symptoms, inhibits inflammatory responses in skin tissues, and restores barrier function in DNCB-induced AD mice. These findings reveal that S. suiae sp. extract provides an alternative protective option against AD.


Asunto(s)
Dermatitis Atópica , Rhodophyta , Acetatos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Etanol/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/metabolismo , Rhodophyta/metabolismo , Piel
16.
J Biol Chem ; 298(2): 101555, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973335

RESUMEN

2, 4-dinitrofluorobenzene (DNFB) and 2, 4-dinitrochlorobenzene (DNCB) are well known as skin sensitizers that can cause dermatitis. DNFB has shown to more potently sensitize skin; however, how DNFB and DNCB cause skin inflammation at a molecular level and why this difference in their sensitization ability is observed remain unknown. In this study, we aimed to identify the molecular targets and mechanisms on which DNFB and DNCB act. We used a fluorescent calcium imaging plate reader in an initial screening assay before patch-clamp recordings for validation. Molecular docking in combination with site-directed mutagenesis was then carried out to investigate DNFB and DNCB binding sites in the TRPA1 ion channel that may be selectively activated by these tow sensitizers. We found that DNFB and DNCB selectively activated TRPA1 channel with EC50 values of 2.3 ± 0.7 µM and 42.4 ± 20.9 µM, respectively. Single-channel recordings revealed that DNFB and DNCB increase the probability of channel opening and act on three residues (C621, E625, and Y658) critical for TRPA1 activation. Our findings may not only help explain the molecular mechanism underlying the dermatitis and pruritus caused by chemicals such as DNFB and DNCB, but also provide a molecular tool 7.5-fold more potent than the current TRPA1 activator allyl isothiocyanate (AITC) used for investigating TRPA1 channel pharmacology and pathology.


Asunto(s)
Dermatitis , Dinitroclorobenceno , Dinitrofluorobenceno , Piel , Canal Catiónico TRPA1 , Dermatitis/etiología , Dermatitis/metabolismo , Dinitroclorobenceno/química , Dinitroclorobenceno/farmacología , Dinitrofluorobenceno/química , Dinitrofluorobenceno/farmacología , Humanos , Simulación del Acoplamiento Molecular , Piel/efectos de los fármacos , Piel/metabolismo , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/metabolismo
17.
Front Immunol ; 12: 759992, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858412

RESUMEN

Matrix stiffness, a critical physical property of the cellular environment, is implicated in epidermal homeostasis. In particular, matrix stiffening during the pathological progression of skin diseases appears to contribute to cellular responses of keratinocytes. However, it has not yet elucidated the molecular mechanism underlying matrix-stiffness-mediated signaling in coordination with chemical stimuli during inflammation and its effect on proinflammatory cytokine production. In this study, we demonstrated that keratinocytes adapt to matrix stiffening by increasing cell-matrix adhesion via actin cytoskeleton remodeling. Specifically, mechanosensing and signal transduction are coupled with chemical stimuli to regulate cytokine production, and interleukin-6 (IL-6) production is elevated in keratinocytes on stiffer substrates in response to 2,4-dinitrochlorobenzene. We demonstrated that ß1 integrin and focal adhesion kinase (FAK) expression were enhanced with increasing stiffness and activation of ERK and the PI3K/Akt pathway was involved in stiffening-mediated IL-6 production. Collectively, our results reveal the critical role of matrix stiffening in modulating the proinflammatory response of keratinocytes, with important clinical implications for skin diseases accompanied by pathological matrix stiffening.


Asunto(s)
Dinitroclorobenceno/farmacología , Matriz Extracelular/metabolismo , Interleucina-6/metabolismo , Queratinocitos/efectos de los fármacos , Fosfotransferasas/metabolismo , Transducción de Señal/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Línea Celular , Células Cultivadas , Dimetilpolisiloxanos/metabolismo , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681651

RESUMEN

Mast cells play a very important role in skin allergy and inflammation, including atopic dermatitis and psoriasis. In the past, it was found that neferine has anti-inflammatory and anti-aging effects on the skin, but its effect on mast cells has not yet been studied in detail. In this study, we used mast cells (RBL-2H3 cells) and mouse models to study the anti-allergic and inflammatory effects of neferine. First, we found that neferine inhibits the degranulation of mast cells and the expression of cytokines. In addition, we observed that when mast cells were stimulated by A23187/phorbol 12-myristate-13-acetate (PMA), the elevation of intracellular calcium was inhibited by neferine. The phosphorylation of the MAPK/NF-κB pathway is also reduced by pretreatment of neferine. The results of in vivo studies show that neferine can improve the appearance of dermatitis and mast cell infiltration caused by dinitrochlorobenzene (DNCB). Moreover, the expressions of barrier proteins in the skin are also restored. Finally, it was found that neferine can reduce the scratching behavior caused by compound 48/80. Taken together, our results indicate that neferine is a very good anti-allergic and anti-inflammatory natural product. Its effect on mast cells contributes to its pharmacological mechanism.


Asunto(s)
Antialérgicos/farmacología , Antiinflamatorios/farmacología , Bencilisoquinolinas/farmacología , Mastocitos/efectos de los fármacos , Animales , Antialérgicos/uso terapéutico , Bencilisoquinolinas/uso terapéutico , Calcimicina/farmacología , Calcio/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Dinitroclorobenceno/farmacología , Modelos Animales de Enfermedad , Mastocitos/citología , Mastocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
19.
Mol Biochem Parasitol ; 242: 111364, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33639230

RESUMEN

Inhibition of an imperative antioxidant enzyme with subsequent death is a victorious and widely accepted strategy to combat various infectious diseases. Among different antioxidant enzymes, thioredoxin reductase (TrxR) is an exclusive one. Studies have revealed that direct inhibition of TrxR by different classes of chemical moieties promptly results in the death of an organism. Especially the structural as well as biochemical modifications of the enzyme upon inhibition project serious threat towards the subject organism. Herein, an attempt was made to inhibit TrxR of filarial species by administering Auranofin, 1 chloro 2,4 dinitrobenzene (CDNB), Curcumin, and a novel carbamo dithioperoxo(thioate) derivative (4a). Our study has revealed that inhibition of TrxR resulted in the induction of the classical CED pathway of apoptosis along with the intrinsic and extrinsic pathways of apoptosis (Caspase mediated) routed through the ASK-1/p38 axis. Druggability analysis of filarial TrxR for the selected compounds was performed in silico through molecular docking studies. Therefore, this study attempts to decipher the mechanism of apoptosis induction following TrxR inhibition. The safety of those four compounds in terms of dose and toxicity was taken under consideration. Thitherto, the mechanism of TrxR mediated initiation of cell death in filarial parasite has remained undercover, and therefore, it is a maiden report on the characterization of apoptosis induction upon TrxR inhibition which will eventually help in generating effective antifilarial drugs in the future.


Asunto(s)
Antihelmínticos/farmacología , Auranofina/farmacología , Caspasas/genética , Curcumina/farmacología , Dinitroclorobenceno/farmacología , Setaria (Nematodo)/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Animales , Antihelmínticos/química , Apoptosis/efectos de los fármacos , Apoptosis/genética , Auranofina/química , Sitios de Unión , Caspasas/metabolismo , Bovinos , Curcumina/química , Dinitroclorobenceno/química , Regulación de la Expresión Génica , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Microfilarias/efectos de los fármacos , Microfilarias/enzimología , Microfilarias/crecimiento & desarrollo , Modelos Moleculares , Estrés Oxidativo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Setaria (Nematodo)/enzimología , Setaria (Nematodo)/crecimiento & desarrollo , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...