Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.615
Filtrar
1.
Arch Virol ; 169(6): 122, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753071

RESUMEN

Coronavirus disease 2019 (COVID-19) is still causing hospitalization and death, and vaccination appears to become less effective with each emerging variant. Spike, non-spike, and other possible unrecognized mutations have reduced the efficacy of recommended therapeutic approaches, including monoclonal antibodies, plasma transfusion, and antivirals. SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) and probably dipeptidyl peptidase 4 (DPP-4) to initiate the process of endocytosis by employing host proteases such as transmembrane serine protease-2 (TMPRSS-2) and ADAM metallopeptidase domain 17 (ADAM17). Spironolactone reduces the amount of soluble ACE2 and antagonizes TMPRSS-2 and ADAM17. DPP-4 inhibitors play immunomodulatory roles and may block viral entry. The efficacy of treatment with a combination of spironolactone and DPP-4 inhibitors does not appear to be affected by viral mutations. Therefore, the combination of spironolactone and DPP-4 inhibitors might improve the clinical outcome for COVID-19 patients by decreasing the efficiency of SARS-CoV-2 entry into cells and providing better anti-inflammatory, antiproliferative, and antifibrotic effects than those achieved using current therapeutic approaches such as antivirals and monoclonal antibodies.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Inhibidores de la Dipeptidil-Peptidasa IV , SARS-CoV-2 , Espironolactona , Humanos , Espironolactona/uso terapéutico , Espironolactona/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/uso terapéutico , Antivirales/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , COVID-19/virología , Internalización del Virus/efectos de los fármacos , Quimioterapia Combinada , Dipeptidil Peptidasa 4/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Serina Endopeptidasas
2.
J Agric Food Chem ; 72(20): 11480-11492, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38733562

RESUMEN

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 µmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.


Asunto(s)
Chenopodium quinoa , Inhibidores de la Dipeptidil-Peptidasa IV , Péptidos , Chenopodium quinoa/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Manipulación de Alimentos , Germinación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Hidrólisis , Semillas/química , Semillas/metabolismo , Humanos , Digestión
3.
J Agric Food Chem ; 72(19): 11230-11240, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709903

RESUMEN

Dipeptidyl peptidase-IV (DPP-IV) inhibiting peptides have attracted increased attention because of their possible beneficial effects on glycemic homeostasis. However, the structural basis underpinning their activities has not been well understood. This study combined computational and in vitro investigations to explore the structural basis of DPP-IV inhibitory peptides. We first superimposed the Xaa-Pro-type peptide-like structures from several crystal structures of DPP-IV ligand-protein complexes to analyze the recognition interactions of DPP-IV to peptides. Thereafter, a small set of Xaa-Pro-type peptides was designed to explore the effect of key interactions on inhibitory activity. The intramolecular interaction of Xaa-Pro-type peptides at the first and third positions from the N-terminus was pivotal to their inhibitory activities. Residue interactions between DPP-IV and residues of the peptides at the fourth and fifth positions of the N-terminus contributed significantly to the inhibitory effect of Xaa-Pro-type tetrapeptides and pentapeptides. Based on the interaction descriptors, quantitative structure-activity relationship (QSAR) studies with the DPP-IV inhibitory peptides resulted in valid models with high R2 values (0.90 for tripeptides; 0.91 for tetrapeptides and pentapeptides) and Q2 values (0.33 for tripeptides; 0.68 for tetrapeptides and pentapeptides). Taken together, the structural information on DPP-IV and peptides in this study facilitated the development of novel DPP-IV inhibitory peptides.


Asunto(s)
Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Péptidos , Relación Estructura-Actividad Cuantitativa , Inhibidores de la Dipeptidil-Peptidasa IV/química , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Péptidos/química , Péptidos/farmacología , Humanos , Secuencia de Aminoácidos
4.
Cells ; 13(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786063

RESUMEN

Although cellular senescence was originally defined as an irreversible form of cell cycle arrest, in therapy-induced senescence models, the emergence of proliferative senescence-escaped cancer cells has been reported by several groups, challenging the definition of senescence. Indeed, senescence-escaped cancer cells may contribute to resistance to cancer treatment. Here, to study senescence escape and isolate senescence-escaped cells, we developed novel flow cytometry-based methods using the proliferation marker Ki-67 and CellTrace CFSE live-staining. We investigated the role of a novel senescence marker (DPP4/CD26) and a senolytic drug (azithromycin) on the senescence-escaping ability of MCF-7 and MDA-MB-231 breast cancer cells. Our results show that the expression of DPP4/CD26 is significantly increased in both senescent MCF-7 and MDA-MB-231 cells. While not essential for senescence induction, DPP4/CD26 contributed to promoting senescence escape in MCF-7 cells but not in MDA-MB-231 cells. Our results also confirmed the potential senolytic effect of azithromycin in senescent cancer cells. Importantly, the combination of azithromycin and a DPP4 inhibitor (sitagliptin) demonstrated a synergistic effect in senescent MCF-7 cells and reduced the number of senescence-escaped cells. Although further research is needed, our results and novel methods could contribute to the investigation of the mechanisms of senescence escape and the identification of potential therapeutic targets. Indeed, DPP4/CD26 could be a promising marker and a novel target to potentially decrease senescence escape in cancer.


Asunto(s)
Neoplasias de la Mama , Senescencia Celular , Dipeptidil Peptidasa 4 , Citometría de Flujo , Humanos , Senescencia Celular/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Citometría de Flujo/métodos , Femenino , Dipeptidil Peptidasa 4/metabolismo , Células MCF-7 , Azitromicina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
5.
Cell Death Dis ; 15(5): 344, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762508

RESUMEN

Lupus nephritis (LN) occurs in 50% of cases of systemic lupus erythematosus (SLE) and is one of the most serious complications that can occur during lupus progression. Mesangial cells (MCs) are intrinsic cells in the kidney that can regulate capillary blood flow, phagocytose apoptotic cells, and secrete vasoactive substances and growth factors. Previous studies have shown that various types of inflammatory cells can activate MCs for hyperproliferation, leading to disruption of the filtration barrier and impairment of renal function in LN. Here, we characterized the heterogeneity of kidney cells of LN mice by single-nucleus RNA sequencing (snRNA-seq) and revealed the interaction between macrophages and MCs through the CXC motif chemokine ligand 12 (CXCL12)/dipeptidyl peptidase 4 (DPP4) axis. In culture, macrophages modulated the proliferation and migration of MCs through this ligand-receptor interaction. In LN mice, treatment with linagliptin, a DPP4 inhibitor, effectively inhibited MC proliferation and reduced urinary protein levels. Together, our findings indicated that targeting the CXCL12/DPP4 axis with linagliptin treatment may serve as a novel strategy for the treatment of LN via the CXCL12/DPP4 axis.


Asunto(s)
Proliferación Celular , Quimiocina CXCL12 , Dipeptidil Peptidasa 4 , Nefritis Lúpica , Macrófagos , Células Mesangiales , Nefritis Lúpica/patología , Nefritis Lúpica/metabolismo , Animales , Dipeptidil Peptidasa 4/metabolismo , Quimiocina CXCL12/metabolismo , Células Mesangiales/metabolismo , Células Mesangiales/patología , Células Mesangiales/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Femenino , Movimiento Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Linagliptina/farmacología , Transducción de Señal , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Ratones Endogámicos C57BL
6.
Am J Physiol Cell Physiol ; 326(4): C1203-C1211, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581656

RESUMEN

Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.


Asunto(s)
Angiotensina II , Enfermedades Cardiovasculares , Humanos , Dipeptidil Peptidasa 4 , Peptidil-Dipeptidasa A , Receptor de Angiotensina Tipo 1 , Inflamación , Fibrosis , Angiotensina I
7.
Sci Rep ; 14(1): 7749, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565703

RESUMEN

DPP4 inhibitors can control glucose homeostasis by increasing the level of GLP-1 incretins hormone due to dipeptidase mimicking. Despite the potent effects of DPP4 inhibitors, these compounds cause unwanted toxicity attributable to their effect on other enzymes. As a result, it seems essential to find novel and DPP4 selective compounds. In this study, we introduce a potent and selective DPP4 inhibitor via structure-based virtual screening, molecular docking, molecular dynamics simulation, MM/PBSA calculations, DFT analysis, and ADMET profile. The screened compounds based on similarity with FDA-approved DPP4 inhibitors were docked towards the DPP4 enzyme. The compound with the highest docking score, ZINC000003015356, was selected. For further considerations, molecular docking studies were performed on selected ligands and FDA-approved drugs for DPP8 and DPP9 enzymes. Molecular dynamics simulation was run during 200 ns and the analysis of RMSD, RMSF, Rg, PCA, and hydrogen bonding were performed. The MD outputs showed stability of the ligand-protein complex compared to available drugs in the market. The total free binding energy obtained for the proposed DPP4 inhibitor was more negative than its co-crystal ligand (N7F). ZINC000003015356 confirmed the role of the five Lipinski rule and also, have low toxicity parameter according to properties. Finally, DFT calculations indicated that this compound is sufficiently soft.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Simulación de Dinámica Molecular , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Simulación del Acoplamiento Molecular , Sitios de Unión , Dipeptidil Peptidasa 4 , Teoría Funcional de la Densidad , Ligandos
8.
Proc Natl Acad Sci U S A ; 121(16): e2400077121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598345

RESUMEN

Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to lower airway repair. Agents that promote the selective expansion of these cells might stimulate regeneration of the compromised alveolar epithelium, an etiology-defining event in several pulmonary diseases. From a high-content imaging screen of the drug repurposing library ReFRAME, we identified that dipeptidyl peptidase 4 (DPP4) inhibitors, widely used type 2 diabetes medications, selectively expand AEC2s and are broadly efficacious in several mouse models of lung damage. Mechanism of action studies revealed that the protease DPP4, in addition to processing incretin hormones, degrades IGF-1 and IL-6, essential regulators of AEC2 expansion whose levels are increased in the luminal compartment of the lung in response to drug treatment. To selectively target DPP4 in the lung with sufficient drug exposure, we developed NZ-97, a locally delivered, lung persistent DPP4 inhibitor that broadly promotes efficacy in mouse lung damage models with minimal peripheral exposure and good tolerability. This work reveals DPP4 as a central regulator of AEC2 expansion and affords a promising therapeutic approach to broadly stimulate regenerative repair in pulmonary disease.


Asunto(s)
Células Epiteliales Alveolares , Diabetes Mellitus Tipo 2 , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Pulmón/metabolismo , Modelos Animales de Enfermedad
9.
PLoS One ; 19(4): e0289239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625918

RESUMEN

Dipeptidyl peptidase 4 (DP4)/CD26 regulates the biological function of various peptide hormones by releasing dipeptides from their N-terminus. The enzyme is a prominent target for the treatment of type-2 diabetes and various DP4 inhibitors have been developed in recent years, but their efficacy and side effects are still an issue. Many available crystal structures of the enzyme give a static picture about enzyme-ligand interactions, but the influence of amino acids in the active centre on binding and single catalysis steps can only be judged by mutagenesis studies. In order to elucidate their contribution to inhibitor binding and substrate catalysis, especially in discriminating the P1 amino acid of substrates, the amino acids R125, N710, E205 and E206 were investigated by mutagenesis studies. Our studies demonstrated, that N710 is essential for the catalysis of dipeptide substrates. We found that R125 is not important for dipeptide binding but interacts in the P1`position of the peptide backbone. In contrast to dipeptide substrates both amino acids play an essential role in the binding and arrangement of long natural substrates, particularly if lacking proline in the P1 position. Thus, it can be assumed that the amino acids R125 and N710 are important in the DP4 catalysed substrate hydrolysis by interacting with the peptide backbone of substrates up- and downstream of the cleavage site. Furthermore, we confirmed the important role of the amino acids E205 and E206. However, NP Y, displaying proline in P1 position, is still processed without the participation of E205 or E206.


Asunto(s)
Aminoácidos , Dipeptidil Peptidasa 4 , Dominio Catalítico , Dipéptidos/química , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Péptidos , Prolina/metabolismo , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato , Humanos
10.
Eur J Med Chem ; 270: 116389, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593588

RESUMEN

Dipeptidyl peptidases (DPP) 8 and 9 are intracellular serine proteases that play key roles in various biological processes and recent findings highlight DPP8 and DPP9 as potential therapeutic targets for hematological and inflammasome-related diseases. Despite the substantial progress, the precise biological functions of these proteases remain elusive, and the lack of selective chemical tools hampers ongoing research. In this paper, we describe the synthesis and biochemical evaluation of the first active site-directed DPP8/9 probes which are derived from DPP8/9 inhibitors developed in-house. Specifically, we synthesized fluorescent inhibitors containing nitrobenzoxadiazole (NBD), dansyl (DNS) and cyanine-3 (Cy3) reporters to visualize intracellular DPP8/9. We demonstrate that the fluorescent inhibitors have high affinity and selectivity towards DPP8/9 over related S9 family members. The NBD-labeled DPP8/9 inhibitors were nominated as the best in class compounds to visualize DPP8/9 in human cells. Furthermore, a method has been developed for selective labeling and visualization of active DPP8/9 in vitro by fluorescence microscopy. A collection of potent and selective biotinylated DPP8/9-targeting probes was also prepared by replacing the fluorescent reporter with a biotin group. The present work provides the first DPP8/9-targeting fluorescent compounds as useful chemical tools for the study of DPP8 and DPP9's biological functions.


Asunto(s)
Dipeptidasas , Dipeptidil Peptidasa 4 , Humanos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Dominio Catalítico , Serina Endopeptidasas , Serina Proteasas , Dipeptidasas/metabolismo
11.
Biochem Biophys Res Commun ; 711: 149897, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38608433

RESUMEN

PURPOSE: Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral hypoglycemic drugs and are used for type II diabetes. Previous studies showed that DPP-4 expression is observed in several tumor types and DPP-4 inhibitors suppress the tumor progression on murine tumor models. In this study, we evaluated the role of DPP-4 and the antitumor effect of a DPP-4 inhibitor, linagliptin, on glioblastoma (GBM). METHODS: We analyzed DPP-4 expression in glioma patients by the public database. We also analyzed DPP-4 expression in GBM cells and the murine GBM model. Then, we evaluated the cell viability, cell proliferation, cell migration, and expression of some proteins on GBM cells with linagliptin. Furthermore, we evaluated the antitumor effect of linagliptin in the murine GBM model. RESULTS: The upregulation of DPP-4 expression were observed in human GBM tissue and murine GBM model. In addition, DPP-4 expression levels were found to positively correlate with the grade of glioma patients. Linagliptin suppressed cell viability, cell proliferation, and cell migration in GBM cells. Linagliptin changed the expression of phosphorylated NF-kB, cell cycle, and cell adhesion-related proteins. Furthermore, oral administration of linagliptin decreases the tumor progression in the murine GBM model. CONCLUSION: Inhibition of DPP-4 by linagliptin showed the antitumor effect on GBM cells and the murine GBM model. The antitumor effects of linagliptin is suggested to be based on the changes in the expression of several proteins related to cell cycle and cell adhesion via the regulation of phosphorylated NF-kB. This study suggested that DPP-4 inhibitors could be a new therapeutic strategy for GBM.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Progresión de la Enfermedad , Glioblastoma , Linagliptina , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Linagliptina/farmacología , Linagliptina/uso terapéutico , Animales , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Dipeptidil Peptidasa 4/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Masculino , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667773

RESUMEN

The industrial processing of Argentine shortfin squid to obtain rings generates a significant amount of protein-rich waste, including the skin, which is rich in collagen and attached myofibrillar proteins. This waste is generally discarded. In this study, skin was used as a source of proteins that were hydrolysed using Trypsin, Esperase® or Alcalase®, which released peptides with antioxidant potential and, in particular, antihypertensive (ACE inhibition), hypoglycemic (DPP-IV inhibition) and/or nootropic (PEP inhibition) potential. Among the three enzymes tested, Esperase® and Alcalase produced hydrolysates with potent ACE-, DPP-IV- and PEP-inhibiting properties. These hydrolysates underwent chromatography fractionation, and the composition of the most bioactive fractions was analysed using HPLC-MS-MS. The fractions with the highest bioactivity exhibited very low IC50 values (16 and 66 µg/mL for ACE inhibition, 97 µg/mL for DPP-IV inhibition and 55 µg/mL for PEP inhibition) and were mainly derived from the hydrolysate obtained using Esperase®. The presence of Leu at the C-terminal appeared to be crucial for the ACE inhibitory activity of these fractions. The DPP-IV inhibitory activity of peptides seemed to be determined by the presence of Pro or Ala in the second position from the N-terminus, and Gly and/or Pro in the last C-terminal positions. Similarly, the presence of Pro in the peptides present in the best PEP inhibitory fraction seemed to be important in the inhibitory effect. These results demonstrate that the skin of the Argentine shortfin squid is a valuable source of bioactive peptides, suitable for incorporation into human nutrition as nutraceuticals and food supplements.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Decapodiformes , Inhibidores de la Dipeptidil-Peptidasa IV , Péptidos , Animales , Decapodiformes/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Péptidos/química , Péptidos/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Hidrólisis , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Piel , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Antioxidantes/farmacología , Antioxidantes/química
13.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667768

RESUMEN

Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Glucosa , Hidrolisados de Proteína , Salmo salar , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/aislamiento & purificación , Inhibidores de la Dipeptidil-Peptidasa IV/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Glucosa/metabolismo , Humanos , Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Proteínas de Peces/farmacología
14.
Biomolecules ; 14(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672409

RESUMEN

The remarkable efficacy of cancer immunotherapy has been established in several tumor types. Of the various immunotherapies, PD-1/PD-L1 inhibitors are most extensively used in the treatment of many cancers in clinics. These inhibitors restore the suppressed antitumor immune response and inhibit tumor progression by blocking the PD-1/PD-L1 signaling. However, the low response rate is a major limitation in the clinical application of PD-1/PD-L1 inhibitors. Therefore, combination strategies that enhance the response rate are the need of the hour. In this investigation, PT-100 (also referred to as Talabostat, Val-boroPro, and BXCL701), an orally administered and nonselective dipeptidyl peptidase inhibitor, not only augmented the effectiveness of anti-PD-1 therapy but also significantly improved T immune cell infiltration and reversed the immunosuppressive tumor microenvironment. The combination of PT-100 and anti-PD-1 antibody increased the number of CD4+ and CD8+ T cells. Moreover, the mRNA expression of T cell-associated molecules was elevated in the tumor microenvironment. The results further suggested that PT-100 dramatically reduced the ratio of tumor-associated macrophages. These findings provide a promising combination strategy for immunotherapy in lung cancer.


Asunto(s)
Carcinoma Pulmonar de Lewis , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Animales , Ratones , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral/efectos de los fármacos
15.
Cell Rep Med ; 5(5): 101530, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688275

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is hindered in solid tumor treatment due to the immunosuppressive tumor microenvironment and suboptimal T cell persistence. Current strategies do not address nutrient competition in the microenvironment. Hence, we present a metabolic refueling approach using inosine as an alternative fuel. CAR T cells were engineered to express membrane-bound CD26 and cytoplasmic adenosine deaminase 1 (ADA1), converting adenosine to inosine. Autocrine secretion of ADA1 upon CD3/CD26 stimulation activates CAR T cells, improving migration and resistance to transforming growth factor ß1 suppression. Fusion of ADA1 with anti-CD3 scFv further boosts inosine production and minimizes tumor cell feeding. In mouse models of hepatocellular carcinoma and non-small cell lung cancer, metabolically refueled CAR T cells exhibit superior tumor reduction compared to unmodified CAR T cells. Overall, our study highlights the potential of selective inosine refueling to enhance CAR T therapy efficacy against solid tumors.


Asunto(s)
Adenosina Desaminasa , Dipeptidil Peptidasa 4 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Animales , Adenosina Desaminasa/metabolismo , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Inmunoterapia Adoptiva/métodos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/inmunología , Línea Celular Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inosina , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología
16.
Bioorg Chem ; 147: 107363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657527

RESUMEN

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Asunto(s)
Antioxidantes , Dipeptidil Peptidasa 4 , Hipoglucemiantes , Pirazoles , Triazoles , alfa-Amilasas , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Relación Estructura-Actividad , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Estructura Molecular , Humanos , Relación Dosis-Respuesta a Droga , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Simulación del Acoplamiento Molecular , Picratos/antagonistas & inhibidores , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/síntesis química , Oxindoles/farmacología , Oxindoles/química , Oxindoles/síntesis química , Benzopiranos , Nitrilos
17.
Food Funct ; 15(7): 3778-3790, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511218

RESUMEN

Brewer's spent yeast (BSY) hydrolysates are a source of antidiabetic peptides. Nevertheless, the impact of in vitro gastrointestinal digestion of BSY derived peptides on diabetes has not been assessed. In this study, two BSY hydrolysates were obtained (H1 and H2) using ß-glucanase and alkaline protease, with either 1 h or 2 h hydrolysis time for H1 and H2, respectively. These hydrolysates were then subjected to simulated gastrointestinal digestion (SGID), obtaining dialysates D1 and D2, respectively. BSY hydrolysates inhibited the activity of α-glucosidase and dipeptidyl peptidase IV (DPP-IV) enzymes. Moreover, although D2 was inactive against these enzymes, D1 IC50 value was lower than those found for the hydrolysates. Interestingly, after electrophoretic separation, D1 mannose-linked peptides showed the highest α-glucosidase inhibitory activity, while non-glycosylated peptides had the highest DPP-IV inhibitory activity. Kinetic analyses showed a non-competitive mechanism in both cases. After peptide identification, GILFVGSGVSGGEEGAR and IINEPTAAAIAYGLDK showed the highest in silico anti-diabetic activities among mannose-linked and non-glycosylated peptides, respectively (AntiDMPpred score: 0.70 and 0.77). Molecular docking also indicated that these peptides act as non-competitive inhibitors. Finally, an ex vivo model of mouse jejunum organoids was used to study the effect of D1 on the expression of intestinal epithelial genes related to diabetes. The reduction of the expression of genes that codify lactase, sucrase-isomaltase and glucose transporter 2 was observed, as well as an increase in the expression of Gip (glucose-dependent insulinotropic peptide) and Glp1 (glucagon-like peptide 1). This is the first report to evaluate the anti-diabetic effect of BSY peptides in mouse jejunum organoids.


Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Animales , Ratones , Saccharomyces cerevisiae/metabolismo , Manosa , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/farmacología , Péptidos/química , Digestión , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/química , Hidrolisados de Proteína/química
18.
Food Funct ; 15(7): 3848-3863, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38512162

RESUMEN

To better understand the hypoglycemic potential of wheat gluten (WG), we screened dipeptidyl peptidase IV (DPP-4) inhibitory active peptides from WG hydrolysates. WG hydrolysates prepared by ginger protease were found to have the highest DPP-4 inhibitory activity among the five enzymatic hydrolysates, from which a 1-3 kDa fraction was isolated by ultrafiltration. Further characterization of the fraction with nano-HPLC-MS/MS revealed 1133 peptides. Among them, peptides with P'2 (the second position of the N-terminal) and P2 (the second position of the C-terminal) as proline residues (Pro) accounted for 12.44% and 43.69%, respectively. The peptides including Pro-Pro-Phe-Ser (PPFS), Ala-Pro-Phe-Gly-Leu (APFGL), and Pro-Pro-Phe-Trp (PPFW) exhibited the most potent DPP-4 inhibitory activity with IC50 values of 56.63, 79.45, and 199.82 µM, respectively. The high inhibitory activity of PPFS, APFGL, and PPFW could be mainly attributed to their interaction with the S2 pocket (Glu205 and Glu206) and the catalytic triad (Ser630 and His740) of DPP-4, which adopted competitive, mixed, and mixed inhibitory modes, respectively. After comparative analysis of PPFS, PPFW, and PPF, Ser was found to be more conducive to enhancing the DPP-4 inhibitory activity. Interestingly, peptides with P2 as Pro also exhibited good DPP-4 inhibitory activity. Meanwhile, DPP-4 inhibitory peptides from WG showed excellent stability, suggesting a potential application in type 2 diabetes (T2DM) therapy or in the food industry as functional components.


Asunto(s)
Proteasas de Cisteína , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Proteínas de Plantas , Triticum/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Espectrometría de Masas en Tándem , Hidrólisis , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Glútenes , Digestión , Dipeptidil Peptidasa 4/química
19.
J Agric Food Chem ; 72(13): 7167-7178, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511978

RESUMEN

IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity. In conclusion, the results suggest that SGP8 is an orally available DPP4-targeting peptide with therapeutic potential in NASH.


Asunto(s)
Globulinas , Enfermedad del Hígado Graso no Alcohólico , Proteínas de Soja , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Hígado/metabolismo , Globulinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
20.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458637

RESUMEN

BACKGROUND: Dendritic cell (DC)-mediated antigen presentation is essential for the priming and activation of tumor-specific T cells. However, few drugs that specifically manipulate DC functions are available. The identification of drugs targeting DC holds great promise for cancer immunotherapy. METHODS: We observed that type 1 conventional DCs (cDC1s) initiated a distinct transcriptional program during antigen presentation. We used a network-based approach to screen for cDC1-targeting therapeutics. The antitumor potency and underlying mechanisms of the candidate drug were investigated in vitro and in vivo. RESULTS: Sitagliptin, an oral gliptin widely used for type 2 diabetes, was identified as a drug that targets DCs. In mouse models, sitagliptin inhibited tumor growth by enhancing cDC1-mediated antigen presentation, leading to better T-cell activation. Mechanistically, inhibition of dipeptidyl peptidase 4 (DPP4) by sitagliptin prevented the truncation and degradation of chemokines/cytokines that are important for DC activation. Sitagliptin enhanced cancer immunotherapy by facilitating the priming of antigen-specific T cells by DCs. In humans, the use of sitagliptin correlated with a lower risk of tumor recurrence in patients with colorectal cancer undergoing curative surgery. CONCLUSIONS: Our findings indicate that sitagliptin-mediated DPP4 inhibition promotes antitumor immune response by augmenting cDC1 functions. These data suggest that sitagliptin can be repurposed as an antitumor drug targeting DC, which provides a potential strategy for cancer immunotherapy.


Asunto(s)
Antineoplásicos , Diabetes Mellitus Tipo 2 , Neoplasias , Ratones , Animales , Humanos , Dipeptidil Peptidasa 4/metabolismo , Células Dendríticas , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico , Fosfato de Sitagliptina/metabolismo , Presentación de Antígeno , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...