Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34605405

RESUMEN

PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2α to initiate the Unfolded Protein Response (UPR). eIF2α phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5' leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell-type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2α phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5' leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.


Asunto(s)
Antioxidantes/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Glutatión Transferasa/metabolismo , Discos Imaginales/enzimología , eIF-2 Quinasa/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glutatión Transferasa/genética , Discos Imaginales/embriología , Sistemas de Lectura Abierta , Fosforilación , Rodopsina/genética , Rodopsina/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
2.
Elife ; 102021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33769281

RESUMEN

Tissue organization is often characterized by specific patterns of cell morphology. How such patterns emerge in developing tissues is a fundamental open question. Here, we investigate the emergence of tissue-scale patterns of cell shape and mechanical tissue stress in the Drosophila wing imaginal disc during larval development. Using quantitative analysis of the cellular dynamics, we reveal a pattern of radially oriented cell rearrangements that is coupled to the buildup of tangential cell elongation. Developing a laser ablation method, we map tissue stresses and extract key parameters of tissue mechanics. We present a continuum theory showing that this pattern of cell morphology and tissue stress can arise via self-organization of a mechanical feedback that couples cell polarity to active cell rearrangements. The predictions of this model are supported by knockdown of MyoVI, a component of mechanosensitive feedback. Our work reveals a mechanism for the emergence of cellular patterns in morphogenesis.


During development, carefully choreographed cell movements ensure the creation of a healthy organism. To determine their identity and place across a tissue, cells can read gradients of far-reaching signaling molecules called morphogens; in addition, physical forces can play a part in helping cells acquire the right size and shape. Indeed, cells are tightly attached to their neighbors through connections linked to internal components. Structures or proteins inside the cells can pull on these junctions to generate forces that change the physical features of a cell. However, it is poorly understood how these forces create patterns of cell size and shape across a tissue. Here, Dye, Popovic et al. combined experiments with physical models to examine how cells acquire these physical characteristics across the developing wing of fruit fly larvae. This revealed that cells pushing and pulling on one another create forces that trigger internal biochemical reorganization ­ for instance, force-generating structures become asymmetrical. In turn, the cells exert additional forces on their neighbors, setting up a positive feedback loop which results in cells adopting the right size and shape across the organ. As such, cells in the fly wing can spontaneously self-organize through the interplay of mechanical and biochemical signals, without the need for pre-existing morphogen gradients. A refined understanding of how physical forces shape cells and organs would help to grasp how defects can emerge during development. This knowledge would also allow scientists to better grow tissues and organs in the laboratory, both for theoretical research and regenerative medicine.


Asunto(s)
Forma de la Célula , Drosophila melanogaster/fisiología , Discos Imaginales/fisiología , Mecanotransducción Celular , Alas de Animales/fisiología , Animales , Tipificación del Cuerpo , División Celular , Polaridad Celular , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Retroalimentación Fisiológica , Femenino , Discos Imaginales/embriología , Masculino , Modelos Biológicos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Estrés Mecánico , Factores de Tiempo , Alas de Animales/embriología
3.
Insect Sci ; 28(4): 901-916, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32536018

RESUMEN

Chitinase degrades chitin in the old epidermis or peritrophic matrix of insects, which ensures normal development and metamorphosis. In our previous work, we comprehensively studied the function of SfCht7 in Sogatella furcifera. However, the number and function of chitinase genes in S. furcifera remain unknown. Here, we identified 12 full-length chitinase transcripts from S. furcifera, which included nine chitinase (Cht), two imaginal disc growth factor (IDGF), and one endo-ß-N-acetylglucosaminidase (ENGase) genes. Expression analysis results revealed that the expression levels of eight genes (SfCht3, SfCht5, SfCht6-1, SfCht6-2, SfCht7, SfCht8, SfCht10, and SfIDGF2) with similar transcript levels peaked prior to molting of each nymph and were highly expressed in the integument. Based on RNA interference (RNAi), description of the functions of each chitinase gene indicated that the silencing of SfCht5, SfCht10, and SfIDGF2 led to molting defects and lethality. RNAi inhibited the expressions of SfCht5, SfCht7, SfCht10, and SfIDGF2, which led to downregulated expressions of chitin synthase 1 (SfCHS1, SfCHS1a, and SfCHS1b) and four chitin deacetylase genes (SfCDA1, SfCDA2, SfCDA3, and SfCDA4), and caused a change in the expression level of two trehalase genes (TRE1 and TRE2). Furthermore, silencing of SfCht7 induced a significant decrease in the expression levels of three wing development-related genes (SfWG, SfDpp, and SfHh). In conclusion, SfCht5, SfCht7, SfCht10, and SfIDGF2 play vital roles in nymph-adult transition and are involved in the regulation of chitin metabolism, and SfCht7 is also involved in wing development; therefore, these genes are potential targets for control of S. furcifera.


Asunto(s)
Quitinasas/genética , Hemípteros , Metamorfosis Biológica/genética , Acetilglucosaminidasa/genética , Exoesqueleto/embriología , Exoesqueleto/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Hemípteros/embriología , Hemípteros/genética , Hemípteros/fisiología , Discos Imaginales/embriología , Péptidos y Proteínas de Señalización Intercelular/genética , Muda/genética , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo
4.
Dev Cell ; 53(6): 724-739.e14, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32574592

RESUMEN

Gradients of decapentaplegic (Dpp) pattern Drosophila wing imaginal discs, establishing gene expression boundaries at specific locations. As discs grow, Dpp gradients expand, keeping relative boundary positions approximately stationary. Such scaling fails in mutants for Pentagone (pent), a gene repressed by Dpp that encodes a diffusible protein that expands Dpp gradients. Although these properties fit a recent mathematical model of automatic gradient scaling, that model requires an expander that spreads with minimal loss throughout a morphogen field. Here, we show that Pent's actions are confined to within just a few cell diameters of its site of synthesis and can be phenocopied by manipulating non-diffusible Pent targets strictly within the Pent expression domain. Using genetics and mathematical modeling, we develop an alternative model of scaling driven by feedback downregulation of Dpp receptors and co-receptors. Among the model's predictions is a size beyond which scaling fails-something we observe directly in wing discs.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Animales , Regulación hacia Abajo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de la Matriz Extracelular/metabolismo , Retroalimentación Fisiológica , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Modelos Teóricos
5.
Dev Biol ; 464(1): 1-10, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32445643

RESUMEN

Indirect flight muscles (IFMs) are the largest muscles in Drosophila and are made up of hundreds of myonuclei. The generation of these giant muscles requires a large pool of wing disc associated adult muscle precursors (AMPs), however the factors that control proliferation to form this myoblast pool are incompletely known. Here, we examine the role of fibroblast growth factor (FGF) signaling in the proliferation of wing disc associated myoblasts. We find that the components of FGF signaling are expressed in myoblasts and surrounding epithelial cells of the wing disc. Next, we show that attenuation of FGF signaling results in a diminished myoblast pool. This reduction in the pool size is due to decreased myoblast proliferation. By contrast, activating the FGF signaling pathway increases the myoblast pool size and restores the proliferative capacity of FGF knockdown flies. Finally, our results demonstrate that the FGF receptor Heartless acts through up-regulating ß-catenin/Armadillo signaling to promote myoblast proliferation. Our studies identify a novel role for FGF signaling during IFM formation and uncover the mechanism through which FGF coordinates with Wingless signaling to promote myoblast proliferation.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Discos Imaginales/embriología , Mioblastos/metabolismo , Transducción de Señal , Proteína Wnt1/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Factores de Crecimiento de Fibroblastos/genética , Discos Imaginales/citología , Mioblastos/citología , Proteína Wnt1/genética
6.
Semin Cancer Biol ; 63: 19-26, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31255773

RESUMEN

Cancer is a major health issue and the object of investigations in thousands of laboratories all over the world. Most of cancer research is being carried out in in vitro systems or in animal models, generally mice or rats. However, the discovery of the high degree of genetic identity among metazoans has prompted investigation in organisms like Drosophila, on the idea that the genetic basis of cancer in flies and humans may have many aspects in common. Moreover, the sophisticated genetic methodology of Drosophila offers operational advantages and allows experimental approaches inaccessible in other species. Cell competition is a cell-quality control process that aims to identifying and subsequently removing cells within animal tissues that are unfit, abnormal or aberrant, and that may compromise the fitness or the viability of the organism. It was originally described in Drosophila imaginal discs but later work has shown it occurs in mammalian tissues where it fulfils similar roles. One aspect of the surveillance role of cell competition is to eliminate oncogenic cells that may appear during development or the life of an organism. In this review we have focussed on the work on Drosophila imaginal discs relating cell competition and tumorigenic processes. We briefly discuss related work in mammalian tissues.


Asunto(s)
Discos Imaginales/embriología , Neoplasias/patología , Animales , Carcinogénesis/patología , Comunicación Celular/fisiología , Progresión de la Enfermedad , Drosophila , Discos Imaginales/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo
7.
Dev Dyn ; 248(12): 1211-1231, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31415125

RESUMEN

BACKGROUND: Dilp8-mediated inhibition of ecdysone synthesis and pupation in holometabolous insects maintains developmental homeostasis through stringent control of timing and strength of molting signals. We examined reasons for normal pupation but early pupal death observed in certain cases. RESULTS: Overexpression of activated Ras in developing eye/wing discs inhibited Ptth expression in brain via upregulated JNK signaling mediated Dilp8 secretion from imaginal discs, which inhibited ecdysone synthesis in prothoracic gland after pupariation, leading to death of ~25- to 30-hour-old pupae. Inhibition of elevated Ras signaling completely rescued early pupal death while post-pupation administration of ecdysone to organisms with elevated Ras signaling in eye discs partially rescued their early pupal death. Unlike the earlier known Dilp8 action in delaying pupation, hyperactivated Ras mediated elevation of pJNK signaling in imaginal discs caused Dilp8 secretion after pupariation. Ectopic expression of certain other transgene causing pupal lethality similarly enhanced pJNK and early pupal Dilp8 levels. Suboptimal ecdysone levels after 8 hours of pupation prevented the early pupal metamorphic changes and caused organismal death. CONCLUSIONS: Our results reveal early pupal stage as a novel Dilp8 mediated post-pupariation checkpoint and provide further evidence for interorgan signaling during development, wherein a peripheral tissue influences the CNS driven endocrine function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , IMP Deshidrogenasa/metabolismo , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Homeostasis/genética , IMP Deshidrogenasa/genética , Discos Imaginales/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intercelular/genética , Larva , Sistema de Señalización de MAP Quinasas/fisiología , Organogénesis/genética , Pupa/genética , Pupa/crecimiento & desarrollo , Transducción de Señal/genética , Proteínas Activadoras de ras GTPasa/metabolismo
8.
Sci Rep ; 9(1): 1270, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718556

RESUMEN

Cell survival is essential for all living organisms to cope against multiple environmental insults. Intercellular signaling between dying and surviving cells plays an important role to ensure compensatory proliferation, preventing tissue loss after environmental stresses. Here, we show that Sol narae (Sona), a Disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in Drosophila is required for cell survival. sona exhibited a positive genetic interaction with Death-associated inhibitor of apoptosis 1 (Diap1), and a negative genetic interaction with reaper (rpr). Transcription patterns of sona, Diap1, and rpr genes in the pouch region of wing discs were coordinately changed after irradiation. Interestingly, there was a negative correlation in the expression levels of Sona and DIAP1, and both cell types, one with high Sona level and the other with high Diap1 level, were resistant to irradiation-induced cell death. The sona-expressing cells rarely entered into cell cycle themselves but promoted the nearby cells to proliferate in irradiation conditions. We found that these sona-expressing cells are able to upregulate Cyclin D (Cyc D) and increase tissue size. Furthermore, transient Sona overexpression increased survival rate and promoted development of flies in irradiation conditions. We propose that the two types of radiation-resistant cells, one with high Sona level and the other with high Diap1 level, communicate with dying cells and between each other for cell survival and proliferation in response to irradiation.


Asunto(s)
Ciclo Celular , Discos Imaginales/embriología , Alas de Animales/embriología , Animales , Supervivencia Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Discos Imaginales/citología , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Alas de Animales/citología
9.
Biosystems ; 173: 256-265, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30554604

RESUMEN

We can improve our understanding of biological processes through the use of computational and mathematical modeling. One such morphogenetic process (ommatidia formation in the Drosophila eye imaginal disc) provides us with an opportunity to demonstrate the power of this approach. We use a high-resolution image that catches the spatially- and temporally-dependent process of ommatidia formation in the act. This image is converted to quantitative measures and models that provide us with new information about the dynamics and geometry of this process. We approach this by addressing four computational hypotheses, and provide a publicly-available repository containing data and images for further analysis. Potential spatial patterns in the morphogenetic furrow and ommatidia are summarized, while the ommatidia cells are projected to a spherical map in order to identify higher-level spatiotemporal features. In the conclusion, we discuss the implications of our approach and findings for developmental complexity and biological theory.


Asunto(s)
Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/embriología , Morfogénesis , Algoritmos , Animales , Ciclo Celular , Biología Computacional , Drosophila melanogaster/genética , Procesamiento de Imagen Asistido por Computador , Cinética , Modelos Lineales , Microscopía Electrónica de Rastreo , Modelos Biológicos
10.
Genesis ; 56(10): e23254, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30288928

RESUMEN

Glia are critical for proper development, support, and function of the nervous system. The Drosophila eye has proven an excellent model for gaining significant insight into the molecular mechanisms regulating glial development and function. Recent studies have demonstrated that Raw is required in glia of the central and peripheral nervous systems; however, the function of Raw in glia of the developing eye has not been explored. These studies demonstrate that raw knockdown results in a reduction in the number of glia in the third instar eye imaginal disc and reduced glial spreading across the field of differentiating photoreceptor neurons. Expression of a raw enhancer trap reveals that raw is expressed in eye disc glia. Exploration of the mechanism by which raw knockdown results in glial reduction reveals that Raw is required for glial proliferation and migration into the eye disc. In addition, Raw negatively regulates Jun N-terminal kinase (JNK) signaling in glia of the developing eye and increased JNK signaling results in a reduction in the number of glia populating the eye disc, similar to that observed upon raw knockdown. Thus, Raw functions as a critical regulator of glial population of the eye imaginal disc by regulating glial proliferation and migration and inhibiting JNK signaling.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Proteínas de Drosophila/fisiología , Drosophila/embriología , Ojo/embriología , Discos Imaginales/citología , Animales , Diferenciación Celular , Movimiento Celular , Drosophila/citología , Drosophila/metabolismo , Ojo/metabolismo , Discos Imaginales/embriología , Sistema de Señalización de MAP Quinasas , Neuroglía/metabolismo , Neuroglía/fisiología
11.
Genesis ; 56(10): e23251, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30246928

RESUMEN

Owing to a multitude of functions, there is barely a tissue or a cellular process that is not being regulated by Notch signaling. To allow the Notch signal to be deployed in numerous contexts, many different mechanisms have evolved to regulate the level, duration and spatial distribution of Notch activity. To identify novel effectors of Notch signaling in Drosophila melanogaster, we analyzed the whole transcriptome of the wing and eye imaginal discs in which an activated form of Notch was overexpressed. Selected candidate genes from the transcriptome analysis were subjected to genetic interaction experiments with Notch pathway components. Among the candidate genes, T-box encoding gene, Dorsocross (Doc) showed strong genetic interaction with Notch ligand, Delta. Genetic interaction between them resulted in reduction of eye size, loss of cone cells, and cell death, which represent prominent Notch loss of function phenotypes. Immunocytochemical analysis in Df(3L)DocA/Dl 5f trans-heterozygous eye discs showed accumulation of Notch at the membrane. This accumulation led to decreased Notch signaling activity as we found downregulation of Atonal, a Notch target and reduction in the rate of Notch-mediated cell proliferation. Doc mutant clones generated by FLP-FRT system showed depletion in the expression of Delta and subsequent reduction in the Notch signaling activity. Similarly, Doc overexpression in the eye discs led to modification of Delta expression, loss of Atonal expression and absence of eye structure in pharate adults. Taken together, our results suggest that Doc regulates the expression of Delta and influence the outcome of Notch signaling in the eye discs.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ojo/embriología , Receptores Notch/metabolismo , Factores de Transcripción/metabolismo , Animales , Drosophila/embriología , Drosophila/genética , Ojo/metabolismo , Femenino , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Masculino , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Alas de Animales/embriología , Alas de Animales/metabolismo
12.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30254143

RESUMEN

Tissue growth needs to be properly controlled for organs to reach their correct size and shape, but the mechanisms that control growth during normal development are not fully understood. We report here that the activity of the Hippo signaling transcriptional activator Yorkie gradually decreases in the central region of the developing Drosophila wing disc. Spatial and temporal changes in Yorkie activity can be explained by changes in cytoskeletal tension and biomechanical regulators of Hippo signaling. These changes in cellular biomechanics correlate with changes in cell density, and experimental manipulations of cell density are sufficient to alter biomechanical Hippo signaling and Yorkie activity. We also relate the pattern of Yorkie activity in older discs to patterns of cell proliferation. Our results establish that spatial and temporal patterns of Hippo signaling occur during wing development, that these patterns depend upon cell-density modulated tissue mechanics and that they contribute to the regulation of wing cell proliferation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Alas de Animales/embriología , Alas de Animales/metabolismo , Animales , Membrana Basal/citología , Membrana Basal/metabolismo , Fenómenos Biomecánicos , Recuento de Células , Proliferación Celular , Citoesqueleto/metabolismo , Drosophila melanogaster/citología , Discos Imaginales/citología , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Factores de Tiempo , Alas de Animales/citología
13.
Mech Dev ; 153: 10-16, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30118816

RESUMEN

Single molecule Fluorescence in situ Hybridization (smFISH) for mRNA provides a powerful quantitative handle on expression from endogenous gene loci. While the method has been widely applied in cells in culture, applications to primary tissue samples remain fewer, and often use involved cryosectioning. Even apart from quantitative access to absolute transcript counts in specific tissue volumes, many other advantages of smFISH can be envisaged in tissue samples. Primary among these are the ability to report on subtle differences in expression among different cell types within a tissue, and the ability to correlate the expression from different target genes. Here, we present a modified method of smFISH applicable on various primary wholemount tissues from the fruit fly Drosophila melanogaster, and show the efficacy of the method in a variety of larval and adult tissue, and embryos. We also combine smFISH in tissue with immunofluorescence to demonstrate the possibility of capturing transcriptional and translational aspects of gene expression in the same tissue. Given the widespread use of Drosophila melanogaster as a model system in Developmental Biology and Genetics, such methods are likely to be of wide interest and could yield rich information about gene expression in tissues from this organism.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Imagenología Tridimensional , Especificidad de Órganos/genética , Animales , Embrión no Mamífero/metabolismo , Genes de Insecto , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Hibridación Fluorescente in Situ , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Alas de Animales/embriología , Alas de Animales/metabolismo
14.
Development ; 145(15)2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-29980566

RESUMEN

The transcription factor Pax6 is considered the master control gene for eye formation because (1) it is present within the genomes and retina/lens of all animals with a visual system; (2) severe retinal defects accompany its loss; (3) Pax6 genes have the ability to substitute for one another across the animal kingdom; and (4) Pax6 genes are capable of inducing ectopic eye/lens in flies and mammals. Many roles of Pax6 were first elucidated in Drosophila through studies of the gene eyeless (ey), which controls both growth of the entire eye-antennal imaginal disc and fate specification of the eye. We show that Ey also plays a surprising role within cells of the peripodial epithelium to control pattern formation. It regulates the expression of decapentaplegic (dpp), which is required for initiation of the morphogenetic furrow in the eye itself. Loss of Ey within the peripodial epithelium leads to the loss of dpp expression within the eye, failure of the furrow to initiate, and abrogation of retinal development. These findings reveal an unexpected mechanism for how Pax6 controls eye development in Drosophila.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Epitelio/embriología , Ojo/embriología , Morfogénesis/genética , Factor de Transcripción PAX6/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrión no Mamífero , Epitelio/metabolismo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Factor de Transcripción PAX6/genética
15.
Sci Rep ; 8(1): 11291, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050143

RESUMEN

Fused in sarcoma (FUS) was identified as a component of typical inclusions in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In FTLD, both nuclear and cytoplasmic inclusions with wild-type FUS exist, while cytoplasmic inclusions with a mutant-form of FUS occur in many ALS cases. These observations imply that FUS plays a role across these two diseases. In this study, we examined the effect of several proteins including molecular chaperons on the aberrant eye morphology phenotype induced by overexpression of wild-type human FUS (hFUS) in Drosophila eye imaginal discs. By screening, we found that the co-expression of nucleophosmin-human myeloid leukemia factor 1 (NPM-hMLF1) fusion protein could suppress the aberrant eye morphology phenotype induced by hFUS. The driving of hFUS expression at 28 °C down-regulated levels of hFUS and endogenous cabeza, a Drosophila homolog of hFUS. The down-regulation was mediated by proteasome dependent degradation. Co-expression of NPM-hMLF1 suppressed this down-regulation. In addition, co-expression of NPM-hMLF1 partially rescued pharate adult lethal phenotype induced by hFUS in motor neurons. These findings with a Drosophila model that mimics FTLD provide clues for the development of novel FTLD therapies.


Asunto(s)
Animales Modificados Genéticamente , Degeneración Lobar Frontotemporal/patología , Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de la radiación , Drosophila , Ojo/embriología , Anomalías del Ojo/prevención & control , Humanos , Discos Imaginales/embriología , Proteínas Nucleares/genética , Nucleofosmina , Proteínas/genética , Proteína FUS de Unión a ARN/genética , Proteínas Recombinantes de Fusión/genética , Temperatura
16.
Development ; 145(13)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29945869

RESUMEN

Tissue growth has to be carefully controlled to generate well-functioning organs. MicroRNAs are small non-coding RNAs that modulate the activity of target genes and play a pivotal role in animal development. Understanding the functions of microRNAs in development requires the identification of their target genes. Here, we find that miR-8, a conserved microRNA in the miR-200 family, controls tissue growth and homeostasis in the Drosophila wing imaginal disc. Upregulation of miR-8 causes the repression of Yorkie, the effector of the Hippo pathway in Drosophila, and reduces tissue size. Remarkably, co-expression of Yorkie and miR-8 causes the formation of neoplastic tumors. We show that upregulation of miR-8 represses the growth inhibitor brinker, and depletion of brinker cooperates with Yorkie in the formation of neoplastic tumors. Hence, miR-8 modulates a positive growth regulator, Yorkie, and a negative growth regulator, brinker Deregulation of this network can result in the loss of tissue homeostasis and the formation of tumors.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/embriología , MicroARNs/biosíntesis , Proteínas Nucleares/biosíntesis , Proteínas Oncogénicas/biosíntesis , Proteínas Represoras/biosíntesis , Transactivadores/biosíntesis , Animales , Drosophila , Proteínas de Drosophila/genética , Neoplasias Hematológicas/embriología , Neoplasias Hematológicas/genética , MicroARNs/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteínas Represoras/genética , Transactivadores/genética , Proteínas Señalizadoras YAP
17.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29853618

RESUMEN

Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Matriz Extracelular/metabolismo , Proteínas de Homeodominio/biosíntesis , Discos Imaginales/embriología , Metaloproteinasa 1 de la Matriz/metabolismo , Factores de Transcripción/biosíntesis , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Matriz Extracelular/genética , Proteínas de Homeodominio/genética , Metaloproteinasa 1 de la Matriz/genética , Factores de Transcripción/genética
18.
Eur J Cell Biol ; 97(4): 308-317, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29735293

RESUMEN

G protein-coupled receptors play particularly important roles in many organisms. The novel Drosophila gene anchor is an orthologue of vertebrate GPR155. However, the roles of anchor in molecular functions and biological processes, especially in wing development, remain unknown. Knockdown of anchor resulted in an increased wing size and additional and thickened veins. These abnormal wing phenotypes were similar to those observed in BMP signalling gain-of-function experiments. We observed that the BMP signalling indicator p-Mad was significantly increased in wing discs in which anchor RNAi was induced in larvae and accumulated abnormally in intervein regions in pupae. Furthermore, the expression of target genes of the BMP signalling pathway was examined using a lacZ reporter, and the results indicated that omb and sal were substantially increased in anchor-knockdown wing discs. An investigation of genetic interactions between Anchor and the BMP signalling pathway revealed that the thickened and ectopic vein tissues were rescued by knocking down BMP levels. These results suggested that Anchor functions to negatively regulate BMP signalling during wing development and vein formation.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Receptores Acoplados a Proteínas G/fisiología , Alas de Animales/embriología , Animales , Clonación Molecular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Alas de Animales/metabolismo
19.
Development ; 145(5)2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29440303

RESUMEN

Animal cells are thought to sense mechanical forces via the transcriptional co-activators YAP (or YAP1) and TAZ (or WWTR1), the sole Drosophila homolog of which is named Yorkie (Yki). In mammalian cells in culture, artificial mechanical forces induce nuclear translocation of YAP and TAZ. Here, we show that physiological mechanical strain can also drive nuclear localisation of Yki and activation of Yki target genes in the Drosophila follicular epithelium. Mechanical strain activates Yki by stretching the apical domain, reducing the concentration of apical Crumbs, Expanded, Kibra and Merlin, and reducing apical Hippo kinase dimerisation. Overexpressing Hippo kinase to induce ectopic activation in the cytoplasm is sufficient to prevent Yki nuclear localisation even in flattened follicle cells. Conversely, blocking Hippo signalling in warts clones causes Yki nuclear localisation even in columnar follicle cells. We find no evidence for involvement of other pathways, such as Src42A kinase, in regulation of Yki. Finally, our results in follicle cells appear generally applicable to other tissues, as nuclear translocation of Yki is also readily detectable in other flattened epithelial cells such as the peripodial epithelium of the wing imaginal disc, where it promotes cell flattening.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Mecánico , Alas de Animales/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Mecanotransducción Celular/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
20.
J Cell Biol ; 217(3): 1047-1062, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29326287

RESUMEN

During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg-mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the ß-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth.


Asunto(s)
Proteínas de Drosophila/metabolismo , Discos Imaginales/embriología , Modelos Biológicos , Mutación , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Discos Imaginales/citología , Alas de Animales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA