Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.290
Filtrar
1.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730470

RESUMEN

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Monocitos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Monocitos/metabolismo , Ratones , Humanos , Péptidos beta-Amiloides/metabolismo , Masculino , Femenino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Anciano , Cistatinas/metabolismo , Cistatinas/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Anciano de 80 o más Años , Ratones Endogámicos C57BL
2.
Nat Commun ; 15(1): 3796, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714706

RESUMEN

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Amoníaco , Metabolómica , Fenotipo , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Amoníaco/metabolismo , Anciano , Femenino , Masculino , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/genética , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Ácidos y Sales Biliares/metabolismo , Anciano de 80 o más Años , Estudios de Cohortes
3.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739166

RESUMEN

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down , Neurogénesis , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/genética , Neurogénesis/efectos de los fármacos , Ratones , Femenino , Embarazo , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Quinasas DyrK , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Masculino , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/patología
4.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722394

RESUMEN

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Asunto(s)
Disfunción Cognitiva , Crotonatos , Hidroxibutiratos , Nitrilos , Estrés Oxidativo , Toluidinas , Animales , Nitrilos/farmacología , Ratones , Hidroxibutiratos/farmacología , Crotonatos/farmacología , Toluidinas/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Escopolamina/farmacología , Cromonas/farmacología , Memoria/efectos de los fármacos , Cognición/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Morfolinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Donepezilo/farmacología
5.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715406

RESUMEN

Presbycusis has been reported as related to cognitive decline, but its underlying neurophysiological mechanism is still unclear. This study aimed to investigate the relationship between metabolite levels, cognitive function, and node characteristics in presbycusis based on graph theory methods. Eighty-four elderly individuals with presbycusis and 63 age-matched normal hearing controls underwent magnetic resonance spectroscopy, functional magnetic resonance imaging scans, audiological assessment, and cognitive assessment. Compared with the normal hearing group, presbycusis patients exhibited reduced gamma-aminobutyric acid and glutamate levels in the auditory region, increased nodal characteristics in the temporal lobe and precuneus, as well as decreased nodal characteristics in the superior occipital gyrus and medial orbital. The right gamma-aminobutyric acid levels were negatively correlated with the degree centrality in the right precuneus and the executive function. Degree centrality in the right precuneus exhibited significant correlations with information processing speed and executive function, while degree centrality in the left medial orbital demonstrated a negative association with speech recognition ability. The degree centrality and node efficiency in the superior occipital gyrus exhibited a negative association with hearing loss and speech recognition ability, respectively. These observed changes indicate alterations in metabolite levels and reorganization patterns at the brain network level after auditory deprivation.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Presbiacusia , Humanos , Masculino , Femenino , Presbiacusia/diagnóstico por imagen , Presbiacusia/metabolismo , Presbiacusia/fisiopatología , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Espectroscopía de Resonancia Magnética , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
6.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 17-24, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38696147

RESUMEN

OBJECTIVE: To investigate the pattern and connections of neuropsychological and metabolic indices in patients with cognitive disorders of Alzheimer's and vascular (subcortical-cortical) types of different severity. MATERIAL AND METHODS: A total of 177 patients were examined, including 85 patients with Alzheimer's disease (AD) and 92 patients with vascular cognitive impairment (VCI). All patients underwent complex neuropsychological examination; 18F-FDG PET was performed in 17 patients with AD and 15 patients with VCI. RESULTS: The greatest changes in patients with AD were noted in the mnestic sphere, and the indicators significantly differed from the results of the study of patients with VCI already at the pre-dementia stage. Neurodynamic and dysregulatory disorders prevailed in patients with VCI. Patients with AD showed bilateral symmetrical reduction of metabolic activity in the cortex of parietal and temporal lobes, often in combination with marked hypometabolism in the hippocampal region. In patients with VCI, there were areas of decreased brain tissue metabolism of different localization and size, mainly in the projection of the basal ganglia and in the prefrontal and parietal cortex, as well as in the cingulate gyrus, which indirectly confirms the mechanism of disconnection of subcortical and cortical structures. In AD, impaired metabolic activity in the hippocampal region correlated with impaired temporal and spatial orientation (ρ=-0.54, p<0.05), memory impairment (ρ=-0.71, p<0.005). Hypometabolism of the parietal lobe cortex was associated with total MMSE score (ρ=-0.8, p<0.001), 10-word test (ρ=-0.89, p<0.001 and ρ=-0.82, p<0.001), visual-spatial impairment (ρ=-0.64, p<0.01), categorical association test (ρ=-0.73, p<0.005). In patients with VCI, dysregulatory disorders correlated with hypometabolism in the thalamic projection (ρ=-0.56, p<0.05), prefrontal cortex (ρ=-0.64, p<0.05) and in the cingulate gyrus (anterior regions) (ρ=-0.53, p<0.05). CONCLUSION: The results indicate the presence of differences in cognitive impairment and cerebral metabolism in patients with AD and VCI.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Fluorodesoxiglucosa F18 , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Anciano , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Demencia Vascular/diagnóstico por imagen , Demencia Vascular/metabolismo , Demencia Vascular/fisiopatología , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Anciano de 80 o más Años
7.
Commun Biol ; 7(1): 562, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734709

RESUMEN

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Asunto(s)
Disfunción Cognitiva , Exosomas , Proteína HMGB1 , Células Madre Mesenquimatosas , MicroARNs , Encefalopatía Asociada a la Sepsis , MicroARNs/genética , MicroARNs/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Animales , Encefalopatía Asociada a la Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/genética , Ratones , Exosomas/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Humanos , Ratones Endogámicos C57BL , Sepsis/genética , Sepsis/metabolismo , Sepsis/complicaciones , Modelos Animales de Enfermedad
8.
Anal Chem ; 96(19): 7506-7515, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690851

RESUMEN

Alzheimer's disease (AD) is a progressive neurological disorder featuring abnormal protein aggregation in the brain, including the pathological hallmarks of amyloid plaques and hyperphosphorylated tau. Despite extensive research efforts, understanding the molecular intricacies driving AD development remains a formidable challenge. This study focuses on identifying key protein conformational changes associated with the progression of AD. To achieve this, we employed quantitative cross-linking mass spectrometry (XL-MS) to elucidate conformational changes in the protein networks in cerebrospinal fluid (CSF). By using isotopically labeled cross-linkers BS3d0 and BS3d4, we reveal a dynamic shift in protein interaction networks during AD progression. Our comprehensive analysis highlights distinct alterations in protein-protein interactions within mild cognitive impairment (MCI) states. This study accentuates the potential of cross-linked peptides as indicators of AD-related conformational changes, including previously unreported site-specific binding between α-1-antitrypsin (A1AT) and complement component 3 (CO3). Furthermore, this work enables detailed structural characterization of apolipoprotein E (ApoE) and reveals modifications within its helical domains, suggesting their involvement in MCI pathogenesis. The quantitative approach provides insights into site-specific interactions and changes in the abundance of cross-linked peptides, offering an improved understanding of the intricate protein-protein interactions underlying AD progression. These findings lay a foundation for the development of potential diagnostic or therapeutic strategies aimed at mitigating the negative impact of AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Espectrometría de Masas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico , Humanos , Apolipoproteínas E/química , Apolipoproteínas E/metabolismo , Reactivos de Enlaces Cruzados/química , Conformación Proteica , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo , Disfunción Cognitiva/metabolismo
9.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685031

RESUMEN

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encéfalo , Disfunción Cognitiva , Dieta Alta en Grasa , Macrófagos , Ratones Endogámicos C57BL , Microglía , Animales , Dieta Alta en Grasa/efectos adversos , Microglía/metabolismo , Microglía/patología , Masculino , Ratones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Reconocimiento en Psicología/fisiología , Obesidad/patología , Obesidad/complicaciones , Aprendizaje por Laberinto/fisiología
10.
Neuropeptides ; 105: 102428, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583362

RESUMEN

RNA methylation can epigenetically regulate learning and memory. However, it is unclear whether RNA methylation plays a critical role in the pathophysiology of Vascular dementia (VD). Here, we report that expression of the fat mass and obesity associated gene (FTO), an RNA demethylase, is downregulated in the hippocampus in models of VD. Through prediction and dual-luciferase reporters validation studies, we observed that miRNA-711 was upregulated after VD and could bind to the 3'-untranslated region of FTO mRNA and regulate its expression in vitro. Methylated RNA immunoprecipitation (MeRIP)-qPCR assay and functional study confirmed that Syn1 was an important target gene of FTO. This suggests that FTO is an important regulator of Syn1. FTO upregulation by inhibition of miR-711 in the hippocampus relieves synaptic association protein and synapse deterioration in vivo, whereas FTO downregulation by miR-711 agomir in the hippocampus leads to aggravate the synapse deterioration. FTO upregulation by inhibition of miR-711 relieves cognitive impairment of rats VD model, whereas FTO downregulation by miR-711 deteriorate cognitive impairment. Our findings suggest that FTO is a regulator of a mechanism underlying RNA methylation associated with spatial cognitive dysfunction after chronic cerebral hypoperfusion.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Disfunción Cognitiva , Hipocampo , MicroARNs , Ratas Sprague-Dawley , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Masculino , MicroARNs/metabolismo , MicroARNs/genética , Hipocampo/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratas , Metilación , Demencia Vascular/metabolismo , Demencia Vascular/genética , Modelos Animales de Enfermedad , Metilación de ARN
11.
Neuropharmacology ; 252: 109950, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636727

RESUMEN

Effective therapeutic interventions for elderly patients are lacking, despite advances in pharmacotherapy. Methylated urolithin A (mUro A), a modified ellagitannin (ET)-derived metabolite, exhibits anti-inflammatory, antioxidative, and anti-apoptotic effects. Current research has primarily investigated the neuroprotective effects of mUroA in aging mice and explored the underlying mechanisms. Our study used an in vivo aging model induced by d-galactose (D-gal) to show that mUro A notably improved learning and memory, prevented synaptic impairments by enhancing synaptic protein expression and increasing EPSCs, and reduced oxidative damage in aging mice. mUro A alleviated the activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, leading to reduced glial cell activity and neuroinflammation in both accelerated aging and naturally senescent mouse models. Moreover, mUroA enhanced the activity of TCA cycle enzymes (PDH, CS, and OGDH), decreased 8-OHdG levels, and raised ATP and NAD+ levels within the mitochondria. At the molecular level, mUro A decreased phosphorylated p53 levels and increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), thus enhancing mitochondrial function. In conclusion, mUro A alleviates cognitive impairment in aging mice by suppressing neuroinflammation through NLRP3 inflammasome inhibition and restoring mitochondrial function via the p53-PGC-1α pathway. This suggests its potential therapeutic agent for brain aging and aging-related diseases.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Cumarinas , Inflamasomas , Ratones Endogámicos C57BL , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cumarinas/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Masculino , Galactosa , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
12.
Exp Gerontol ; 190: 112422, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599502

RESUMEN

The onset of Alzheimer's disease is related to neuron damage caused by massive deposition of Aß in the brain. Recent studies suggest that excessive Aß in the brain mainly comes from peripheral blood, and BBB is the key to regulate Aß in and out of the brain. In this study, we explored the pathogenesis of AD from the perspective of Aß transport through the BBB and the effect of QKL injection in AD mice. The results showed that QKL could improve the cognitive dysfunction of AD mice, decrease the level of Aß and Aß transporter-RAGE, which was supported by the results of network pharmacology, molecular docking and molecular dynamics simulation. In conclusion, RAGE is a potential target for QKL's therapeutic effect on AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Receptor para Productos Finales de Glicación Avanzada , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Ratones Transgénicos , Simulación de Dinámica Molecular , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
13.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605605

RESUMEN

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Disfunción Cognitiva/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Ratones , Humanos , Envejecimiento/fisiología , Masculino , Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptor trkB/metabolismo , Leucocitos Mononucleares/metabolismo , Anciano , Femenino , Ratones Endogámicos C57BL
14.
Exp Neurol ; 376: 114770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580155

RESUMEN

BACKGROUND AND OBJECTIVES: Chronic colitis exacerbates neuroinflammation, contributing to cognitive impairment during aging, but the mechanism remains unclear. The polarity distribution of astrocytic aquaporin 4 (AQP4) is crucial for the glymphatic system, which is responsible for metabolite clearance in the brain. Physical exercise (PE) improves cognition in the aged. This study aims to investigate the protective mechanism of exercise in colitis-associated cognitive impairment. METHODS: To establish a chronic colitis model, 18-month-old C57BL/6 J female mice received periodic oral administration of 1% wt/vol dextran sodium sulfate (DSS) in drinking water. The mice in the exercise group received four weeks of voluntary wheel exercise. High-throughput sequencing was conducted to screen for differentially expressed genes. Two-photon imaging was performed to investigate the function of the astrocytic calcium activity and in vivo intervention with TRPV4 inhibitor HC-067047. Further, GSK1016790A (GSK1), a TRPV4 agonist, was daily intraperitoneally injected during the exercise period to study the involvement of TRPV4 in PE protection. Colitis pathology was confirmed by histopathology. The novel object recognition (NOR) test, Morris water maze test (MWM), and open field test were performed to measure colitis-induced cognition and anxiety-like behavior. In vivo two-photon imaging and ex vivo imaging of fluorescent CSF tracers to evaluate the function of the glymphatic system. Immunofluorescence staining was used to detect the Aß deposition, polarity distribution of astrocytic AQP4, and astrocytic phenotype. Serum and brain levels of the inflammatory cytokines were tested by Enzyme-linked immunosorbent assay (ELISA). The brain TUNEL assay was used to assess DNA damage. Expression of critical molecules was detected using Western blotting. RESULTS: Voluntary exercise alleviates cognitive impairment and anxiety-like behavior in aged mice with chronic colitis, providing neuroprotection against neuronal damage and apoptosis. Additionally, voluntary exercise promotes the brain clearance of Aß via increased glymphatic clearance. Mechanistically, exercise-induced beneficial effects may be attributed, in part, to the inhibition of TRPV4 expression and TRPV4-related calcium hyperactivity, subsequent promotion of AQP4 polarization, and modulation of astrocyte phenotype. CONCLUSION: The present study reveals a novel role of voluntary exercise in alleviating colitis-related cognitive impairment and anxiety disorder, which is mediated by the promotion of AQP4 polarization and glymphatic clearance of Aß via inhibition of TRPV4-induced astrocytic calcium hyperactivity.


Asunto(s)
Astrocitos , Disfunción Cognitiva , Colitis , Ratones Endogámicos C57BL , Morfolinas , Condicionamiento Físico Animal , Pirroles , Canales Catiónicos TRPV , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Ratones , Canales Catiónicos TRPV/metabolismo , Astrocitos/metabolismo , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/metabolismo , Femenino , Sistema Glinfático/metabolismo , Acuaporina 4/metabolismo , Envejecimiento , Calcio/metabolismo
15.
J Neuroinflammation ; 21(1): 104, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649932

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication of anesthesia and surgery in aging individuals. Neuroinflammation has been identified as a hallmark of POCD. However, safe and effective treatments of POCD are still lacking. Itaconate is an immunoregulatory metabolite derived from the tricarboxylic acid cycle that exerts anti-inflammatory effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we investigated the effects and underlying mechanism of 4-octyl itaconate (OI), a cell-permeable itaconate derivative, on POCD in aged mice. METHODS: A POCD animal model was established by performing aseptic laparotomy in 18-month-old male C57BL/6 mice under isoflurane anesthesia while maintaining spontaneous ventilation. OI was intraperitoneally injected into the mice after surgery. Primary microglia and neurons were isolated and treated to lipopolysaccharide (LPS), isoflurane, and OI. Cognitive function, neuroinflammatory responses, as well as levels of gut microbiota and their metabolites were evaluated. To determine the mechanisms underlying the therapeutic effects of OI in POCD, ML385, an antagonist of Nrf2, was administered intraperitoneally. Cognitive function, neuroinflammatory responses, endogenous neurogenesis, neuronal apoptosis, and Nrf2/extracellular signal-related kinases (ERK) signaling pathway were evaluated. RESULTS: Our findings revealed that OI treatment significantly alleviated anesthesia/surgery-induced cognitive impairment, concomitant with reduced levels of the neuroinflammatory cytokines IL-1ß and IL-6, as well as suppressed activation of microglia and astrocytes in the hippocampus. Similarly, OI treatment inhibited the expression of IL-1ß and IL-6 in LPS and isoflurane-induced primary microglia in vitro. Intraperitoneal administration of OI led to alterations in the gut microbiota and promoted the production of microbiota-derived metabolites associated with neurogenesis. We further confirmed that OI promoted endogenous neurogenesis and inhibited neuronal apoptosis in the hippocampal dentate gyrus of aged mice. Mechanistically, we observed a decrease in Nrf2 expression in hippocampal neurons both in vitro and in vivo, which was reversed by OI treatment. We found that Nrf2 was required for OI treatment to inhibit neuroinflammation in POCD. The enhanced POCD recovery and promotion of neurogenesis triggered by OI exposure were, at least partially, mediated by the activation of the Nrf2/ERK signaling pathway. CONCLUSIONS: Our findings demonstrate that OI can attenuate anesthesia/surgery-induced cognitive impairment by stabilizing the gut microbiota and activating Nrf2 signaling to restrict neuroinflammation and promote neurogenesis. Boosting endogenous itaconate or supplementation with exogenous itaconate derivatives may represent novel strategies for the treatment of POCD.


Asunto(s)
Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Neurogénesis , Enfermedades Neuroinflamatorias , Complicaciones Cognitivas Postoperatorias , Succinatos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Ratones , Neurogénesis/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Complicaciones Cognitivas Postoperatorias/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Succinatos/farmacología , Succinatos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Anestesia
16.
Behav Brain Res ; 466: 114995, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38599251

RESUMEN

Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.


Asunto(s)
Acetilcolina , Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Enfermedades Neuroinflamatorias , Óxido Nítrico , Sepsis , Factor de Necrosis Tumoral alfa , Animales , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Lipopolisacáridos/farmacología , Adalimumab/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Modelos Animales de Enfermedad , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiedad/etiología , Homeostasis/efectos de los fármacos , Depresión/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Conducta Animal/efectos de los fármacos , Inhibidores del Factor de Necrosis Tumoral/farmacología
17.
J Neuroinflammation ; 21(1): 96, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627764

RESUMEN

BACKGROUND: Gasdermin D (GSDMD)-mediated pyroptotic cell death is implicated in the pathogenesis of cognitive deficits in sepsis-associated encephalopathy (SAE), yet the underlying mechanisms remain largely unclear. Dynamin-related protein 1 (Drp1) facilitates mitochondrial fission and ensures quality control to maintain cellular homeostasis during infection. This study aimed to investigate the potential role of the GSDMD/Drp1 signaling pathway in cognitive impairments in a mouse model of SAE. METHODS: C57BL/6 male mice were subjected to cecal ligation and puncture (CLP) to establish an animal model of SAE. In the interventional study, mice were treated with the GSDMD inhibitor necrosulfonamide (NSA) or the Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1). Surviving mice underwent behavioral tests, and hippocampal tissues were harvested for histological analysis and biochemical assays at corresponding time points. Haematoxylin-eosin staining and TUNEL assays were used to evaluate neuronal damage. Golgi staining was used to detect synaptic dendritic spine density. Additionally, transmission electron microscopy was performed to assess mitochondrial and synaptic morphology in the hippocampus. Local field potential recordings were conducted to detect network oscillations in the hippocampus. RESULTS: CLP induced the activation of GSDMD, an upregulation of Drp1, leading to associated mitochondrial impairment, neuroinflammation, as well as neuronal and synaptic damage. Consequently, these effects resulted in a reduction in neural oscillations in the hippocampus and significant learning and memory deficits in the mice. Notably, treatment with NSA or Mdivi-1 effectively prevented these GSDMD-mediated abnormalities. CONCLUSIONS: Our data indicate that the GSDMD/Drp1 signaling pathway is involved in cognitive deficits in a mouse model of SAE. Inhibiting GSDMD or Drp1 emerges as a potential therapeutic strategy to alleviate the observed synaptic damages and network oscillations abnormalities in the hippocampus of SAE mice.


Asunto(s)
Disfunción Cognitiva , Encefalopatía Asociada a la Sepsis , Sepsis , Animales , Masculino , Ratones , Disfunción Cognitiva/metabolismo , Dinaminas/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Sepsis/patología , Encefalopatía Asociada a la Sepsis/metabolismo , Transducción de Señal
18.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673780

RESUMEN

Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.


Asunto(s)
Corteza Cerebral , Disfunción Cognitiva , Glucuronidasa , Proteínas Klotho , Ratas Wistar , Insuficiencia Renal Crónica , Proteínas Klotho/metabolismo , Animales , Insuficiencia Renal Crónica/metabolismo , Corteza Cerebral/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratas , Masculino , Glucuronidasa/metabolismo , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Riñón/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo
19.
Sci Rep ; 14(1): 7970, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575652

RESUMEN

Dietary salt has been associated with cognitive impairment in mice, possibly related to damaged synapses and tau hyperphosphorylation. However, the mechanism underlying how dietary salt causes cognitive dysfunction remains unclear. In our study, either a high-salt (8%) or normal diet (0.5%) was used to feed C57BL/6 mice for three months, and N2a cells were cultured in normal medium, NaCl medium (80 mM), or NaCl (80 mM) + Liraglutide (200 nM) medium for 48 h. Cognitive function in mice was assessed using the Morris water maze and shuttle box test, while anxiety was evaluated by the open field test (OPT). Western blotting (WB), immunofluorescence, and immunohistochemistry were utilized to assess the level of Glucagon-like Peptide-1 receptor (GLP-1R) and mTOR/p70S6K pathway. Electron microscope and western blotting were used to evaluate synapse function and tau phosphorylation. Our findings revealed that a high salt diet (HSD) reduced the level of synaptophysin (SYP) and postsynaptic density 95 (PSD95), resulting in significant synaptic damage. Additionally, hyperphosphorylation of tau at different sites was detected. The C57BL/6 mice showed significant impairment in learning and memory function compared to the control group, but HSD did not cause anxiety in the mice. In addition, the level of GLP-1R and autophagy flux decreased in the HSD group, while the level of mTOR/p70S6K was upregulated. Furthermore, liraglutide reversed the autophagy inhibition of N2a treated with NaCl. In summary, our study demonstrates that dietary salt inhibits the GLP-1R/mTOR/p70S6K pathway to inhibit autophagy and induces synaptic dysfunction and tau hyperphosphorylation, eventually impairing cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Liraglutida , Ratones , Animales , Liraglutida/farmacología , Cloruro de Sodio Dietético/efectos adversos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Cloruro de Sodio/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cognición
20.
Sheng Li Xue Bao ; 76(2): 266-288, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658376

RESUMEN

Irisin, a peptide produced during exercise, is believed to play a role in regulating energy levels within the body. Moreover, Irisin has the ability to traverse the blood-brain barrier and engage in various pathophysiological processes within the central nervous system. An increasing body of research identifies Irisin as a significant therapeutic target for neurodegenerative diseases, indicating a strong link between Irisin and the development of cognitive impairments. In this paper, we present a concise review of effects of different types of exercise on Irisin production, and the mechanisms underlying the Irisin's intervention in various diseases including metabolic diseases, kidney injury and depression. Following this, we delve into an in-depth exploration of its role in modulating cognitive dysfunction among patients with Alzheimer's disease (AD), focusing on recent advancements in three critical areas: neuroinflammation, mitochondrial dysfunction, and protein misfolding. Finally, we put forth 3 hypotheses: (1) exercise-induced fibronectin type III domain containing protein 5 (FNDC5) stimulation and subsequent Irisin cleavage may be associated with the stress response in energy metabolism; (2) Irisin, as a myokine, likely plays a role in mitochondrial repair mechanisms to ameliorate cognitive impairment in AD patients; (3) Irisin is a homeostatic factor that maintains energy homeostasis and is closely related to the dynamic stability of the body's internal environment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ejercicio Físico , Fibronectinas , Humanos , Enfermedad de Alzheimer/metabolismo , Fibronectinas/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Ejercicio Físico/fisiología , Animales , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...