Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616770

RESUMEN

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Asunto(s)
Cuerpo Estriado , Modelos Animales de Enfermedad , Distonía , Interneuronas , Parvalbúminas , Proteínas Proto-Oncogénicas c-fos , Receptores de Dopamina D2 , Animales , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distonía/patología , Distonía/metabolismo , Distonía/fisiopatología , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patología , Cerebelo/metabolismo , Ouabaína/farmacología , Ratones Endogámicos C57BL , Ratones , Masculino
2.
Neurobiol Dis ; 194: 106462, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442845

RESUMEN

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Asunto(s)
Distonía , Trastornos Distónicos , Fenofibrato , Ratas , Animales , Distonía/genética , Distonía/metabolismo , Roedores/metabolismo , Fluorodesoxiglucosa F18 , PPAR alfa/metabolismo , Trastornos Distónicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucosa
3.
Ir J Med Sci ; 193(1): 449-456, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37523070

RESUMEN

BACKGROUND: Aminoacylase-1 deficiency (ACY1D) is an autosomal recessive rare inborn error of metabolism, which is caused by disease-causing variants in the ACY1. This disorder is characterized by increased urinary excretion of specific N-acetyl amino acids. Affected individuals demonstrate heterogeneous clinical manifestations which are primarily neurologic problems. In neuroimaging, corpus callosum hypoplasia, cerebellar vermis atrophy, and delayed myelination of cerebral white matter have been reported. AIMS: Finding disease-causing variant and expanding imaging findings in a patient with persistent basal ganglia involvement. METHODS: Whole-exome sequencing was performed in order to identify disease-causing variants in an affected 5-year-old male patient who presented with neurologic regression superimposed on neurodevelopmental delay following a febrile illness. He had inability to walk, cognitive impairment, speech delay, febrile-induced seizures, truncal hypotonia, moderate to severe generalized dystonia, and recurrent metabolic decompensation. RESULTS: All metabolic tests were normal except for a moderate metabolic acidosis following febrile illnesses. The results of serial brain magnetic resonance imaging (MRI) at ages 1 and 4.5 years revealed persistent bilateral and symmetric abnormal signals in basal ganglia mainly caudate and globus pallidus nuclei with progression over time in addition to a mild supratentorial atrophy. A homozygous missense variant [NM_000666.3: c.1057C>T; p.(Arg353Cys)] was identified in the ACY1, consistent with aminoacylase-1 deficiency. Variant confirmation in patient and segregation analysis in his family were performed using Sanger sequencing. CONCLUSIONS: Our findings expanded the phenotype spectrum of ACY1-related neurodegeneration by demonstrating persistent basal ganglia involvement and moderate to severe generalized dystonia.


Asunto(s)
Amidohidrolasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos , Distonía , Masculino , Humanos , Preescolar , Distonía/metabolismo , Distonía/patología , Mutación , Ganglios Basales/metabolismo , Ganglios Basales/patología , Atrofia/metabolismo , Atrofia/patología , Imagen por Resonancia Magnética
4.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042508

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos , Humanos , Distonía/genética , Distonía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Factor de Transcripción TFIID/genética , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo
5.
PLoS One ; 18(10): e0293218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883475

RESUMEN

The Lamc2jeb junctional epidermolysis bullosa (EB) mouse model has been used to demonstrate that significant genetic modification of EB symptoms is possible, identifying as modifiers Col17a1 and six other quantitative trait loci, several with strong candidate genes including dystonin (Dst/Bpag1). Here, CRISPR/Cas9 was used to alter exon 23 in mouse skin specific isoform Dst-e (Ensembl GRCm38 transcript name Dst-213, transcript ID ENSMUST00000183302.5, protein size 2639AA) and validate a proposed arginine/glutamine difference at amino acid p1226 in B6 versus 129 mice as a modifier of EB. Frame shift deletions (FSD) in mouse Dst-e exon 23 (Dst-eFSD/FSD) were also identified that cause mice carrying wild-type Lamc2 to develop a phenotype similar to human EB simplex without dystonia musculorum. When combined, Dst-eFSD/FSD modifies Lamc2jeb/jeb (FSD+jeb) induced disease in unexpected ways implicating an altered balance between DST-e (BPAG1e) and a rarely reported rodless DST-eS (BPAG1eS) in epithelium as a possible mechanism. Further, FSD+jeb mice with pinnae removed are found to provide a test bed for studying internal epithelium EB disease and treatment without severe skin disease as a limiting factor while also revealing and accelerating significant nasopharynx symptoms present but not previously noted in Lamc2jeb/jeb mice.


Asunto(s)
Distonía , Trastornos Distónicos , Epidermólisis Ampollosa Simple , Epidermólisis Ampollosa de la Unión , Epidermólisis Ampollosa , Animales , Ratones , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/metabolismo , Distonina/metabolismo , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa Simple/diagnóstico , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/metabolismo , Epidermólisis Ampollosa de la Unión/genética , Epidermólisis Ampollosa de la Unión/diagnóstico , Epidermólisis Ampollosa de la Unión/metabolismo , Piel/metabolismo
6.
Sci Transl Med ; 15(694): eadg3904, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134150

RESUMEN

Dystonia, a neurological disorder defined by abnormal postures and disorganized movements, is considered to be a neural circuit disorder with dysfunction arising within and between multiple brain regions. Given that spinal neural circuits constitute the final pathway for motor control, we sought to determine their contribution to this movement disorder. Focusing on the most common inherited form of dystonia in humans, DYT1-TOR1A, we generated a conditional knockout of the torsin family 1 member A (Tor1a) gene in the mouse spinal cord and dorsal root ganglia (DRG). We found that these mice recapitulated the phenotype of the human condition, developing early-onset generalized torsional dystonia. Motor signs emerged early in the mouse hindlimbs before spreading caudo-rostrally to affect the pelvis, trunk, and forelimbs throughout postnatal maturation. Physiologically, these mice bore the hallmark features of dystonia, including spontaneous contractions at rest and excessive and disorganized contractions, including cocontractions of antagonist muscle groups, during voluntary movements. Spontaneous activity, disorganized motor output, and impaired monosynaptic reflexes, all signs of human dystonia, were recorded from isolated mouse spinal cords from these conditional knockout mice. All components of the monosynaptic reflex arc were affected, including motor neurons. Given that confining the Tor1a conditional knockout to DRG did not lead to early-onset dystonia, we conclude that the pathophysiological substrate of this mouse model of dystonia lies in spinal neural circuits. Together, these data provide new insights into our current understanding of dystonia pathophysiology.


Asunto(s)
Distonía Muscular Deformante , Distonía , Humanos , Ratones , Animales , Distonía/genética , Distonía/metabolismo , Distonía Muscular Deformante/genética , Distonía Muscular Deformante/metabolismo , Ratones Noqueados , Encéfalo/metabolismo , Chaperonas Moleculares/metabolismo
7.
Mol Neurobiol ; 60(6): 3496-3506, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36879138

RESUMEN

Movement disorder (MD) is an important manifestation of neurologic Wilson disease (NWD), but there is a paucity of information on dopaminergic pathways. We evaluate dopamine and its receptors in patients with NWD and correlate the changes with MD and MRI changes. Twenty patients with NWD having MD were included. The severity of dystonia was assessed using BFM (Burke-Fahn-Marsden) score. The neurological severity of NWD was categorized as grades I to III based on the sum score of 5 neurological signs and activity of daily living. Dopamine concentration in plasma and CSF was measured using liquid chromatography-mass spectrometry, and D1 and D2 receptor expression at mRNA by reverse transcriptase polymerase chain reaction in patients and 20 matched controls. The median age of the patients was 15 years and 7 (35%) were females. Eighteen (90%) patients had dystonia and 2 (10%) had chorea. The CSF dopamine concentration (0.08 ± 0.02 vs 0.09 ± 0.017 pg/ml; p = 0.42) in the patients and controls was comparable, but D2 receptor expression was reduced in the patients (0.41 ± 0.13 vs 1.39 ± 1.04; p = 0.01). Plasma dopamine level correlated with BFM score (r = 0.592, p < 0.01) and D2 receptor expression with the severity of chorea (r = 0.447, p < 0.05). The neurological severity of WD correlated with plasma dopamine concentration (p = 0.006). Dopamine and its receptors were not related to MRI changes. The central nervous system dopaminergic pathway is not enhanced in NWD, which may be due to structural damage to the corpus striatum and/or substantia nigra.


Asunto(s)
Corea , Distonía , Degeneración Hepatolenticular , Trastornos del Movimiento , Femenino , Humanos , Adolescente , Masculino , Dopamina/metabolismo , Degeneración Hepatolenticular/metabolismo , Distonía/metabolismo , Corea/metabolismo , Receptores de Dopamina D2/metabolismo , Cuerpo Estriado/metabolismo , Receptores de Dopamina D1/metabolismo , Sustancia Negra/metabolismo , Proteínas Portadoras/metabolismo
8.
Neurobiol Dis ; 179: 106056, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863527

RESUMEN

The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.


Asunto(s)
Distonía , Trastornos Distónicos , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratones , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/genética , Endofenotipos , Chaperonas Moleculares/genética , Traumatismos de los Nervios Periféricos/metabolismo , Sustancia Negra/metabolismo
9.
Brain ; 146(6): 2512-2523, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445406

RESUMEN

There is a lack of imaging markers revealing the functional characteristics of different brain regions in paediatric dystonia. In this observational study, we assessed the utility of [18F]2-fluoro-2-deoxy-D-glucose (FDG)-PET in understanding dystonia pathophysiology by revealing specific resting awake brain glucose metabolism patterns in different childhood dystonia subgroups. PET scans from 267 children with dystonia being evaluated for possible deep brain stimulation surgery between September 2007 and February 2018 at Evelina London Children's Hospital (ELCH), UK, were examined. Scans without gross anatomical abnormality (e.g. large cysts, significant ventriculomegaly; n = 240) were analysed with Statistical Parametric Mapping (SPM12). Glucose metabolism patterns were examined in the 144/240 (60%) cases with the 10 commonest childhood-onset dystonias, focusing on nine anatomical regions. A group of 39 adult controls was used for comparisons. The genetic dystonias were associated with the following genes: TOR1A, THAP1, SGCE, KMT2B, HPRT1 (Lesch Nyhan disease), PANK2 and GCDH (Glutaric Aciduria type 1). The acquired cerebral palsy (CP) cases were divided into those related to prematurity (CP-Preterm), neonatal jaundice/kernicterus (CP-Kernicterus) and hypoxic-ischaemic encephalopathy (CP-Term). Each dystonia subgroup had distinct patterns of altered FDG-PET uptake. Focal glucose hypometabolism of the pallidi, putamina or both, was the commonest finding, except in PANK2, where basal ganglia metabolism appeared normal. HPRT1 uniquely showed glucose hypometabolism across all nine cerebral regions. Temporal lobe glucose hypometabolism was found in KMT2B, HPRT1 and CP-Kernicterus. Frontal lobe hypometabolism was found in SGCE, HPRT1 and PANK2. Thalamic and brainstem hypometabolism were seen only in HPRT1, CP-Preterm and CP-term dystonia cases. The combination of frontal and parietal lobe hypermetabolism was uniquely found in CP-term cases. PANK2 cases showed a distinct combination of parietal hypermetabolism with cerebellar hypometabolism but intact putaminal-pallidal glucose metabolism. HPRT1, PANK2, CP-kernicterus and CP-preterm cases had cerebellar and insula glucose hypometabolism as well as parietal glucose hypermetabolism. The study findings offer insights into the pathophysiology of dystonia and support the network theory for dystonia pathogenesis. 'Signature' patterns for each dystonia subgroup could be a useful biomarker to guide differential diagnosis and inform personalized management strategies.


Asunto(s)
Parálisis Cerebral , Distonía , Trastornos Distónicos , Kernicterus , Adulto , Recién Nacido , Humanos , Niño , Fluorodesoxiglucosa F18/metabolismo , Distonía/metabolismo , Kernicterus/complicaciones , Kernicterus/metabolismo , Encéfalo/metabolismo , Trastornos Distónicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Glucosa/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
10.
Nat Cell Biol ; 24(11): 1630-1641, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302970

RESUMEN

DYT1 dystonia is a debilitating neurological movement disorder arising from mutation in the AAA+ ATPase TorsinA. The hallmark of Torsin dysfunction is nuclear envelope blebbing resulting from defects in nuclear pore complex biogenesis. Whether blebs actively contribute to disease manifestation is unknown. We report that FG-nucleoporins in the bleb lumen form aberrant condensates and contribute to DYT1 dystonia by provoking two proteotoxic insults. Short-lived ubiquitylated proteins that are normally rapidly degraded partition into the bleb lumen and become stabilized. In addition, blebs selectively sequester a specific HSP40-HSP70 chaperone network that is modulated by the bleb component MLF2. MLF2 suppresses the ectopic accumulation of FG-nucleoporins and modulates the selective properties and size of condensates in vitro. Our study identifies dual mechanisms of proteotoxicity in the context of condensate formation and establishes FG-nucleoporin-directed activities for a nuclear chaperone network.


Asunto(s)
Distonía , Membrana Nuclear , Humanos , Distonía/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
11.
Neurotoxicology ; 93: 92-102, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152728

RESUMEN

Over the last decade, several clinical reports have outlined cases of early-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss of function mutations of the Mn transporter gene SLC39A14. Previously, we have performed characterization of the behavioral, neurochemical, and neuropathological changes in 60-day old (PN60) Slc39a14-knockout (KO) murine model of the human disease. Here, we extend our studies to aging Slc39a14-KO mice to assess the progression of the disease. Our results indicate that 365-day old (PN365) Slc39a14-KO mice present with markedly elevated blood and brain Mn levels, similar to those found in the PN60 mice and representative of the human cases of the disease. Furthermore, aging Slc39a14-KO mice consistently manifest a hypoactive and dystonic behavioral deficits, similar to the PN60 animals, suggesting that the behavioral changes are established early in life without further age-associated deterioration. Neurochemical, neuropathological, and functional assessment of the dopaminergic system of the basal ganglia revealed absence of neurodegenerative changes of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), with no changes in DA or metabolite concentrations in the striatum of Slc39a14-KO mice relative to wildtype (WT). Similar to the PN60 animals, aging Slc39a14-KO mice expressed a marked inhibition of potassium-stimulated DA release in the striatum. Together our findings indicate that the pathophysiological changes observed in the basal ganglia of aging Slc39a14-KO animals are similar to those at PN60 and aging does not have a significant effect on these parameters.


Asunto(s)
Proteínas de Transporte de Catión , Distonía , Trastornos Parkinsonianos , Animales , Ratones , Humanos , Manganeso/metabolismo , Ratones Noqueados , Distonía/inducido químicamente , Distonía/genética , Distonía/metabolismo , Proteínas de Transporte de Catión/genética , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Envejecimiento , Sustancia Negra
12.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955710

RESUMEN

Murine models are fundamental in the study of clinical conditions and the development of new drugs and treatments. Transgenic technology has started to offer advantages in oncology, encompassing all research fields related to the study of painful syndromes. Knockout mice or mice overexpressing genes encoding for proteins linked to pain development and maintenance can be produced and pain models can be applied to transgenic mice to model the most disabling neurological conditions. Due to the association of movement disorders with sensitivity and pain processing, our group focused for the first time on the role of the torsinA gene GAG deletion-responsible for DYT1 dystonia-in baseline sensitivity and neuropathic responses. The aim of the present report are to review the complex network that exists between the chaperonine-like protein torsinA and the baseline sensitivity pattern-which are fundamental in neuropathic pain-and to point at its possible role in neurodegenerative diseases.


Asunto(s)
Distonía , Trastornos Distónicos , Neuralgia , Animales , Modelos Animales de Enfermedad , Distonía/genética , Distonía/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Chaperonas Moleculares/genética , Neuralgia/genética
13.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563018

RESUMEN

DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas , Proteínas Relacionadas con la Autofagia , Distonía , Membrana Nuclear , Proteínas Nucleares , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Estructuras de la Membrana Celular/metabolismo , Distonía/genética , Distonía/metabolismo , Distonía Muscular Deformante , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo
14.
Neurobiol Dis ; 166: 105650, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35139431

RESUMEN

This review provides an overview of the synaptic dysfunctions of neuronal circuits and underlying neurochemical alterations observed in the hyperkinetic movement disorders, dystonia and dyskinesia. These disorders exhibit similar changes in expression of synaptic plasticity and neuromodulation. This includes alterations in physical attributes of synapses, synaptic protein expression, and neurotransmitter systems, such as glutamate and gamma-aminobutyric acid (GABA), and neuromodulators, such as dopamine, acetylcholine, serotonin, adenosine, and endocannabinoids. A full understanding of the mechanisms and consequences of disruptions in synaptic function and plasticity will lend insight into the development of these disorders and new ways to combat maladaptive changes.


Asunto(s)
Discinesias , Distonía , Trastornos Distónicos , Antiparkinsonianos , Cuerpo Estriado/metabolismo , Discinesias/metabolismo , Distonía/inducido químicamente , Distonía/metabolismo , Trastornos Distónicos/inducido químicamente , Trastornos Distónicos/metabolismo , Humanos , Levodopa/efectos adversos
15.
Neurology ; 98(10): e1077-e1089, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058336

RESUMEN

BACKGROUND AND OBJECTIVES: The main culprit gene for paroxysmal kinesigenic dyskinesia, characterized by brief and recurrent attacks of involuntary movements, is PRRT2. The location of the primary dysfunction associated with paroxysmal dyskinesia remains a matter of debate and may vary depending on the etiology. While striatal dysfunction has often been implicated in these patients, evidence from preclinical models indicates that the cerebellum could also play a role. We aimed to investigate the role of the cerebellum in the pathogenesis of PRRT2-related dyskinesia in humans. METHODS: We enrolled 22 consecutive right-handed patients with paroxysmal kinesigenic dyskinesia with a pathogenic variant of PRRT2 and their matched controls. Participants underwent a multimodal neuroimaging protocol. We recorded anatomic and diffusion-weighted MRI, as well as resting-state fMRI, during which we tested the aftereffects of sham and repetitive transcranial magnetic stimulation applied to the cerebellum on endogenous brain activity. We quantified the structural integrity of gray matter using voxel-based morphometry, the structural integrity of white matter using fixel-based analysis, and the strength and direction of functional cerebellar connections using spectral dynamic causal modeling. RESULTS: Patients with PRRT2 had decreased gray matter volume in the cerebellar lobule VI and in the medial prefrontal cortex, microstructural alterations of white matter in the cerebellum and along the tracts connecting the cerebellum to the striatum and the cortical motor areas, and dysfunction of cerebellar motor pathways to the striatum and the cortical motor areas, as well as abnormal communication between the associative cerebellum (Crus I) and the medial prefrontal cortex. Cerebellar stimulation modulated communication within the motor and associative cerebellar networks and tended to restore this communication to the level observed in healthy controls. DISCUSSION: Patients with PRRT2-related dyskinesia have converging structural alterations of the motor cerebellum and related pathways with a dysfunction of cerebellar output toward the cerebello-thalamo-striato-cortical network. We hypothesize that abnormal cerebellar output is the primary dysfunction in patients with a PRRT2 pathogenic variant, resulting in striatal dysregulation and paroxysmal dyskinesia. More broadly, striatal dysfunction in paroxysmal dyskinesia might be secondary to aberrant cerebellar output transmitted by thalamic relays in certain disorders. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov identifier: NCT03481491.


Asunto(s)
Enfermedades Cerebelosas , Corea , Distonía , Cerebelo/patología , Corea/diagnóstico por imagen , Corea/genética , Distonía/diagnóstico por imagen , Distonía/genética , Distonía/metabolismo , Humanos , Imagen por Resonancia Magnética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
16.
J Neurosci ; 42(8): 1557-1573, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34965974

RESUMEN

Collagen VI is a key component of muscle basement membranes, and genetic variants can cause monogenic muscular dystrophies. Conversely, human genetic studies recently implicated collagen VI in central nervous system function, with variants causing the movement disorder dystonia. To elucidate the neurophysiological role of collagen VI, we generated mice with a truncation of the dystonia-related collagen α3 VI (COL6A3) C-terminal domain (CTD). These Col6a3CTT mice showed a recessive dystonia-like phenotype in both sexes. We found that COL6A3 interacts with the cannabinoid receptor 1 (CB1R) complex in a CTD-dependent manner. Col6a3CTT mice of both sexes have impaired homeostasis of excitatory input to the basal pontine nuclei (BPN), a motor control hub with dense COL6A3 expression, consistent with deficient endocannabinoid (eCB) signaling. Aberrant synaptic input in the BPN was normalized by a CB1R agonist, and motor performance in Col6a3CTT mice of both sexes was improved by CB1R agonist treatment. Our findings identify a readily therapeutically addressable synaptic mechanism for motor control.SIGNIFICANCE STATEMENT Dystonia is a movement disorder characterized by involuntary movements. We previously identified genetic variants affecting a specific domain of the COL6A3 protein as a cause of dystonia. Here, we created mice lacking the affected domain and observed an analogous movement disorder. Using a protein interaction screen, we found that the affected COL6A3 domain mediates an interaction with the cannabinoid receptor 1 (CB1R). Concordantly, our COL6A3-deficient mice showed a deficit in synaptic plasticity linked to a deficit in cannabinoid signaling. Pharmacological cannabinoid augmentation rescued the motor impairment of the mice. Thus, cannabinoid augmentation could be a promising avenue for treating dystonia, and we have identified a possible molecular mechanism mediating this.


Asunto(s)
Cannabinoides , Colágeno Tipo VI , Distonía , Trastornos Distónicos , Neuronas Motoras , Plasticidad Neuronal , Animales , Cannabinoides/metabolismo , Cannabinoides/farmacología , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Femenino , Masculino , Ratones , Neuronas Motoras/efectos de los fármacos , Mutación , Plasticidad Neuronal/efectos de los fármacos , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo
17.
Cell Rep ; 36(12): 109743, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551285

RESUMEN

Paroxysmal kinesigenic dyskinesia (PKD) is the most common paroxysmal dyskinesia, characterized by recurrent episodes of involuntary movements provoked by sudden changes in movement. Proline-rich transmembrane protein 2 (PRRT2) has been identified as the major causative gene for PKD. Here, we report that PRRT2 deficiency facilitates the induction of cerebellar spreading depolarization (SD) and inhibition of cerebellar SD prevents the occurrence of dyskinetic movements. Using Ca2+ imaging, we show that cerebellar SD depolarizes a large population of cerebellar granule cells and Purkinje cells in Prrt2-deficient mice. Electrophysiological recordings further reveal that cerebellar SD blocks Purkinje cell spiking and disturbs neuronal firing of the deep cerebellar nuclei (DCN). The resultant aberrant firing patterns in DCN are tightly, temporally coupled to dyskinetic episodes in Prrt2-deficient mice. Cumulatively, our findings uncover a pivotal role of cerebellar SD in paroxysmal dyskinesia, providing a potent target for treating PRRT2-related paroxysmal disorders.


Asunto(s)
Cerebelo/fisiología , Distonía/patología , Proteínas de la Membrana/genética , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Distonía/metabolismo , Electrocorticografía , Técnicas In Vitro , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Técnicas de Placa-Clamp , Cloruro de Potasio/farmacología , Células de Purkinje/fisiología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
18.
Aging (Albany NY) ; 13(16): 20319-20334, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34398825

RESUMEN

BACKGROUND AND OBJECTIVE: Striatal plasticity alterations caused by endoplasmic reticulum (ER) stress is supposed to be critically involved in the mechanism of DYT1 dystonia. In the current study, we expanded this research field by investigating the critical role of ER stress underlying synaptic plasticity impairment imposed by mutant heterozygous Tor1a+/- in a DYT1 dystonia mouse model. METHODS: Heterozygous Tor1a+/- mouse model for DYT1 dystonia was established. Wild-type (Tor1a+/+, N=10) and mutant (Tor1a+/-, N=10) mice from post-natal day P25 to P35 were randomly distributed to experimental and control groups. Patch-clamp and current-clamp recordings of SPNs were conducted with intracellular electrodes for electrophysiological analyses. Striatal changes of the direct and indirect pathways were investigated via immunofluorescence. Golgi-Cox staining was conducted to observe spine morphology of SPNs. To quantify postsynaptic signaling proteins in striatum, RNA-Seq, qRT-PCR and WB were performed in striatal tissues. RESULTS: Long-term depression (LTD) was failed to be induced, while long-term potentiation (LTP) was further strengthened in striatal spiny projection neurons (SPNs) from the Tor1a+/- DYT1 dystonia mice. Spine morphology analyses revealed a significant increase of both number of mushroom type spines and spine width in Tor1a+/- SPNs. In addition, increased AMPA receptor function and the reduction of NMDA/AMPA ratio in the postsynaptic of Tor1a+/- SPNs was observed, along with increased ER stress protein levels in striatum of Tor1a+/- DYT1 dystonia mice. Notably, ER stress inhibitors, tauroursodeoxycholic acid (TUDCA), could rescue LTD as well as AMPA currents. CONCLUSION: The current study illustrated the role of ER stress in mediating structural and functional plasticity alterations in Tor1a+/- SPNs. Inhibition of the ER stress by TUDCA is beneficial in reversing the deficits at the cellular and molecular levels. Remedy of dystonia associated neurological and motor functional impairment by ER stress inhibitors could be a recommendable therapeutic agent in clinical practice.


Asunto(s)
Cuerpo Estriado/metabolismo , Distonía/metabolismo , Estrés del Retículo Endoplásmico , Chaperonas Moleculares/metabolismo , Plasticidad Neuronal , Animales , Modelos Animales de Enfermedad , Distonía/genética , Distonía/fisiopatología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/genética
19.
Neurobiol Dis ; 157: 105429, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153463

RESUMEN

L-DOPA-induced dyskinesia (LID) is a significant complication of dopamine replacement therapy in Parkinson's disease (PD), and the specific role of different dopamine receptors in this disorder is poorly understood. We set out to compare patterns of dyskinetic behaviours induced by the systemic administration of L-DOPA and D1 or D2 receptor (D1R, D2R) agonists in mice with unilateral 6-hydroxydopamine lesions. Mice were divided in four groups to receive increasing doses of L-DOPA, a D1R agonist (SKF38393), a D2/3 agonist (quinpirole), or a selective D2R agonist (sumanirole). Axial, limb and orofacial abnormal involuntary movements (AIMs) were rated using a well-established method, while dystonic features were quantified in different body segments using a new rating scale. Measures of abnormal limb and trunk posturing were extracted from high-speed videos using a software for markerless pose estimation (DeepLabCut). While L-DOPA induced the full spectrum of dyskinesias already described in this mouse model, SKF38393 induced mostly orofacial and limb AIMs. By contrast, both of the D2-class agonists (quinpirole, sumanirole) induced predominantly axial AIMs. Dystonia ratings revealed that these agonists elicited marked dystonic features in trunk/neck, forelimbs, and hindlimbs, which were overall more severe in sumanirole-treated mice. Accordingly, sumanirole induced pronounced axial bending and hindlimb divergence in the automated video analysis. In animals treated with SKF38393, the only appreciable dystonic-like reaction consisted in sustained tail dorsiflexion and stiffness. We next compared the effects of D1R or D2R selective antagonists in L-DOPA-treated mice, where only the D2R antagonist had a significant effect on dystonic features. Taken together these results indicate that the dystonic components of LID are predominantly mediated by the D2R.


Asunto(s)
Discinesia Inducida por Medicamentos/fisiopatología , Distonía/fisiopatología , Movimiento/efectos de los fármacos , Trastornos Parkinsonianos/fisiopatología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Antiparkinsonianos/efectos adversos , Bencimidazoles/farmacología , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/metabolismo , Distonía/inducido químicamente , Distonía/metabolismo , Ratones , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Quinpirol/farmacología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas
20.
Behav Brain Res ; 411: 113381, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34038798

RESUMEN

DYT1 dystonia is a movement disorder mainly caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), coding for torsinA. DYT1 dystonia patients show trends of decreased striatal ligand-binding activities to dopamine receptors 1 (D1R) and 2 (D2R). Dyt1 ΔGAG knock-in (KI) mice, which have the corresponding ΔGAG deletion, similarly exhibit reduced striatal D1R and D2R-binding activities and their expression levels. While the consequences of D2R reduction have been well characterized, relatively little is known about the effect of D1R reduction. Here, locomotor responses to D1R and D2R antagonists were examined in Dyt1 KI mice. Dyt1 KI mice showed significantly less responsiveness to both D1R antagonist SCH 23390 and D2R antagonist raclopride. The electrophysiological recording indicated that Dyt1 KI mice showed a significantly increased paired-pulse ratio of the striatal D1R-expressing medium spiny neurons and altered miniature excitatory postsynaptic currents. To analyze the in vivo torsinA function in the D1R-expressing neurons further, Dyt1 conditional knockout (Dyt1 d1KO) mice in these neurons were generated. Dyt1 d1KO mice had decreased spontaneous locomotor activity and reduced numbers of slips in the beam-walking test. Dyt1 d1KO male mice showed abnormal gait. Dyt1 d1KO mice showed defective striatal D1R maturation. Moreover, the mutant striatal D1R-expressing medium spiny neurons had increased capacitance, decreased sEPSC frequency, and reduced intrinsic excitability. The results suggest that torsinA in the D1R-expressing cells plays an important role in the electrophysiological function and motor performance. Medical interventions to the direct pathway may affect the onset and symptoms of this disorder.


Asunto(s)
Distonía Muscular Deformante/genética , Chaperonas Moleculares/genética , Receptores de Dopamina D1/metabolismo , Animales , Encéfalo/fisiología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Distonía/genética , Distonía/metabolismo , Distonía Muscular Deformante/metabolismo , Distonía Muscular Deformante/fisiopatología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Noqueados , Chaperonas Moleculares/metabolismo , Trastornos del Movimiento/metabolismo , Neuronas/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...