Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.390
Filtrar
3.
Ecotoxicol Environ Saf ; 274: 116203, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479313

RESUMEN

PCDD/Fs are dioxins produced by waste incineration and pose risks to human health. We aimed to detail the health risks of airborne and soil PCDD/Fs near a municipal solid-waste incinerator (MSWI) for the surrounding population and develop a new model that improves upon existing methods. Thus, we conducted field sampling and then investigated a MSWI in the Pearl River Delta (2016-2018). Our results showed that the carcinogenic and non-carcinogenic risk values of PCDD/Fs exposed to residents in nearby areas were acceptable, with hazard index (HI) values lower than 1.0 and a total carcinogenic risk lower than 1.0E-6. Notably, the results raised concerns regarding higher non-carcinogenic risks in children than in adults. Comparative analysis of the frequency accumulation diagram, accumulated probability risk, and the absolute value of error (δ) between the 95% confidence interval (CI) and the 90% CI of the Monte Carlo stochastic simulation-triangular fuzzy number (MCSS-TFN) and the MCSS model, respectively, demonstrated that the MCSS-TFN exhibited less uncertainty than the MCSS model, regardless of the health risk value of PCDD/Fs in ambient air or in soil. This observation underscores the superiority of the MCSS-TFN model over other models in assessing the health risks associated with PCDD/Fs in situations with limited data. Our new method overcomes the limited dataset size and high uncertainty in assessing the health risks of dioxin substances, providing a more comprehensive understanding of their associated health risks than MCSS models.


Asunto(s)
Contaminantes Atmosféricos , Dioxinas , Dibenzodioxinas Policloradas , Adulto , Niño , Humanos , Residuos Sólidos , Monitoreo del Ambiente/métodos , Dibenzodioxinas Policloradas/toxicidad , Dibenzodioxinas Policloradas/análisis , Dibenzofuranos , Contaminantes Atmosféricos/análisis , Incineración , Dioxinas/toxicidad , Medición de Riesgo , Dibenzofuranos Policlorados/análisis , Suelo
4.
J Hazard Mater ; 469: 134066, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522193

RESUMEN

The neurotoxicity induced by dioxins has been recognized as a serious concern to sensitive population living near waste incineration plants. However, investigating the intracellular neurotoxicity of dioxin in humans and the corresponding mitigation strategies has been barely studied. Thus, a domestic waste incineration plant was selected in this study to characterize the neurotoxicity risks of sensitive populations by estimating the ratio of dioxin in human cells using membrane structure dynamics simulation; and constructing a complete dioxin neurotoxicity adverse outcome pathway considering the binding process of AhR/ARNT dimer protein and dioxin response element (DRE). Six dioxins with high neurotoxicity risk were identified. According to the composite neurotoxicity risk analysis, the highest composite neurotoxicity risk appeared when the six dioxins were jointly exposed. Dietary schemes were designed using 1/2 partial factor experimental design to mitigate the composite neurotoxicity risk of six dioxins and No. 16 was screened as the optimum combination which can effectively alleviate the composite neurotoxicity risk by 29.52%. Mechanism analysis shows that the interaction between AhR/ARNT dimer protein and DRE was inhibited under the optimal dietary scheme. This study provides theoretical feasibility and reference significance for assessing composite toxicity risks of pollutants and safety mitigation measures for toxic effects.


Asunto(s)
Rutas de Resultados Adversos , Dioxinas , Dibenzodioxinas Policloradas , Eliminación de Residuos , Humanos , Dioxinas/toxicidad , Dioxinas/química , Poblaciones Vulnerables , Incineración , Dibenzodioxinas Policloradas/análisis
5.
Regul Toxicol Pharmacol ; 149: 105598, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548044

RESUMEN

In 2022 the World Health Organization (WHO) published updated 'Toxic Equivalence Factors' (TEFs) for a wide variety of chlorinated dioxins, dibenzofurans and PCBs [collectively referred to as 'dioxin-like chemicals'; DLCs) that interact with the aryl hydrocarbon receptor (AHR)]. Their update used sophisticated statistical analysis of hundreds of published studies that reported estimation of 'Relative Effective Potency' (REP) values for individual DLC congeners. The weighting scheme used in their assessment of each study favored in vivo over in vitro studies and was based largely on rodent studies. In this Commentary, we highlight the large body of published studies that demonstrate large species differences in AHR-ligand activation and provide supporting evidence for our position that the WHO 2022 TEF values intended for use in human risk assessment of DLC mixtures will provide highly misleading overestimates of 'Toxic Equivalent Quotients' (TEQs), because of well-recognized striking differences in AHR ligand affinities between rodent (rat, mouse) and human. The data reviewed in our Commentary support the position that human tissue-derived estimates of REP/TEF values for individual DLC congeners, although uncertain, will provide much better, more realistic estimates of potential activation of the human AHR, when exposure to complex DLC mixtures occurs.


Asunto(s)
Receptores de Hidrocarburo de Aril , Especificidad de la Especie , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Humanos , Ligandos , Medición de Riesgo , Dioxinas/toxicidad , Bifenilos Policlorados/toxicidad , Ratas , Ratones
6.
Sci Total Environ ; 920: 170759, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336065

RESUMEN

Aquatic animals and consumers of aquatic animals are exposed to increasingly complex mixtures of known and as-yet-unknown chemicals with dioxin-like toxicities in the water cycle. Effect- and cell-based bioanalysis can cover known and yet unknown dioxin and dioxin-like compounds as well as complex mixtures thereof but need to be standardized and integrated into international guidelines for environmental testing. In an international laboratory testing (ILT) following ISO/CD 24295 as standard procedure for rat cell-based DR CALUX un-spiked and spiked extracts of drinking-, surface-, and wastewater were validated to generate precision data for the development of the full ISO-standard. We found acceptable repeatability and reproducibility ranges below 36 % by DR CALUX bioassay for the tested un-spiked and spiked water of different origins. The presence of 17 PCDD/Fs and 12 dioxin-like PCBs was also confirmed by congener-specific GC-HRMS analysis. We compared the sum of dioxin-like activity levels measured by DR CALUX bioassay (expressed in 2,3,7,8-TCDD Bioanalytical Equivalents, BEQ; ISO 23196, 2022) with the obtained GC-HRMS chemical analysis results converted to toxic equivalents (TEQ; van den Berg et al., 2013).


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Ratas , Animales , Dibenzodioxinas Policloradas/análisis , Dioxinas/toxicidad , Dioxinas/análisis , Aguas Residuales , Reproducibilidad de los Resultados , Dibenzofuranos/análisis , Ríos , Luciferasas , Bifenilos Policlorados/análisis , Bioensayo/métodos , Dibenzofuranos Policlorados/análisis
7.
Regul Toxicol Pharmacol ; 147: 105571, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244664

RESUMEN

The World Health Organization (WHO) assesses potential health risks of dioxin-like compounds using Toxic Equivalency Factors (TEFs). This study systematically updated the relative potency (REP) database underlying the 2005 WHO TEFs and applied advanced methods for quantitative integration of study quality and dose-response. Data obtained from fifty-one publications more than doubled the size of the previous REP database (∼1300 datasets). REP quality and relevance for these data was assessed via application of a consensus-based weighting framework. Using Bayesian dose-response modeling, available data were modeled to produce standardized dose/concentration-response Hill curves. Study quality and REP data were synthesized via Bayesian meta-analysis to integrate dose/concentration-response data, author-calculated REPs and benchmark ratios. The output is a prediction of the most likely relationship between each congener and its reference as model-predicted TEF uncertainty distributions, or the 'best estimate TEF' (BE-TEF). The resulting weighted BE-TEFs were similar to the 2005 TEFs, though provide more information to inform selection of TEF values as well as to provide risk assessors and managers with information needed to quantitatively characterize uncertainty around TEF values. Collectively, these efforts produce an updated REP database and an objective, reproducible approach to support development of TEF values based on all available data.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Animales , Dioxinas/toxicidad , Teorema de Bayes , Mamíferos
8.
Regul Toxicol Pharmacol ; 146: 105525, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972849

RESUMEN

In October 2022, the World Health Organization (WHO) convened an expert panel in Lisbon, Portugal in which the 2005 WHO TEFs for chlorinated dioxin-like compounds were reevaluated. In contrast to earlier panels that employed expert judgement and consensus-based assignment of TEF values, the present effort employed an update to the 2006 REP database, a consensus-based weighting scheme, a Bayesian dose response modeling and meta-analysis to derive "Best-Estimate" TEFs. The updated database contains almost double the number of datasets from the earlier version and includes metadata that informs the weighting scheme. The Bayesian analysis of this dataset results in an unbiased quantitative assessment of the congener-specific potencies with uncertainty estimates. The "Best-Estimate" TEF derived from the model was used to assign 2022 WHO-TEFs for almost all congeners and these values were not rounded to half-logs as was done previously. The exception was for the mono-ortho PCBs, for which the panel agreed to retain their 2005 WHO-TEFs due to limited and heterogenous data available for these compounds. Applying these new TEFs to a limited set of dioxin-like chemical concentrations measured in human milk and seafood indicates that the total toxic equivalents will tend to be lower than when using the 2005 TEFs.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animales , Humanos , Teorema de Bayes , Dibenzofuranos/toxicidad , Dibenzofuranos Policlorados/toxicidad , Dioxinas/toxicidad , Mamíferos , Bifenilos Policlorados/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Organización Mundial de la Salud
9.
Environ Sci Technol ; 57(51): 21650-21661, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38078857

RESUMEN

Emerging classes of dioxin-like compounds (DLCs) like hydroxylated/methoxylated polybrominated diphenyl ethers (HO-/MeO-PBDEs) and polychlorinated diphenyl sulfides (PCDPSs) could lead to diverse adverse outcomes in humans and wildlife, yet knowledge gaps exist in their molecular mechanisms associated with different structures following early life environmental exposure. This study integrated a genetic knockout technique and concentration-dependent reduced zebrafish transcriptome approach (CRZT) to unravel the toxicological pathways underpinning developmental toxicity of four HO-/MeO-PBDEs and five PCDPSs at environmentally relevant doses. Generally, the dependence of aryl hydrocarbon receptor (AhR) on the embryotoxicity and transcriptomic potencies induced by the HO-PBDEs and PCDPSs varied across different congeners. The knockout of the ahr2 gene led to 1.02- to 76.48-fold decreases of DLC-induced embryotoxicities and reduced the transcriptome-based potencies ranging from 1.38 to 2124.74 folds in the CRZT test. The fold changes denoting AhR-mediated potentials significantly increased with the increasing chlorination degrees of MeO-PBDEs and PCDPSs (p < 0.05). Moreover, ahr2 knockout primarily affected the DLC-induced early molecular responses relevant to DNA damage, enzyme activation, and organ development. Our integrated approach revealed the differential role of AhR in mediating the developmental toxicity of emerging DLCs possessing varied structures at environmentally relevant doses.


Asunto(s)
Dioxinas , Animales , Humanos , Dioxinas/toxicidad , Éteres Difenilos Halogenados/química , Pez Cebra , Animales Salvajes
10.
Sci Rep ; 13(1): 21211, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040841

RESUMEN

As modern agricultural practices increase their use of chemical pesticides, it is inevitable that we will find a number of these xenobiotics within drinking water supplies and disseminated throughout the food chain. A major problem that arises from this pollution is that the effects of most of these pesticides on cellular mechanisms in general, and how they interact with each other and affect human cells are still poorly understood. In this study we make use of cultured human cancer cells to measure by qRT-PCR how pesticides affect gene expression of stress pathways. Immunoblotting studies were performed to monitor protein expression levels and activation of signaling pathways. We make use of immunofluorescence and microscopy to visualize and quantify DNA damage events in those cells. In the current study, we evaluate the potential of a subset of widely used pesticides to activate the dioxin receptor pathway and affect its crosstalk with estrogen receptor signaling. We quantify the impact of these chemicals on the p53-dependent cellular stress response. We find that, not only can the different pesticides activate the dioxin receptor pathway, most of them have better than additive effects on this pathway when combined at low doses. We also show that different pesticides have the ability to trigger crosstalk events that may generate genotoxic estrogen metabolites. Finally, we show that some, but not all of the tested pesticides can induce a p53-dependent stress response. Taken together our results provide evidence that several xenobiotics found within the environment have the potential to interact together to elicit significant effects on cell systems. Our data warrants caution when the toxicity of substances that are assessed simply for individual chemicals, since important biological effects could be observed only in the presence of other compounds, and that even at very low concentrations.


Asunto(s)
Dioxinas , Plaguicidas , Dibenzodioxinas Policloradas , Humanos , Plaguicidas/toxicidad , Plaguicidas/química , Dioxinas/toxicidad , Receptores de Hidrocarburo de Aril , Proteína p53 Supresora de Tumor/genética
11.
Sci Rep ; 13(1): 20679, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001134

RESUMEN

Fifty-five children aged 2 years from a birth cohort in the largest dioxin-contaminated area in Bien Hoa city, Vietnam participated in this survey to examine gaze behavior. Exposure levels were indicated by 2,3,7,8-tetrachlorodibenzo-p-dibenzodioxin (TCDD) and toxic equivalent of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (TEQ-PCDD/Fs) levels in maternal breast milk. The percentage of the total fixation duration on the face (% Face), mouth (% Mouth), and eye areas (% Eyes) when viewing silent and conversation scenes was used as gaze behavior indices. When they reached 3-year-old, autistic behavior was assessed using the Autism Spectrum Rating Scale (ASRS). A general linear model adjusted for confounding factors was used to compare gaze indices and ASRS scores between high and low dioxin exposure groups. Effects of perinatal dioxin exposure on gaze behavior were found only when viewing conversation scenes indicated by lower % Face for boys in high TCDD exposure group and lower % Eyes for girls in high TEQ-PCDD/Fs group. Increased autistic traits showed by higher ASRS scores at 3-year-old were found in both gender in the high TCDD exposure group. These findings indicate that perinatal TCDD and TEQ-PCDD/Fs exposure may reduce gaze behavior in 2-year-old children, predicting increased autistic traits at 3-year-old.


Asunto(s)
Dioxinas , Contaminantes Ambientales , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Masculino , Embarazo , Femenino , Humanos , Preescolar , Dibenzodioxinas Policloradas/toxicidad , Dioxinas/toxicidad , Dibenzofuranos , Vietnam/epidemiología , Exposición Materna/efectos adversos , Contaminantes Ambientales/análisis
13.
Regul Toxicol Pharmacol ; 145: 105500, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866700

RESUMEN

The toxic equivalency factors (TEFs) approach for dioxin-like chemicals (DLCs) is currently based on a qualitative assessment of a heterogeneous data set of relative estimates of potency (REPs) spanning several orders of magnitude with highly variable study quality and relevance. An effort was undertaken to develop a weighting framework to systematically evaluate and quantitatively integrate the quality and relevance for development of more robust TEFs. Six main-study characteristics were identified as most important in characterizing the quality and relevance of an individual REP for human health risk assessment: study type, study model, pharmacokinetics, REP derivation method, REP derivation quality, and endpoint. Subsequently, a computational approach for quantitatively integrating the weighting framework parameters was developed and applied to the REP2004 database. This was accomplished using a machine learning approach which infers a weighted TEF distribution for each congener. The resulting database, weighted for quality and relevance, provides REP distributions from >600 data sets (including in vivo and in vitro studies, a range of endpoints, etc.). This weighted database provides a flexible platform for systematically and objectively characterizing TEFs for use in risk assessment, as well as providing information to characterize uncertainty and variability. Collectively, this information provides risk managers with information for decision making.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Dioxinas/toxicidad , Medición de Riesgo , Incertidumbre , Bases de Datos Factuales
14.
Food Chem Toxicol ; 181: 114086, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820785

RESUMEN

Humans are constantly exposed to lipophilic persistent organic pollutants (POPs) that accumulate in fatty foods. Among the numerous POPs, dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can impact several organ systems. While the hazard is clearly recognized, it is still difficult to develop a comprehensive understanding of the overall health impacts of dioxins. As chemical toxicity testing is steadily adopting new approach methodologies (NAMs), it becomes imperative to develop computational models that can bridge the data gaps between in vitro testing and in vivo outcomes. As an effort to address this challenge, we propose a multiscale computational approach using a "template-and-anchor" (T&A) structure. A template is a high-level umbrella model that permits the integration of information from various, detailed anchor models. In the present study, we use this T&A approach to describe the effect of TCDD on cholesterol dynamics. Specifically, we represent hepatic cholesterol biosynthesis as an anchor model that is perturbed by TCDD, leading to steatosis, along with alterations of plasma cholesterol. In the future, incorporating pertinent information from all anchor models into the template model will allow the characterization of the global effects of dioxin, which can subsequently be translated into overall - and ultimately personalized - human health risk assessment.


Asunto(s)
Dioxinas , Contaminantes Ambientales , Dibenzodioxinas Policloradas , Humanos , Dioxinas/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Dibenzodioxinas Policloradas/análisis , Hígado , Contaminantes Ambientales/toxicidad , Colesterol
15.
J Korean Med Sci ; 38(37): e289, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37724494

RESUMEN

BACKGROUND: This study aimed to evaluate exposure to various hazardous substances emitted by incineration facilities and their likely effect on the health for residents of Bugi-myeon, Cheongju, Korea, which has three incineration facilities. METHODS: Heavy metals, polycyclic aromatic hydrocarbons (PAHs), and dioxin concentrations in the air and soil of exposed and control areas were measured. Moreover, the exposure levels to harmful substances and its effects on health were investigated in 1,124 exposed and 232 control adults. RESULTS: PAHs and dioxin concentrations in the air in the exposed area were significantly higher than in the control area. Urinary cadmium and PAHs metabolite concentrations were significantly higher in the exposed group than in the control group. The exposure group also had a higher prevalence of depression and self-reported allergic symptoms than the control group. CONCLUSION: The possibility of residents in Bugi-myeon being exposed to hazardous substances at incineration facilities cannot be ruled out. To prevent them from further exposure to hazardous substances, it is necessary to prohibit the expansion of additional incineration facilities in this area and to implement continuous monitoring projects for residents.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Hidrocarburos Policíclicos Aromáticos , Adulto , Humanos , Dioxinas/toxicidad , Incineración , Residuos Industriales , Sustancias Peligrosas/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , República de Corea/epidemiología
16.
Environ Pollut ; 337: 122499, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660771

RESUMEN

Human exposure to environmental pollutants can disrupt embryonic development and impact juvenile and adult health outcomes by adversely affecting cell and organ function. Notwithstanding, environmental contamination continues to increase due to industrial development, insufficient regulations, and the mobilization of pollutants as a result of extreme weather events. Dioxins are a class of structurally related persistent organic pollutants that are highly toxic, carcinogenic, and teratogenic. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent dioxin compound and has been shown to induce toxic effects in developing organisms by activating the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor targeted by multiple persistent organic pollutants. Contaminant-induced AHR activation results in malformations of the craniofacial cartilages and neurocranium; however, the mechanisms mediating these phenotypes are not well understood. In this study, we utilized the optically transparent zebrafish model to elucidate novel cellular targets and potential transcriptional targets underlying TCDD-induced craniofacial malformations. To this end, we exposed zebrafish embryos at 4 h post fertilization to TCDD and employed a mixed-methods approach utilizing immunohistochemistry staining, transgenic reporter lines, fixed and in vivo confocal imaging, and timelapse microscopy to determine the targets mediating TCDD-induced craniofacial phenotypes. Our data indicate that embryonic TCDD exposure reduced jaw and pharyngeal arch Sox10+ chondrocytes and Tcf21+ pharyngeal mesoderm progenitors. Exposure to TCDD correspondingly led to a reduction in collagen type II deposition in Sox10+ domains. Embryonic TCDD exposure impaired development of tissues derived from or guided by Tcf21+ progenitors, namely: nerves, muscle, and vasculature. Specifically, TCDD exposure disrupted development of the hyoid and mandibular arch muscles, decreased neural innervation of the jaw, resulted in compression of cranial nerves V and VII, and led to jaw vasculature malformations. Collectively, these findings reveal novel structural targets and potential transcriptional targets of TCDD-induced toxicity, showcasing how contaminant exposures lead to congenital craniofacial malformations.


Asunto(s)
Dioxinas , Contaminantes Ambientales , Dibenzodioxinas Policloradas , Animales , Embarazo , Femenino , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Dioxinas/toxicidad , Dioxinas/metabolismo , Pez Cebra/metabolismo , Contaminantes Orgánicos Persistentes/metabolismo , Proteínas de Pez Cebra/genética , Dibenzodioxinas Policloradas/toxicidad , Dibenzodioxinas Policloradas/metabolismo , Contaminantes Ambientales/toxicidad , Músculos/metabolismo
17.
Oncogene ; 42(38): 2854-2867, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37587334

RESUMEN

Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin's lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc-/- mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Ratones Endogámicos NOD , Ratones SCID , Contaminantes Orgánicos Persistentes , Dioxinas/toxicidad , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/genética , Acetiltransferasas
18.
Biochem Pharmacol ; 216: 115771, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652105

RESUMEN

Dioxin and dioxin-like compounds are chlorinated organic pollutants formed during the manufacturing of other chemicals. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), that induce AHR-mediated biochemical and toxic responses and are persistent in the environment. 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD) is the prototypical AHR ligand and its effects represent dioxins. TCDD induces toxicity, immunosuppression and is a suspected tumor promoter. The role of TCDD in cancer however is debated and context-dependent. Environmental particulate matter, polycyclic aromatic hydrocarbons, perfluorooctane sulfonamide, endogenous AHR ligands, and cAMP signaling activate AHR through TCDD-independent pathways. The effect of activated AHR in cancer is context-dependent. The ability of FDA-approved drugs to modulate AHR activity has sparked interest in their repurposing for cancer therapy. TCDD by interfering with endogenous pathways, and overstimulating other endogenous pathways influences all stages of cancer. Herein we review signaling mechanisms that activate AHR and mechanisms by which activated AHR modulates signaling in cancer including affected metabolic pathways.


Asunto(s)
Dioxinas , Neoplasias , Dibenzodioxinas Policloradas , Humanos , Dioxinas/toxicidad , Ligandos , Neoplasias/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo
19.
Regul Toxicol Pharmacol ; 143: 105464, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516304

RESUMEN

In 2005, the World Health Organization (WHO) re-evaluated Toxic Equivalency factors (TEFs) developed for dioxin-like compounds believed to act through the Ah receptor based on an updated database of relative estimated potency (REP)(REP2004 database). This re-evalution identified the need to develop a consistent approach for dose-response modeling. Further, the WHO Panel discussed the significant heterogeneity of experimental datasets and dataset quality underlying the REPs in the database. There is a critical need to develop a quantitative, and quality weighted approach to characterize the TEF for each congener. To address this, a multi-tiered approach that combines Bayesian dose-response fitting and meta-regression with a machine learning model to predict REPS' quality categorizations was developed to predict the most likely relationship between each congener and its reference and derive model-predicted TEF uncertainty distributions. As a proof of concept, this 'Best-Estimate TEF workflow' was applied to the REP2004 database to derive TEF point-estimates and characterizations of uncertainty for all congeners. Model-TEFs were similar to the 2005 WHO TEFs, with the data-poor congeners having larger levels of uncertainty. This transparent and reproducible computational workflow incorporates WHO expert panel recommendations and represents a substantial improvement in the TEF methodology.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dioxinas/toxicidad , Teorema de Bayes , Medición de Riesgo , Incertidumbre , Receptores de Hidrocarburo de Aril
20.
Sci Total Environ ; 897: 165286, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422229

RESUMEN

Human exposure to lipophilic persistent organic pollutants (lipPOP) is ubiquitous and life-long, beginning during foetal development. Exposure to lipPOP elicits a number of species and tissue specific responses including dioxin-like activity which involve the activation of aryl hydrocarbon receptor (AhR). This study aims i) to describe the combined dioxin-like activity in serum from Danish pregnant women collected during 2011-2013; ii) to assess the association between maternal serum dioxin-like activity, gestational age at birth and foetal growth indices. The serum lipPOP fraction was extracted using Solid Phase Extraction and cleaned-up on Supelco multi-layer silica and florisil columns. The combined dioxin-like activity of the extract was determined using the AhR reporter gene bioassay, expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent (TEQ) [AhR-TEQ (pg/g lipid)]. The associations of AhR-TEQ and foetal growth indices (birth weight, birth length and head circumference) and gestational age were assessed by linear regression models. We detected AhR-TEQ in 93.9 % of maternal first trimester serum samples, with a median level of 185 pg/g lipid. Each ln-unit increase in AhR-TEQ was associated with an increase in birth weight of 36 g (95 % CI: 5; 68), birth length of 0.2 cm (95 % CI: 0.01; 0.3) and pregnancy duration of 1 day (95 % CI: 0; 1.5). In women who never smoked, higher AhR-TEQ values were associated with higher birth weight and longer duration of gestation, while in smokers the association was the opposite. Mediation analyses suggested that gestational age may mediate the association of AhR-TEQ with foetal growth indices. We conclude that AhR activating substances are present in the bloodstream of almost all pregnant women in Denmark and the AhR-TEQ level was around four times higher than previously reported. The AhR-TEQ was associated with slightly longer gestational duration and thereby higher birth weight and birth length.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Recién Nacido , Humanos , Femenino , Embarazo , Dioxinas/toxicidad , Edad Gestacional , Cohorte de Nacimiento , Peso al Nacer , Dibenzodioxinas Policloradas/toxicidad , Desarrollo Fetal , Contaminantes Orgánicos Persistentes , Receptores de Hidrocarburo de Aril , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...