Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.860
Filtrar
1.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770680

RESUMEN

Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.


Asunto(s)
Distrofina , Ratones Endogámicos mdx , Ratones Noqueados , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Distrofina/metabolismo , Distrofina/genética , Distrofina/deficiencia , Miocardio/patología , Miocardio/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Ratones , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Ratones Endogámicos C57BL , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/metabolismo , Fenotipo , Sístole/efectos de los fármacos
2.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38721692

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Asunto(s)
Ratones Endogámicos mdx , Distrofia Muscular de Duchenne , Vaina de Mielina , Oligodendroglía , Animales , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferación Celular , Distrofina/metabolismo , Distrofina/deficiencia , Distrofina/genética , Cuerpo Calloso/patología , Cuerpo Calloso/metabolismo , Ratones Endogámicos C57BL , Ratones , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Ventrículos Laterales/patología , Ventrículos Laterales/metabolismo , Modelos Animales de Enfermedad , Diferenciación Celular , Masculino
3.
Commun Biol ; 7(1): 523, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702481

RESUMEN

Duchenne muscular dystrophy (DMD) is an intractable X-linked muscular dystrophy caused by mutations in the DMD gene. While many animal models have been used to study the disease, translating findings to humans has been challenging. Microminipigs, with their pronounced physiological similarity to humans and notably compact size amongst pig models, could offer a more representative model for human diseases. Here, we accomplished precise DMD modification in microminipigs by co-injecting embryos with Cas9 protein and a single-guide RNA targeting exon 23 of DMD. The DMD-edited microminipigs exhibited pronounced clinical phenotypes, including perturbed locomotion and body-wide skeletal muscle weakness and atrophy, alongside augmented serum creatine kinase levels. Muscle weakness was observed as of one month of age, respiratory and cardiac dysfunctions emerged by the sixth month, and the maximum lifespan was 29.9 months. Histopathological evaluations confirmed dystrophin deficiency and pronounced dystrophic pathology in the skeletal and myocardial tissues, demonstrating that these animals are an unprecedented model for studying human DMD. The model stands as a distinct and crucial tool in biomedical research, offering deep understanding of disease progression and enhancing therapeutic assessments, with potential to influence forthcoming treatment approaches.


Asunto(s)
Modelos Animales de Enfermedad , Distrofina , Músculo Esquelético , Distrofia Muscular de Duchenne , Porcinos Enanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Animales , Porcinos , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Distrofina/genética , Distrofina/metabolismo , Edición Génica , Humanos , Masculino , Fenotipo
4.
Acta Myol ; 43(1): 8-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586166

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by dystrophin gene deletions (75%), duplications (15-20%) and point mutations (5-10%), a small portion of which are nonsense mutations. Women carrying dystrophin gene mutations are commonly unaffected because the wild X allele may produce a sufficient amount of the dystrophin protein. However, approximately 8-10% of them may experience muscle symptoms and 50% of those over 40 years develop cardiomyopathy. The presence of symptoms defines the individual as an affected "symptomatic or manifesting carrier". Though there is no effective cure for DMD, therapies are available to slow the decline of muscle strength and delay the onset and progression of cardiac and respiratory impairment. These include ataluren for patients with nonsense mutations, and antisense oligonucleotides therapies, for patients with specific deletions. Symptomatic DMD female carriers are not included in these indications and little data documenting their management, often entrusted to the discretion of individual doctors, is present in the literature. In this article, we report the clinical and instrumental outcomes of four symptomatic DMD carriers, aged between 26 and 45 years, who were treated with ataluren for 21 to 73 months (average 47.3), and annually evaluated for muscle strength, respiratory and cardiological function. Two patients retain independent ambulation at ages 33 and 45, respectively. None of them developed respiratory involvement or cardiomyopathy. No clinical adverse effects or relevant abnormalities in routine laboratory values, were observed.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Oxadiazoles , Humanos , Femenino , Preescolar , Distrofina/genética , Proyectos Piloto , Codón sin Sentido , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
5.
Cells ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607013

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Especies Reactivas de Oxígeno/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo
6.
Matrix Biol ; 129: 44-58, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582404

RESUMEN

Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Disferlina , Matriz Extracelular , Mioblastos , Sarcoglicanos , Animales , Mioblastos/metabolismo , Mioblastos/citología , Matriz Extracelular/metabolismo , Ratones , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Disferlina/genética , Disferlina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofina/genética , Distrofina/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Decorina/genética , Decorina/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo
7.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602028

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Distrofina , Ratones Endogámicos BALB C , Músculo Esquelético , Distrofia Muscular de Duchenne , Animales , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/genética , Distrofina/metabolismo , Distrofina/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Ratones Endogámicos mdx , Ratones , Exones/genética , Masculino , Fibrosis , Fenotipo
8.
JCI Insight ; 9(9)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564291

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Asunto(s)
Cardiomiopatías , Distrofina , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares , Distrofia Muscular de Duchenne , Proteolípidos , Utrofina , Animales , Masculino , Ratones , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Mitocondrias Cardíacas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteolípidos/metabolismo , Proteolípidos/genética , Utrofina/genética , Utrofina/metabolismo
9.
Physiol Rep ; 12(8): e16004, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658324

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.


Asunto(s)
Arritmias Cardíacas , Distrofina , Contracción Miocárdica , Animales , Masculino , Distrofina/genética , Distrofina/deficiencia , Ratones , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/metabolismo , Ratones Endogámicos mdx , Ratones Endogámicos C57BL
10.
Cells ; 13(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667332

RESUMEN

A deficiency in the shortest dystrophin-gene product, Dp71, is a pivotal aggravating factor for intellectual disabilities in Duchenne muscular dystrophy (DMD). Recent advances in preclinical research have achieved some success in compensating both muscle and brain dysfunctions associated with DMD, notably using exon skipping strategies. However, this has not been studied for distal mutations in the DMD gene leading to Dp71 loss. In this study, we aimed to restore brain Dp71 expression in the Dp71-null transgenic mouse using an adeno-associated virus (AAV) administrated either by intracardiac injections at P4 (ICP4) or by bilateral intracerebroventricular (ICV) injections in adults. ICP4 delivery of the AAV9-Dp71 vector enabled the expression of 2 to 14% of brain Dp71, while ICV delivery enabled the overexpression of Dp71 in the hippocampus and cortex of adult mice, with anecdotal expression in the cerebellum. The restoration of Dp71 was mostly located in the glial endfeet that surround capillaries, and it was associated with partial localization of Dp71-associated proteins, α1-syntrophin and AQP4 water channels, suggesting proper restoration of a scaffold of proteins involved in blood-brain barrier function and water homeostasis. However, this did not result in significant improvements in behavioral disturbances displayed by Dp71-null mice. The potential and limitations of this AAV-mediated strategy are discussed. This proof-of-concept study identifies key molecular markers to estimate the efficiencies of Dp71 rescue strategies and opens new avenues for enhancing gene therapy targeting cognitive disorders associated with a subgroup of severely affected DMD patients.


Asunto(s)
Encéfalo , Dependovirus , Distrofina , Proteínas de la Membrana , Proteínas Musculares , Animales , Masculino , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Distrofina/metabolismo , Distrofina/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones Endogámicos C57BL , Ratones Noqueados , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología
11.
Zhonghua Fu Chan Ke Za Zhi ; 59(4): 279-287, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38644274

RESUMEN

Objective: To evaluate the diagnostic efficiency of copy number variation sequencing (CNV-seq) to detect the deletion or duplication of DMD gene in prenatal diagnosis. Methods: A retrospective analysis was carried out on the CNV-seq results of 34 544 fetuses diagnosed in the First People's Hospital of Yunnan Province from January 2018 to July 2023. A total of 156 cases of fetuses were collected, including Group 1:125 cases with family history of Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD), and Group 2:31 cases with no family history but a DMD gene deletion or duplication was detected unexpectedly by CNV-seq. Multiplex ligation-dependent probe amplification (MLPA) was used as a standard method to detect the deletion or duplication. Consistency test was carried out basing on the results of CNV-seq and MLPA of all 156 cases. Results: Comparing to MLPA, CNV-seq had a coincidence rate of 92.3% (144/156) for DMD gene deletion or duplication, with a sensitivity and positive predictive value of 88.2%, with a specificity and negative predictive value of 94.3%, a missed detection rate of 3.8%, and a Kappa value of 0.839. CNV-seq missed 4 cases with deletions and 2 with duplications due to involved fragments less than 100 Kb, among 20 cases of deletions and 6 cases of duplications detected by MLPA in Group 1. In Group 2, the deletions and duplications detected by CNV-seq were 42% (13/31) and 58% (18/31), respectively, in which the percentage of duplication was higher than that in Group 1. Among those 18 cases with duplications, 3 cases with duplication locating in exon 42~67 were likely pathogenic; while 9 cases with duplication covering the 5' or 3' end of the DMD gene, containing exon 1 or 79 and with only one breakpoint within the gene, along with the last 6 cases with duplications locating at chrX: 32650635_32910000 detected only by CNV-seq, which might be judged as variants of uncertain significance. Conclusions: CNV-seq has a good efficiency to detect fetal DMD gene deletion or duplication in prenatal diagnosis, while a further verification test by MLPA is recommended. The duplications on chrX: 32650635_32910000, 5' or 3' end of DMD gene detected by CNV-seq should be carefully verified and assessed because those variants appear to be nonpathogenic polymorphisms.


Asunto(s)
Variaciones en el Número de Copia de ADN , Eliminación de Gen , Duplicación de Gen , Distrofia Muscular de Duchenne , Diagnóstico Prenatal , Humanos , Diagnóstico Prenatal/métodos , Embarazo , Femenino , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Estudios Retrospectivos , Sensibilidad y Especificidad , Distrofina/genética , Feto/anomalías , Reacción en Cadena de la Polimerasa Multiplex/métodos
12.
J Vet Intern Med ; 38(3): 1418-1424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38613437

RESUMEN

BACKGROUND: X-linked dystrophin-deficient muscular dystrophy (MD) is a form of MD caused by variants in the DMD gene. It is a fatal disease characterized by progressive weakness and degeneration of skeletal muscles. HYPOTHESIS/OBJECTIVES: Identify deleterious genetic variants in DMD by whole-genome sequencing (WGS) using a next-generation sequencer. ANIMALS: One MD-affected cat, its parents, and 354 cats from a breeding colony. METHODS: We compared the WGS data of the affected cat with data available in the National Center for Biotechnology Information database and searched for candidate high-impact variants by in silico analyses. Next, we confirmed the candidate variants by Sanger sequencing using samples from the parents and cats from the breeding colony. We used 2 genome assemblies, the standard felCat9 (from an Abyssinian cat) and the novel AnAms1.0 (from an American Shorthair cat), to evaluate genome assembly differences. RESULTS: We found 2 novel high-impact variants: a 1-bp deletion in felCat9 and an identical nonsense variant in felCat9 and AnAms1.0. Whole genome and Sanger sequencing validation showed that the deletion in felCat9 was a false positive because of misassembly. Among the 357 cats, the nonsense variant was only found in the affected cat, which indicated it was a de novo variant. CONCLUSION AND CLINICAL IMPORTANCE: We identified a de novo variant in the affected cat and next-generation sequencing-based genotyping of the whole DMD gene was determined to be necessary for affected cats because the parents of the affected cat did not have the risk variant.


Asunto(s)
Enfermedades de los Gatos , Codón sin Sentido , Distrofina , Gatos , Animales , Enfermedades de los Gatos/genética , Distrofina/genética , Masculino , Distrofia Muscular de Duchenne/genética , Secuenciación Completa del Genoma/veterinaria , Femenino , Distrofia Muscular Animal/genética
13.
Int Heart J ; 65(2): 211-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556332

RESUMEN

Duchenne muscular dystrophy (DMD) is an intractable X-linked myopathy caused by dystrophin gene mutations. Patients with DMD suffer from progressive muscle weakness, inevitable cardiomyopathy, increased heart rate (HR), and decreased blood pressure (BP). The aim of this study was to clarify the efficacy and tolerability of ivabradine treatment for DMD cardiomyopathy.A retrospective analysis was performed in 11 patients with DMD, who received ivabradine treatment for more than 1 year. Clinical results were analyzed before (baseline), 6 months after, and 12 months after the ivabradine administration.The initial ivabradine dose was 2.0 ± 1.2 mg/day and the final dose was 5.6 ± 4.0 mg/day. The baseline BP was 95/64 mmHg. A non-significant BP decrease to 90/57 mmHg was observed at 1 month but it recovered to 97/62 mmHg at 12 months after ivabradine administration. The baseline HR was 93 ± 6 bpm and it decreased to 74 ± 12 bpm at 6 months (P = 0.011), and to 77 ± 10 bpm at 12 months (P = 0.008). A linear correlation (y = 2.2x + 5.1) was also observed between the ivabradine dose (x mg/day) and HR decrease (y bpm). The baseline LVEF was 38 ± 12% and it significantly increased to 42 ± 9% at 6 months (P = 0.011) and to 41 ± 11% at 12 months (P = 0.038). Only 1 patient with the lowest BMI of 11.0 kg/m2 and BP of 79/58 mmHg discontinued ivabradine treatment at 6 months, while 1-year administration was well-tolerated in the other 10 patients.Ivabradine decreased HR and increased LVEF without lowering BP, suggesting it can be a treatment option for DMD cardiomyopathy.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Humanos , Ivabradina/uso terapéutico , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Estudios Retrospectivos , Cardiomiopatías/complicaciones , Cardiomiopatías/tratamiento farmacológico , Distrofina/genética
14.
Biomolecules ; 14(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540736

RESUMEN

Duchenne muscular dystrophy is caused by loss of the dystrophin protein. This pathology is accompanied by mitochondrial dysfunction contributing to muscle fiber instability. It is known that mitochondria-targeted in vivo therapy mitigates pathology and improves the quality of life of model animals. In the present work, we applied mitochondrial transplantation therapy (MTT) to correct the pathology in dystrophin-deficient mdx mice. Intramuscular injections of allogeneic mitochondria obtained from healthy animals into the hind limbs of mdx mice alleviated skeletal muscle injury, reduced calcium deposits in muscles and serum creatine kinase levels, and improved the grip strength of the hind limbs and motor activity of recipient mdx mice. We noted normalization of the mitochondrial ultrastructure and sarcoplasmic reticulum/mitochondria interactions in mdx muscles. At the same time, we revealed a decrease in the efficiency of oxidative phosphorylation in the skeletal muscle mitochondria of recipient mdx mice accompanied by a reduction in lipid peroxidation products (MDA products) and reduced calcium overloading. We found no effect of MTT on the expression of mitochondrial signature genes (Drp1, Mfn2, Ppargc1a, Pink1, Parkin) and on the level of mtDNA. Our results show that systemic MTT mitigates the development of destructive processes in the quadriceps muscle of mdx mice.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Ratones , Ratones Endogámicos mdx , Distrofina/genética , Calcio/metabolismo , Calidad de Vida , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patología , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo
15.
Prog Neurobiol ; 235: 102590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484964

RESUMEN

Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Humanos , Distrofina/genética , Miedo , Distrofia Muscular de Duchenne/genética , Mutación , Vertebrados
16.
J Neuromuscul Dis ; 11(3): 679-685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461513

RESUMEN

Single exon duplications account for disease in a minority of Duchenne muscular dystrophy patients. Exon skipping in these patients has the potential to be highly therapeutic through restoration of full-length dystrophin expression. We conducted a 48-week open label study of casimersen and golodirsen in 3 subjects with an exon 45 or 53 duplication. Two subjects (aged 18 and 23 years) were non-ambulatory at baseline. Upper limb, pulmonary, and cardiac function appeared stable in the 2 subjects in whom they could be evaluated. Dystrophin expression increased from 0.94 % ±0.59% (mean±SD) of normal to 5.1% ±2.9% by western blot. Percent dystrophin positive fibers also rose from 14% ±17% at baseline to 50% ±42% . Our results provide initial evidence that the use of exon-skipping drugs may increase dystrophin levels in patients with single-exon duplications.


Asunto(s)
Distrofina , Exones , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Adolescente , Adulto Joven , Masculino , Oligonucleótidos/uso terapéutico , Duplicación de Gen
17.
Int J Biol Macromol ; 264(Pt 1): 130544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428778

RESUMEN

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by progressive and severe muscle weakening and degeneration. Among the various forms of muscular dystrophy, it stands out as one of the most common and impactful, predominantly affecting boys. The condition arises due to mutations in the dystrophin gene, a key player in maintaining the structure and function of muscle fibers. The manuscript explores the structural features of dystrophin protein and their pivotal roles in DMD. We present an in-depth analysis of promising therapeutic approaches targeting dystrophin and their implications for the therapeutic management of DMD. Several therapies aiming to restore dystrophin protein or address secondary pathology have obtained regulatory approval, and many others are ongoing clinical development. Notably, recent advancements in genetic approaches have demonstrated the potential to restore partially functional dystrophin forms. The review also provides a comprehensive overview of the status of clinical trials for major therapeutic genetic approaches for DMD. In addition, we have summarized the ongoing therapeutic approaches and advanced mechanisms of action for dystrophin restoration and the challenges associated with DMD therapeutics.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patología , Distrofina/genética , Distrofina/metabolismo , Distrofina/uso terapéutico , Fibras Musculares Esqueléticas/metabolismo
18.
EMBO Mol Med ; 16(4): 927-944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438561

RESUMEN

Cell therapy for muscular dystrophy has met with limited success, mainly due to the poor engraftment of donor cells, especially in fibrotic muscle at an advanced stage of the disease. We developed a cell-mediated exon skipping that exploits the multinucleated nature of myofibers to achieve cross-correction of resident, dystrophic nuclei by the U7 small nuclear RNA engineered to skip exon 51 of the dystrophin gene. We observed that co-culture of genetically corrected human DMD myogenic cells (but not of WT cells) with their dystrophic counterparts at a ratio of either 1:10 or 1:30 leads to dystrophin production at a level several folds higher than what predicted by simple dilution. This is due to diffusion of U7 snRNA to neighbouring dystrophic resident nuclei. When transplanted into NSG-mdx-Δ51mice carrying a mutation of exon 51, genetically corrected human myogenic cells produce dystrophin at much higher level than WT cells, well in the therapeutic range, and lead to force recovery even with an engraftment of only 3-5%. This level of dystrophin production is an important step towards clinical efficacy for cell therapy.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Distrofina/genética , Exones , Vectores Genéticos , Ratones Endogámicos mdx , Músculos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
19.
Muscle Nerve ; 69(6): 682-690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517116

RESUMEN

INTRODUCTION/AIMS: Carriers of DMD pathogenic variants may become symptomatic and develop muscle-related manifestations. Despite that, few studies have attempted to characterize changes in the muscles of these carriers using imaging tools, particularly muscle ultrasound (MUS). The aim of this study was to compare lower limb MUS findings in carriers of DMD pathogenic variants (cDMD) vs healthy controls. METHODS: Twenty-eight women (15 cDMD and 13 controls) underwent clinical evaluation and MUS. We collected information about muscle-related symptoms and assessed muscle strength. MUS was performed by a single physician (blind to the genetic status of subjects). The following muscles were assessed: rectus femoris, sartorius, tibialis anterior, and medial gastrocnemius. For each site, we computed data on muscle thickness, cross-sectional area, sound attenuation index, and elastography. Between-group comparisons were assessed using nonparametric tests and p-values <.05 were deemed significant. RESULTS: None of the subjects had objective muscle weakness, but exercise intolerance/fatigue was reported by four cDMDs and only one control. Regarding MUS, sound attenuation indices were significantly higher among carriers for all muscles tested. Longitudinal and axial deep echo intensities for the rectus femoris and tibialis anterior were also higher in the cDMD group compared with controls. No significant between-group differences were noted for elastography values, muscle area, or mean echo intensities. DISCUSSION: cDMD have skeletal muscle abnormalities that can be detected using quantitative MUS. Further studies are needed to determine whether such abnormalities are related to muscle symptoms in these patients.


Asunto(s)
Músculo Esquelético , Distrofia Muscular de Duchenne , Ultrasonografía , Humanos , Femenino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiopatología , Adulto , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Adulto Joven , Persona de Mediana Edad , Distrofina/genética , Heterocigoto , Adolescente , Fuerza Muscular/fisiología
20.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448545

RESUMEN

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Asunto(s)
Exosomas , Distrofia Muscular de Duchenne , Animales , Ratones , Distrofina/genética , Ratones Endogámicos mdx , Exosomas/metabolismo , Morfolinos/metabolismo , Morfolinos/farmacología , Morfolinos/uso terapéutico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/metabolismo , Oligonucleótidos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...