Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.759
Filtrar
1.
J Agric Food Chem ; 72(28): 15971-15984, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959404

RESUMEN

Myristicin (MYR) mainly occurs in nutmeg and belongs to alkoxy-substituted allylbenzenes, a class of potentially toxic natural chemicals. RNA interaction with MYR metabolites in vitro and in vivo has been investigated in order to gain a better understanding of MYR toxicities. We detected two guanosine adducts (GA1 and GA2), two adenosine adducts (AA1 and AA2), and two cytosine adducts (CA1 and CA2) by LC-MS/MS analysis of total RNA extracts from cultured primary mouse hepatocytes and liver tissues of mice after exposure to MYR. An order of nucleoside adductions was found to be GAs > AAs > CAs, and the result of density functional theory calculations was in agreement with that detected by the LC-MS/MS-based approach. In vitro and in vivo studies have shown that MYR was oxidized by cytochrome P450 enzymes to 1'-hydroxyl and 3'-hydroxyl metabolites, which were then sulfated by sulfotransferases (SULTs) to form sulfate esters. The resulting sulfates would react with the nucleosides by SN1 and/or SN2 reactions, resulting in RNA adduction. The modification may alter the biochemical properties of RNA and disrupt RNA functions, perhaps partially contributing to the toxicities of MYR.


Asunto(s)
Activación Metabólica , Derivados de Alilbenceno , Sistema Enzimático del Citocromo P-450 , ARN , Sulfotransferasas , Espectrometría de Masas en Tándem , Animales , Ratones , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/química , Derivados de Alilbenceno/química , Derivados de Alilbenceno/metabolismo , ARN/metabolismo , ARN/química , Masculino , Hepatocitos/metabolismo , Dioxolanos/metabolismo , Dioxolanos/química , Dioxolanos/toxicidad , Hígado/metabolismo , Hígado/enzimología , Disulfuros/química , Disulfuros/metabolismo , Myristica/química , Myristica/metabolismo
2.
Viruses ; 16(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38932193

RESUMEN

In the current study, a novel strain of Fusarium oxysporum alternavirus 1 (FoAV1) was identified from the Fusarium oxysporum f. sp. melonis (FOM) strain T-BJ17 and was designated as Fusarium oxysporum alternavirus 1-FOM (FoAV1-FOM). Its genome consists of four dsRNA segments of 3515 bp (dsRNA1), 2663 bp (dsRNA2), 2368 bp (dsRNA3), and 1776 bp (dsRNA4) in length. Open reading frame 1 (ORF1) in dsRNA1 was found to encode a putative RNA-dependent RNA polymerase (RdRp), whose amino acid sequence was 99.02% identical to that of its counterpart in FoAV1; while ORF2 in dsRNA2, ORF3 in dsRNA3, and ORF4 in dsRNA4 were all found to encode hypothetical proteins. Strain T-BJ17-VF, which was verified to FoAV1-FOM-free, was obtained using single-hyphal-tip culture combined with high-temperature treatment to eliminate FoAV1-FOM from strain T-BJ17. The colony growth rate, ability to produce spores, and virulence of strain T-BJ17 were significantly lower than those of T-BJ17-VF, while the dry weight of the mycelial biomass and the sensitivity to difenoconazole and pydiflumetofen of strain T-BJ17 were greater than those of T-BJ17-VF. FoAV1-FOM was capable of 100% vertical transmission via spores. To our knowledge, this is the first time that an alternavirus has infected FOM, and this is the first report of hypovirulence and increased sensitivity to difenoconazole and pydiflumetofen induced by FoAV1-FOM infection in FOM.


Asunto(s)
Virus Fúngicos , Fusarium , Genoma Viral , Enfermedades de las Plantas , Triazoles , Fusarium/efectos de los fármacos , Fusarium/genética , Fusarium/virología , Fusarium/patogenicidad , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Virus Fúngicos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Triazoles/farmacología , Dioxolanos/farmacología , Virulencia , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/efectos de los fármacos , Virus ARN/clasificación , Filogenia , Sistemas de Lectura Abierta , Triticum/microbiología , Triticum/virología
3.
J Org Chem ; 89(13): 9313-9321, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38900839

RESUMEN

ß-l-5-((E)-2-Bromovinyl)-1-((2S,4S)-2-(hydroxymethyl)-1,3-(dioxolane-4-yl) uracil (l-BHDU, 17) is a potent and selective inhibitor of the varicella-zoster virus (VZV). l-BHDU (17) has demonstrated excellent anti-VZV activity and is a preclinical candidate to treat chickenpox, shingles (herpes zoster), and herpes simplex virus 1 (HSV-1) infections. Its monophosphate prodrug (POM-l-BHDU-MP, 24) demonstrated an enhanced pharmacokinetic and antiviral profile. POM-l-BHDU-MP (24), in vivo, effectively reduced the VZV viral load and was effective for the topical treatment of VZV and HSV-1 infections. Therefore, a viable synthetic procedure for developing POM-l-BHDU-MP (24) is needed. In this article, an efficient approach for the synthesis of l-BHDU (17) from a readily available starting material is described in 7 steps. An efficient and practical methodology for both chiral pure l- & d-dioxolane 11 and 13 were developed via diastereomeric chiral amine salt formation. Neutralization of the amine carboxylate salt of l-dioxolane 10 provides enantiomerically pure l-dioxane 11 (ee ≥ 99%). Optically pure 11 was utilized to construct the final nucleoside l-BHDU (17) and its monophosphate ester prodrug (POM-l-BHDU-MP, 24). Notably, the reported process eliminates expensive chiral chromatography for the synthesis of chiral pure l- & d-dioxolane, which offers avenues for the development and structure-activity relationship studies of l- & d-dioxolane-derived nucleosides.


Asunto(s)
Antivirales , Dioxolanos , Estereoisomerismo , Dioxolanos/química , Dioxolanos/farmacología , Dioxolanos/síntesis química , Antivirales/química , Antivirales/síntesis química , Antivirales/farmacología , Uracilo/análogos & derivados , Uracilo/química , Uracilo/síntesis química , Uracilo/farmacología , Estructura Molecular , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química
4.
ACS Chem Neurosci ; 15(14): 2612-2622, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38925635

RESUMEN

Numerous insults, both endogenous (e.g., glutamate) and exogenous (e.g., pesticides), compromise the function of the nervous system and pose risk factors for damage or later disease. In previous reports, limonoids such as fraxinellone showed significant neuroprotective activity against glutamate (Glu) excitotoxicity and reactive oxygen species (ROS) production in vitro, albeit with minimal mechanistic information provided. Given these findings, a library of novel fraxinellone analogs (including analogs 1 and 2 described here) was synthesized with the goal of identifying compounds exhibiting neuroprotection against insults. Analog 2 was found to be protective against Glu-mediated excitotoxicity with a measured EC50 of 44 and 39 nM for in vitro assays using PC12 and SH-SY5Y cells, respectively. Pretreatment with analog 2 yielded rapid induction of antioxidant genes, namely, Gpx4, Sod1, and Nqo1, as measured via qPCR. Analog 2 mitigated Glu-mediated ROS. Cytoprotection could be replicated using sulforaphane (SFN), a Nrf2 activator, and inhibited via ML-385, which inhibits Nrf2 binding to regulatory DNA sequences, thereby blocking downstream gene expression. Nrf2 DNA-binding activity was demonstrated using a Nrf2 ELISA-based transcription factor assay. In addition, we found that pretreatment with the thiol N-acetyl Cys completely mitigated SFN-mediated induction of antioxidant genes but had no effect on the activity of analog 2, suggesting thiol modification is not critical for its mechanism of action. In summary, our data demonstrate a fraxinellone analog to be a novel, potent, and rapid activator of the Nrf2-mediated antioxidant defense system, providing robust protection against insults.


Asunto(s)
Ácido Glutámico , Fármacos Neuroprotectores , Especies Reactivas de Oxígeno , Fármacos Neuroprotectores/farmacología , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratas , Células PC12 , Ácido Glutámico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Isotiocianatos/farmacología , Dioxolanos/farmacología , Benzofuranos , Sulfóxidos
5.
Pestic Biochem Physiol ; 202: 105942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879300

RESUMEN

Long-term residue of difenoconazole (DFZ) in the environment caused multiple organ damage to aquatic organisms. Due to the potential hepatoprotective and neuroprotective properties of silybin (SIL), we hypothesized that SIL could alleviate growth inhibition, liver, and brain damage in carp induced by DFZ exposure. The in vivo experiments were divided into the Control group, the SIL group, the DFZ group and the DFZ + SIL group. The exposure concentration of DFZ was 0.39 mg/L, and the therapeutic dose of SIL was 400 mg/kg. The whole experiment lasted for 30 days. SIL was also found to reduce hepatic injury and lipid metabolism based on H&E staining, oil red O staining, and measurement of serum and liver tissue levels of ALT, AST, LDH, TG, and TC. Similarly, SIL reduced brain damage after DFZ exposure, according to H&E staining and detection transcription level of the ZO-1, ZO-2, occludin, and Claudin7 in carp brain. In terms of mechanism, the results showed that SIL inhibited the excessive production of ROS in liver and brain tissues, increased the activity of antioxidant enzymes (T-AOC, SOD, CAT) and resist oxidative stress. Also, SIL promoted the production of anti-inflammatory factors (TGF-ß1 and IL-10) and inhibited the expression of pro-inflammatory factors (TNF-α and IL-6) to reduce the inflammatory response in liver and brain tissues caused by DFZ. ln terms of ferroptosis, by lowering iron levels, upregulating ferroptosis-related genes (GPX4, SIC7A11, GCLC), and downregulating the expression of NCOA4, STEAP3, COX2, and P53, SIL was able to inhibit ferroptosis of liver and brain tissues of carp. In addition, SIL restored the reduced mitochondrial membrane potential (MMP) level and inhibited apoptosis as measured by MMP level detection, TUNEL staining, and apoptosis gene transcript levels. In this study, we analyzed the interactions between genes and proteins associated with oxidative stress, inflammation, ferroptosis and apoptosis using the String database and ranked the nodes in the network using the Cytoscape plugin Cytohubba, and found that P53, Caspase3, TNF-α, IL-6 and Bcl-2 were the key hub genes. Our study not only revealed the multiple pharmacological activities of SIL, but also provided a reference for the prevention and reduction pesticide hazards to aquatic organisms.


Asunto(s)
Apoptosis , Encéfalo , Carpas , Dioxolanos , Ferroptosis , Inflamación , Hígado , Estrés Oxidativo , Silibina , Animales , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Apoptosis/efectos de los fármacos , Silibina/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Dioxolanos/farmacología , Carpas/metabolismo , Inflamación/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Triazoles/farmacología , Triazoles/toxicidad , Antioxidantes/metabolismo , Antioxidantes/farmacología
6.
Expert Opin Drug Metab Toxicol ; 20(6): 529-539, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38712502

RESUMEN

BACKGROUND: Antiretrovirals have the potential to cause drug interactions leading to inefficacy or toxicity via induction of efflux transporters through nuclear receptors, altering drug concentrations at their target sites. RESEARCH DESIGN AND METHODS: This study used molecular dynamic simulations and qRT-PCR to investigate bictegravir's interactions with nuclear receptors PXR and CAR, and its effects on efflux transporters (P-gp, BCRP, MRP1) in rat PBMCs. PBMC/plasma drug concentrations were measured using LC-MS/MS to assess the functional impact of transporter expression. RESULTS: Bictegravir significantly increased the expression of ABC transporters, with Car identified as a key mediator. This suggests that bictegravir's influence on nuclear receptors could affect drug transport and efficacy at the cellular level. CONCLUSIONS: Bictegravir activates nuclear receptors enhancing efflux transporter expression. Understanding these interactions is crucial for preventing drug-drug interactions and reducing toxicity in clinical use. Combining CAR antagonists with bictegravir may prevent drug resistance and toxicity. However, these findings are based on preclinical data and necessitate further clinical trials to confirm their applicability in clinical settings.


Asunto(s)
Interacciones Farmacológicas , Compuestos Heterocíclicos de 4 o más Anillos , Leucocitos Mononucleares , Espectrometría de Masas en Tándem , Animales , Ratas , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Piperazinas/farmacología , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , Simulación de Dinámica Molecular , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Receptor de Androstano Constitutivo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Cromatografía Liquida/métodos , Ratas Sprague-Dawley , Dioxolanos/farmacología , Dioxolanos/farmacocinética , Dioxolanos/administración & dosificación , Amidas , Piridonas
7.
Chemosphere ; 361: 142404, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782131

RESUMEN

The enantioselective environmental behavior of difenoconazole, a widely utilized triazole fungicide commonly detected in agricultural soils, has yet to be comprehensively explored within the earthworm-soil system. To address this research gap, we investigated the bioaccumulation and elimination kinetics, degradation pathways, biotransformation mechanisms, spatial distribution, and toxicity of chiral difenoconazole. The four stereoisomers of difenoconazole were baseline separated and analyzed using SFC-MS/MS. Pronounced enantioselectivity was observed during the uptake phase, with earthworms exhibiting a preference for (2R,4R)-difenoconazole and (2R,4S)-difenoconazole. A total of five transformation products (TPs) were detected and identified using UHPLC-QTOF/MS in the earthworm-soil system. Four of the TPs were detected in both earthworm and soil, and one TP was produced only in eaerthwroms. Hydrolysis and hydroxylation were the primary transformation pathways of difenoconazole in both earthworms and soil. Furthermore, a chiral TP, 3-chloro, 4-hydroxy difenoconazole, was generated with significant enantioselectivity, and molecular docking results indicate the greater catalytic bioactivity of (2R,4R)- and (2R,4S)-difenoconazole, leading to the preferential formation of their corresponding hydroxylated TPs. Furthermore, Mass Spectrometry Imaging (MSI) was applied for the first time to explore the spatial distribution of difenoconazole and the TPs in earthworms, and the "secretory zone" was found to be the dominant region to uptake and biodegrade difenoconazole. ECOSAR predictions highlighted the potentially hazardous impact of most difenoconazole TPs on aquatic ecosystems. These findings are important for understanding the environmental fate of difenoconazole, evaluating environmental risks, and offering valuable insights for guiding scientific bioremediation efforts.


Asunto(s)
Biotransformación , Dioxolanos , Fungicidas Industriales , Oligoquetos , Contaminantes del Suelo , Triazoles , Oligoquetos/metabolismo , Triazoles/metabolismo , Triazoles/química , Fungicidas Industriales/metabolismo , Fungicidas Industriales/química , Animales , Dioxolanos/metabolismo , Dioxolanos/química , Contaminantes del Suelo/metabolismo , Estereoisomerismo , Suelo/química , Espectrometría de Masas en Tándem , Biodegradación Ambiental
8.
Phytomedicine ; 130: 155735, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38810557

RESUMEN

BACKGROUND: Gastric cancer (GC) is difficult to treat with currently available treatments. Securinine (SCR) has a lengthy history of use in the treatment of disorders of the nervous system, and its anticancer potential has been gaining attention in recent years. The aim of this study was to explore the repressive effect of SCR on GC and its fundamental mechanism. METHODS: The efficacy of SCR in GC cells was detected by MTT assays. Colony formation, flow cytometry and Transwell assays were used to assess the changes in the proliferation, apoptosis, cell cycle distribution, migration and invasion of GC cells after treatment. AGS (human gastric carcinoma cell)-derived xenografts were used to observe the effect of SCR on tumor growth in vivo. The molecular mechanism of action of SCR in GC was explored via RNA sequencing, bioinformatics analysis, Western blotting, molecular docking, and immunohistochemistry. RESULTS: SCR was first discovered to inhibit the proliferation, migration, and invasion of GC cells while initiating apoptosis and cell cycle arrest in vitro. It was also established that SCR has excellent anticancer effects in vivo. Interestingly, AURKA acts as a crucial target of SCR, and AURKA expression can be blocked by SCR. Moreover, this study revealed that SCR suppresses the cell cycle and the ß-catenin/Akt/STAT3 pathways, which were previously reported to be regulated by AURKA. CONCLUSION: SCR exerts a notable anticancer effect on GC by targeting AURKA and blocking the cell cycle and ß-catenin/Akt/STAT3 pathway. Thus, SCR is a promising pharmacological option for the treatment of GC.


Asunto(s)
Aurora Quinasa A , Azepinas , Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción STAT3 , Neoplasias Gástricas , beta Catenina , Neoplasias Gástricas/tratamiento farmacológico , Humanos , Factor de Transcripción STAT3/metabolismo , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Animales , beta Catenina/metabolismo , Azepinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Compuestos Heterocíclicos de Anillo en Puente/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Dioxolanos/farmacología , Ratones Endogámicos BALB C , Ratones , Antineoplásicos Fitogénicos/farmacología , Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinogénesis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Lactonas , Piperidinas
9.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2117-2127, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812227

RESUMEN

Piperlongumine(PL), a natural alkaloid extracted from Piperis Longi Fructus, has attracted much attention in recent years because of its strong anti-tumor activity, little toxicity to normal cells, and excellent sensitizing effect combined with chemotherapy and radiotherapy, which endow PL with unique advantages as an anti-tumor drug. However, similar to other alkaloids, PL has low water solubility and poor bioavailability. To improve the application of PL in the clinical treatment of tumors, researchers have constructed various nano-drug delivery systems to increase the efficiency of PL delivery. This paper reviewed the physicochemical properties, anti-tumor mechanism, combined therapies, and nano-drug delivery systems of PL in recent years. The review aimed to provide a reference for further research on the anti-tumor effect and nano-drug delivery system of PL. Moreover, this review is expected to provide a reference for the development and application of PL in the anti-tumor therapies.


Asunto(s)
Dioxolanos , Neoplasias , Dioxolanos/química , Humanos , Animales , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Piperidonas
10.
Sci Rep ; 14(1): 10592, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719900

RESUMEN

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Asunto(s)
Antibacterianos , Cromatografía de Gases y Espectrometría de Masas , Hexanos , Fitoquímicos , Verduras , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/análisis , Verduras/química , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Hexanos/química , Apiaceae/química , Pruebas de Sensibilidad Microbiana , Derivados de Alilbenceno , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ácidos Grasos Insaturados/análisis , Staphylococcus aureus/efectos de los fármacos , Dioxolanos
11.
Fish Shellfish Immunol ; 151: 109659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797333

RESUMEN

Difenoconazole (DFZ), classified as a "low-toxicity pesticide," has seen widespread application in recent years. Nevertheless, the non-target toxicity of the substance, particularly towards aquatic creatures, has generated considerable apprehension. The anti-inflammatory and antioxidant effects of Ferulic Acid (FA) have attracted considerable study in this particular setting. This study established a chronic exposure model to DFZ and investigated the protective effects of FA on chronic respiratory inhibition leading to gill damage in freshwater carp. Histological analyses via HE staining indicated that FA effectively alleviated gill tissue damage induced by chronic DFZ exposure. The qRT-PCR results showed that the addition of FA reduced the expression of IL-1ß, IL-6 and TNF-α while boosting the expression of IL-10 and TGF-ß1. Biochemical analyses and DHE staining revealed that FA reduced MDA levels and increased CAT and GSH activities, along with T-AOC, decreased ROS accumulation in response to chronic DFZ exposure. The results obtained from Western blotting analysis demonstrated that the addition of FA effectively suppressed the activation of the NF-κB signalling pathway and the NLRP3 inflammasome pathway in the gills subjected to prolonged exposure to DFZ. In summary, FA ameliorated gill tissue inflammation and blocked ROS accumulation in carp exposed to chronic DFZ, mitigating tissue inflammation and restoring redox homeostasis through the NF-κB-NLRP3 signaling pathway. Hence, the application of FA has been found to be efficacious for improving respiratory inhibition and mitigating gill tissue inflammation and oxidative stress resulting from DFZ pollution in aquatic habitats.


Asunto(s)
Alimentación Animal , Carpas , Ácidos Cumáricos , Dioxolanos , Proteínas de Peces , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno , Animales , Carpas/inmunología , Ácidos Cumáricos/administración & dosificación , Ácidos Cumáricos/farmacología , FN-kappa B/metabolismo , FN-kappa B/genética , Especies Reactivas de Oxígeno/metabolismo , Dioxolanos/administración & dosificación , Dioxolanos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Alimentación Animal/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Triazoles/farmacología , Triazoles/administración & dosificación , Branquias/efectos de los fármacos , Suplementos Dietéticos/análisis , Dieta/veterinaria , Contaminantes Químicos del Agua/efectos adversos , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
J Biochem Mol Toxicol ; 38(6): e23740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779996

RESUMEN

The current study was focused on the anticancer activity of myristicin against MCF-7 human breast cancer (BC) cells. BC is the most common and leading malignant disease in women worldwide. Now-a-days, various conventional therapies are used against BC and still represent a chief challenge because those treatments fail to differentiate normal cells from malignant cells, and they have severe side effects also. So, there is a need develop new therapies to decrease BC-related morbidity and mortality. Myristicin, a 1­allyl­5­methoxy­3, 4­methylenedioxybenzene, is a main active aromatic compound present in various spices, such as nutmeg, mace, carrot, cinnamon, parsely and some essential oils. Myristicin has a wide range of effects, including antitumor, antioxidative and antimicrobial activity. Nevertheless, the effects of myristicin on human BC cells remain largely unrevealed. The cytotoxicity effect of myristicin on MCF­7 cells was increased dose dependently detected by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Lactate Dehydrogenase assays. Myristicin was found to be significantly inducing the cell apoptosis, as compared to control, using acridine orange/ethidium bromide, Hoechst stain and annexin V. Moreover, it activates cell antimigration, intracellular reactive oxygen species generation and cell cycle arrest in the G1/S phase. In addition, myristicin induces the expression of apoptosis and cell cycle genes (Caspases8, Bax, Bid, Bcl2, PARP, p53, and Cdk1) was demonstrated by quantitative polymerase chain reaction and apoptosis proteins (c-PARP, Caspase 9, Cytochrome C, PDI) expression was also analyzed with western blot. Overall, we illustrated that myristicin could regulate apoptosis signaling pathways in MCF-7 BC cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Humanos , Apoptosis/efectos de los fármacos , Células MCF-7 , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Dioxolanos/farmacología , Compuestos de Bencilo/farmacología , Derivados de Alilbenceno/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
BMC Microbiol ; 24(1): 180, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789974

RESUMEN

BACKGROUND: Cobweb disease is a fungal disease that commonly affects the cultivation and production of edible mushrooms, leading to serious yield and economic losses. It is considered a major fungal disease in the realm of edible mushrooms. The symptoms of cobweb disease were found during the cultivation of Lyophyllum decastes. This study aimed to identify the causative pathogen of cobweb disease and evaluate effective fungicides, providing valuable insights for field control and management of L. decastes cobweb disease. RESULTS: The causal agent of cobweb disease was isolated from samples infected and identified as Cladobotryum mycophilum based on morphological and cultural characteristics, as well as multi-locus phylogeny analysis (ITS, RPB1, RPB2, and TEF1-α). Pathogenicity tests further confirmed C. mycophilum as the responsible pathogen for this condition. Among the selected fungicides, Prochloraz-manganese chloride complex, Trifloxystrobin, tebuconazole, and Difenoconazole exhibited significant inhibitory effects on the pathogen's mycelium, with EC50 values of 0.076 µg/mL, 0.173 µg/mL, and 0.364 µg/mL, respectively. These fungicides can serve as references for future field control of cobweb disease in L. decastes. CONCLUSION: This study is the first report of C. mycophilum as the causing agent of cobweb disease in L. decastes in China. Notably, Prochloraz-manganese chloride complex demonstrated the strongest inhibitory efficacy against C. mycophilum.


Asunto(s)
Fungicidas Industriales , Filogenia , China , Fungicidas Industriales/farmacología , Agaricales/genética , Agaricales/efectos de los fármacos , Agaricales/clasificación , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Ascomicetos/clasificación , ADN de Hongos/genética , Triazoles/farmacología , Pruebas de Sensibilidad Microbiana , Estrobilurinas , Acetatos , Dioxolanos , Iminas
14.
Biomacromolecules ; 25(5): 2925-2933, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38691827

RESUMEN

A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.


Asunto(s)
Dióxido de Carbono , Cemento de Policarboxilato , Polimerizacion , Dióxido de Carbono/química , Cemento de Policarboxilato/química , Compuestos Epoxi/química , Óxido de Etileno/química , Ciclohexenos/química , Catálisis , Viscosidad , Dioxolanos
15.
Arch Pharm (Weinheim) ; 357(7): e2300768, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593312

RESUMEN

Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.


Asunto(s)
Antineoplásicos Fitogénicos , Dioxolanos , Neoplasias , Dioxolanos/farmacología , Dioxolanos/química , Dioxolanos/síntesis química , Humanos , Relación Estructura-Actividad , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Estructura Molecular , Piperidonas
16.
Environ Pollut ; 349: 123924, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580058

RESUMEN

The study evaluated Ceremonia 25 EC®, a plant protection product (PPP) containing difenoconazole, in tomato crops, to identify potential risks associated with PPPs, and in addition to this compound, known metabolites from difenoconazole degradation and co-formulants present in the PPP were monitored. An ultra high performance liquid chromatography coupled to quadrupole-Orbitrap mass analyser (UHPLC-Q-Orbitrap-MS) method was validated with a working range of 2 µg/kg (limit of quantification, LOQ) to 200 µg/kg. Difenoconazole degradation followed a biphasic double first-order in parallel (DFOP) kinetic model in laboratory and greenhouse trials, with high accuracy (R2 > 0.9965). CGA-205374, difenoconazole-alcohol, and hydroxy-difenoconazole metabolites were tentatively identified and semi-quantified in laboratory trials by UHPLC-Q-Orbitrap-MS from day 2 to day 30. No metabolites were found in greenhouse trials. Additionally, 13 volatile co-formulants were tentatively identified by gas chromatography (GC) coupled to Q-Orbitrap-MS, detectable up to the 7th day after PPP application. This study provides a comprehensive understanding of difenoconazole dissipation in tomatoes, identification of metabolites, and detection of co-formulants associated with the applied PPP.


Asunto(s)
Dioxolanos , Fungicidas Industriales , Solanum lycopersicum , Triazoles , Solanum lycopersicum/metabolismo , Solanum lycopersicum/química , Dioxolanos/metabolismo , Triazoles/metabolismo , Triazoles/análisis , Triazoles/química , Fungicidas Industriales/metabolismo , Fungicidas Industriales/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas/métodos , Contaminación de Alimentos/análisis , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/metabolismo
17.
Int J Biol Macromol ; 268(Pt 2): 131502, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626834

RESUMEN

Piperlonguminine (PLG) is a major alkaloid found in Piper longum fruits. It has been shown to possess a variety of biological activities, including anti-tumor, anti-hyperlipidemic, anti-renal fibrosis and anti-inflammatory properties. Previous studies have reported that PLG inhibits various CYP450 enzymes. The main objective of this study was to identify reactive metabolites of PLG in vitro and assess its ability to inhibit CYP450. In rat and human liver microsomal incubation systems exposed to PLG, two oxidized metabolites (M1 and M2) were detected. Additionally, in microsomes where N-acetylcysteine was used as a trapping agent, N-acetylcysteine conjugates (M3, M4, M5 and M6) of four isomeric O-quinone-derived reactive metabolites were found. The formation of metabolites was dependent on NADPH. Inhibition and recombinant CYP450 enzyme incubation experiments showed that CYP3A4 was the primary enzyme responsible for the metabolic activation of PLG. This study characterized the O-dealkylated metabolite (M1) through chemical synthesis. The IC50 shift assay showed time-dependent inhibition of CYP3A4, 2C9, 2E1, 2C8 and 2D6 by PLG. This research contributes to the understanding of PLG-induced enzyme inhibition and bioactivation.


Asunto(s)
Activación Metabólica , Citocromo P-450 CYP3A , Dioxolanos , Microsomas Hepáticos , Animales , Humanos , Citocromo P-450 CYP3A/metabolismo , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Ratas , Dioxolanos/farmacología , Dioxolanos/química , Inhibidores del Citocromo P-450 CYP3A/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Masculino , Piperidonas , Benzodioxoles
18.
J Oral Biosci ; 66(2): 430-438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452870

RESUMEN

OBJECTIVES: To elucidate the association between the anticancer activities of piperlongumine (PL) and its potential target, transient receptor potential melastatin 7 channel (TRPM7), in oral squamous cell carcinoma (OSCC). METHODS: The expression levels and electrical characteristics of TRPM7 as well as cell viability in response to various PL treatments were investigated in the OSCC cell line Cal27. RESULTS: PL treatment resulted in a concentration- and time-dependent reduction in TRPM7 mRNA and protein expression in Cal27 cells. Furthermore, PL treatment inhibited TRPM7-like rectifying currents in Cal27 cells; however, this inhibition was less effective than that of the TRPM7 antagonist waixenicin A. Rapid perfusion and washout experiments revealed an immediate inhibitory effect of PL on TRPM7-like currents. The antagonistic effect of PL occurred within 1 min and was not completely reversed following washout. Notably, the extracellular Ca2+ concentration still influenced PL-induced changes in the TRPM7-like current, indicating that PL can directly but gently antagonize the TRPM7 channel. Functional changes in TRPM7 correlated with the observed antiproliferative and cytotoxic effects of PL in Cal27 cells. CONCLUSIONS: These findings suggest that PL exhibits potent inhibitory effects on TRPM7 and exerts its anti-cancer effects by downregulating TRPM7 expression and antagonizing channel currents.


Asunto(s)
Carcinoma de Células Escamosas , Supervivencia Celular , Dioxolanos , Neoplasias de la Boca , Canales Catiónicos TRPM , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Dioxolanos/farmacología , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Acetatos , Diterpenos , Piperidonas
19.
Adv Ther ; 41(4): 1351-1371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443647

RESUMEN

Stiripentol (Diacomit®) (STP) is an orally active antiseizure medication (ASM) indicated as adjunctive therapy, for the treatment of seizures associated with Dravet syndrome (DS), a severe form of childhood epilepsy, in conjunction with clobazam and, in some regions valproic acid. Since the discovery of STP, several mechanisms of action (MoA) have been described that may explain its specific effect on seizures associated with DS. STP is mainly considered as a potentiator of gamma-aminobutyric acid (GABA) neurotransmission: (i) via uptake blockade, (ii) inhibition of degradation, but also (iii) as a positive allosteric modulator of GABAA receptors, especially those containing α3 and δ subunits. Blockade of voltage-gated sodium and T-type calcium channels, which is classically associated with anticonvulsant and neuroprotective properties, has also been demonstrated for STP. Finally, several studies indicate that STP could regulate glucose energy metabolism and inhibit lactate dehydrogenase. STP is also an inhibitor of several cytochrome P450 enzymes involved in the metabolism of other ASMs, contributing to boost their anticonvulsant efficacy as add-on therapy. These different MoAs involved in treatment of DS and recent data suggest a potential for STP to treat other neurological or non-neurological diseases.


Asunto(s)
Dioxolanos , Epilepsias Mioclónicas , Humanos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Dioxolanos/farmacología , Dioxolanos/uso terapéutico , Convulsiones/tratamiento farmacológico , Epilepsias Mioclónicas/tratamiento farmacológico , Ácido gamma-Aminobutírico
20.
Transl Res ; 268: 63-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499286

RESUMEN

Cisplatin alone or in combination with 5FU and docetaxel is the preferred chemotherapy regimen for advanced-stage OSCC patients. However, its use has been linked to recurrence and metastasis due to the development of drug resistance. Therefore, sensitization of cancer cells to conventional chemotherapeutics can be an effective strategy to overcome drug resistance. Piperlongumine (PL), an alkaloid, have shown anticancer properties and sensitizes numerous neoplasms, but its effect on OSCC has not been explored. However, low aqueous solubility and poor pharmacokinetics limit its clinical application. Therefore, to improve its therapeutic efficacy, we developed piperlongumine-loaded PLGA-based smart nanoparticles (smart PL-NPs) that can rapidly release PL in an acidic environment of cancer cells and provide optimum drug concentrations to overcome chemoresistance. Our results revealed that smart PL-NPs has high cellular uptake in acidic environment, facilitating the intracellular delivery of PL and sensitizing cancer cells to cisplatin, resulting in synergistic anticancer activity in vitro by increasing DNA damage, apoptosis, and inhibiting drug efflux. Further, we have mechanistically explored the Hippo-YAP signaling pathway, which is the critical mediator of chemoresistance, and investigated the chemosensitizing effect of PL in OSCC. We observed that PL alone and in combination with cisplatin significantly inhibits the activation of YAP and its downstream target genes and proteins. In addition, the combination of cisplatin with smart PL-NPs significantly inhibited tumor growth in two preclinical models (patient-derived cell based nude mice and zebrafish xenograft). Taken together, our findings suggest that smart PL-NPs with cisplatin will be a novel formulation to reverse cisplatin resistance in patients with advanced OSCC.


Asunto(s)
Cisplatino , Dioxolanos , Resistencia a Antineoplásicos , Vía de Señalización Hippo , Neoplasias de la Boca , Nanopartículas , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Cisplatino/farmacología , Nanopartículas/química , Dioxolanos/farmacología , Dioxolanos/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Pez Cebra , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Factores de Transcripción/metabolismo , Ratones Desnudos , Ratones , Proteínas Señalizadoras YAP , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Piperidonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA