Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232691

RESUMEN

CENP-A is a histone variant found in high abundance at the centromere in humans. At the centromere, this histone variant replaces the histone H3 found throughout the bulk chromatin. Additionally, the centromere comprises tandem repeats of α-satellite DNA, which CENP-A nucleosomes assemble upon. However, the effect of the DNA sequence on the nucleosome assembly and centromere formation remains poorly understood. Here, we investigated the structure of nucleosomes assembled with the CENP-A variant using Atomic Force Microscopy. We assembled both CENP-A nucleosomes and H3 nucleosomes on a DNA substrate containing an α-satellite motif and characterized their positioning and wrapping efficiency. We also studied CENP-A nucleosomes on the 601-positioning motif and non-specific DNA to compare their relative positioning and stability. CENP-A nucleosomes assembled on α-satellite DNA did not show any positional preference along the substrate, which is similar to both H3 nucleosomes and CENP-A nucleosomes on non-specific DNA. The range of nucleosome wrapping efficiency was narrower on α-satellite DNA compared with non-specific DNA, suggesting a more stable complex. These findings indicate that DNA sequence and histone composition may be two of many factors required for accurate centromere assembly.


Asunto(s)
División del Núcleo Celular , Proteína A Centromérica , Centrómero , ADN , Histonas , Nucleosomas , Autoantígenos/química , Autoantígenos/genética , División del Núcleo Celular/genética , División del Núcleo Celular/fisiología , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , ADN Satélite , Histonas/genética , Histonas/metabolismo , Humanos , Microscopía de Fuerza Atómica , Nucleosomas/genética , Nucleosomas/metabolismo
2.
PLoS Genet ; 17(4): e1009327, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33901174

RESUMEN

The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile, and their oocytes fail to complete meiosis I. In determining AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at acentriolar microtubule organizing centers (aMTOCs; meiotic spindle poles). This activation induces fragmentation of the aMTOCs, a step essential for building a bipolar spindle. We also show that AURKA is required for regulating localization of TACC3, another protein required for spindle building. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.


Asunto(s)
Aurora Quinasa A/genética , Proteínas de Ciclo Celular/genética , Proteínas Fetales/genética , Meiosis/genética , Proteínas Asociadas a Microtúbulos/genética , Oocitos/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Animales , Aurora Quinasa B/genética , Aurora Quinasa C/genética , División del Núcleo Celular/genética , Segregación Cromosómica/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Centro Organizador de los Microtúbulos/metabolismo , Oocitos/metabolismo , Huso Acromático/genética , Polos del Huso/genética , Quinasa Tipo Polo 1
3.
Cell Cycle ; 20(2): 211-224, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404279

RESUMEN

Combining targeted therapeutic agents is an attractive cancer treatment strategy associated with high efficacy and low toxicity. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is an essential factor in DNA damage repair. Studies from us and others have revealed that DNA-PKcs also plays an important role in normal mitosis progression. Histone deacetylase (HDACs) inhibitors commonly lead to mitotic aberration and have been approved for treating various cancers in the clinic. We showed that DNA-PKcs depletion or kinase activity inhibition increases cancer cells' sensitivity to HDACs inhibitors in vitro and in vivo. DNA-PKcs deficiency significantly enhances HDACs inhibitors (HDACi)-induced mitotic arrest and is followed by apoptotic cell death. Mechanistically, we found that DNA-PKcs binds to HDAC6 and facilitates its acetylase activity. HDACi is more likely to impair HDAC6-induced deacetylation of HSP90 and abrogate HSP90's chaperone function on Aurora A, a critical mitotic kinase that regulates centrosome separation and mitotic spindle assembly in DNA-PKcs-deficient cells. Our current work indicates crosstalk between DNA-PKcs and HDACs signaling pathways, and highlights that the combined targeting of DNA-PKcs and HDACs can be used in cancer therapy. Abbreviations: DNA-PKcs, DNA-dependent protein kinase catalytic subunit, HDACs, Histone deacetylases, DSBs, DNA double-strand breaks, ATM, ataxia telangiectasia mutated, ATR, ATM-Rad3-related.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Histona Desacetilasa 6/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , División del Núcleo Celular/genética , División del Núcleo Celular/fisiología , Daño del ADN/genética , Reparación del ADN/genética , Histona Desacetilasa 6/genética , Humanos , Proteínas Supresoras de Tumor/metabolismo
4.
PLoS Genet ; 16(10): e1008928, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33001976

RESUMEN

Regular chromosome segregation during the first meiotic division requires prior pairing of homologous chromosomes into bivalents. During canonical meiosis, linkage between homologous chromosomes is maintained until late metaphase I by chiasmata resulting from meiotic recombination in combination with distal sister chromatid cohesion. Separase-mediated elimination of cohesin from chromosome arms at the end of metaphase I permits terminalization of chiasmata and homolog segregation to opposite spindle poles during anaphase I. Interestingly, separase is also required for bivalent splitting during meiosis I in Drosophila males, where homologs are conjoined by an alternative mechanism independent of meiotic recombination and cohesin. Here we report the identification of a novel alternative homolog conjunction protein encoded by the previously uncharacterized gene univalents only (uno). The univalents that are present in uno null mutants at the start of meiosis I, instead of normal bivalents, are segregated randomly. In wild type, UNO protein is detected in dots associated with bivalent chromosomes and most abundantly at the localized pairing site of the sex chromosomes. UNO is cleaved by separase. Expression of a mutant UNO version with a non-functional separase cleavage site restores homolog conjunction in a uno null background. However, separation of bivalents during meiosis I is completely abrogated by this non-cleavable UNO version. Therefore, we propose that homolog separation during Drosophila male meiosis I is triggered by separase-mediated cleavage of UNO.


Asunto(s)
Proteínas de Drosophila/genética , Meiosis/genética , Separasa/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular/genética , División del Núcleo Celular/genética , Centrómero/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Metafase/genética , Cromosomas Sexuales/genética , Cohesinas
5.
Cell Stem Cell ; 25(5): 666-681.e5, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31564548

RESUMEN

Many stem cells utilize asymmetric cell division (ACD) to produce a self-renewed stem cell and a differentiating daughter cell. How non-genic information could be inherited differentially to establish distinct cell fates is not well understood. Here, we report a series of spatiotemporally regulated asymmetric components, which ensure biased sister chromatid attachment and segregation during ACD of Drosophila male germline stem cells (GSCs). First, sister centromeres are differentially enriched with proteins involved in centromere specification and kinetochore function. Second, temporally asymmetric microtubule activities and polarized nuclear envelope breakdown allow for the preferential recognition and attachment of microtubules to asymmetric sister kinetochores and sister centromeres. Abolishment of either the asymmetric sister centromeres or the asymmetric microtubule activities results in randomized sister chromatid segregation. Together, these results provide the cellular basis for partitioning epigenetically distinct sister chromatids during stem cell ACDs, which opens new directions to study these mechanisms in other biological contexts.


Asunto(s)
División Celular Asimétrica/fisiología , Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Cromátides/metabolismo , Proteínas de Drosophila/metabolismo , Células Germinativas/citología , Microtúbulos/metabolismo , Células Madre/citología , Animales , Animales Modificados Genéticamente , División Celular Asimétrica/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , División del Núcleo Celular/genética , División del Núcleo Celular/fisiología , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Técnicas de Sustitución del Gen , Células Germinativas/metabolismo , Cinetocoros/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Mitosis/genética , Mitosis/fisiología
6.
PLoS Genet ; 15(2): e1007959, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30763303

RESUMEN

The nuclear division takes place in the daughter cell in the basidiomycetous budding yeast Cryptococcus neoformans. Unclustered kinetochores gradually cluster and the nucleus moves to the daughter bud as cells enter mitosis. Here, we show that the evolutionarily conserved Aurora B kinase Ipl1 localizes to the nucleus upon the breakdown of the nuclear envelope during mitosis in C. neoformans. Ipl1 is shown to be required for timely breakdown of the nuclear envelope as well. Ipl1 is essential for viability and regulates structural integrity of microtubules. The compromised stability of cytoplasmic microtubules upon Ipl1 depletion results in a significant delay in kinetochore clustering and nuclear migration. By generating an in silico model of mitosis, we previously proposed that cytoplasmic microtubules and cortical dyneins promote atypical nuclear division in C. neoformans. Improving the previous in silico model by introducing additional parameters, here we predict that an effective cortical bias generated by cytosolic Bim1 and dynein regulates dynamics of kinetochore clustering and nuclear migration. Indeed, in vivo alterations of Bim1 or dynein cellular levels delay nuclear migration. Results from in silico model and localization dynamics by live cell imaging suggests that Ipl1 spatio-temporally influences Bim1 or/and dynein activity along with microtubule stability to ensure timely onset of nuclear division. Together, we propose that the timely breakdown of the nuclear envelope by Ipl1 allows its own nuclear entry that helps in spatio-temporal regulation of nuclear division during semi-open mitosis in C. neoformans.


Asunto(s)
Aurora Quinasa B/metabolismo , División del Núcleo Celular/fisiología , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Transporte Activo de Núcleo Celular , Aurora Quinasa B/genética , División del Núcleo Celular/genética , Segregación Cromosómica , Cromosomas Fúngicos/genética , Simulación por Computador , Cryptococcus neoformans/citología , Cryptococcus neoformans/genética , Dineínas/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Modelos Biológicos , Mutación , Análisis Espacio-Temporal
7.
Proc Natl Acad Sci U S A ; 116(9): 3784-3792, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808764

RESUMEN

In their natural habitat of rotting fruit, the nematode Caenorhabditis elegans feeds on the complex bacterial communities that thrive in this rich growth medium. Hundreds of diverse bacterial strains cultured from such rotting fruit allow C. elegans growth and reproduction when tested individually. In screens for C. elegans responses to single bacterial strains associated with nematodes in fruit, we found that Rhizobium causes a genome instability phenotype; we observed abnormally long or fragmented intestinal nuclei due to aberrant nuclear division, or defective karyokinesis. The karyokinesis defects were restricted to intestinal cells and required close proximity between bacteria and the worm. A genetic screen for C. elegans mutations that cause the same intestinal karyokinesis defect followed by genome sequencing of the isolated mutant strains identified mutations that disrupt DNA damage repair pathways, suggesting that Rhizobium may cause DNA damage in C. elegans intestinal cells. We hypothesized that such DNA damage is caused by reactive oxygen species produced by Rhizobium and found that hydrogen peroxide added to benign Escherichia coli can cause the same intestinal karyokinesis defects in WT C. elegans Supporting this model, free radical scavengers suppressed the Rhizobium-induced C. elegans DNA damage. Thus, Rhizobium may signal to eukaryotic hosts via reactive oxygen species, and the host may respond with DNA damage repair pathways.


Asunto(s)
Caenorhabditis elegans/microbiología , Daño del ADN/genética , Intestinos/microbiología , Rhizobium/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , División del Núcleo Celular/genética , Escherichia coli/genética , Frutas/microbiología , Inestabilidad Genómica/genética , Mutación , Rhizobium/patogenicidad
8.
Nucleic Acids Res ; 46(15): 7757-7771, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30007364

RESUMEN

Universal minicircle sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind a single-stranded G-rich sequence, UMS, conserved at the replication origins of the mitochondrial (kinetoplast) DNA of trypanosomatids. Here, we report that Trypanosoma brucei TbUMSBP2, which has been previously proposed to function in the replication and segregation of the mitochondrial DNA, colocalizes with telomeres at the nucleus and is essential for their structure, protection and function. Knockdown of TbUMSBP2 resulted in telomere clustering in one or few foci, phosphorylation of histone H2A at the vicinity of the telomeres, impaired nuclear division, endoreduplication and cell growth arrest. Furthermore, TbUMSBP2 depletion caused rapid reduction in the G-rich telomeric overhang, and an increase in C-rich single-stranded telomeric DNA and in extrachromosomal telomeric circles. These results indicate that TbUMSBP2 is essential for the integrity and function of telomeres. The sequence similarity between the mitochondrial UMS and the telomeric overhang and the finding that UMSBPs bind both sequences suggest a common origin and/or function of these interactions in the replication and maintenance of the genomes in the two organelles. This feature could have converged or preserved during the evolution of the nuclear and mitochondrial genomes from their ancestral (likely circular) genome in early diverged protists.


Asunto(s)
Cromosomas/genética , Proteínas de Unión al ADN/genética , Proteínas Protozoarias/genética , Telómero/genética , Trypanosoma brucei brucei/genética , División del Núcleo Celular/genética , ADN Mitocondrial/genética , Endorreduplicación/genética , Genoma de Protozoos/genética , Histonas/metabolismo , Fosforilación , Unión Proteica/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
9.
J Cell Sci ; 130(16): 2673-2681, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28663385

RESUMEN

Inactivation of cyclin-dependent kinase (Cdk) and reversal of Cdk phosphorylation are universally required for mitotic exit. In budding yeast (Saccharomyces cerevisiae), Cdc14 is essential for both and thought to be the major Cdk-counteracting phosphatase. However, Cdc14 is not required for mitotic exit in many eukaryotes, despite highly conserved biochemical properties. The question of how similar enzymes could have such disparate influences on mitotic exit prompted us to re-examine the contribution of budding yeast Cdc14. By using an auxin-inducible degron, we show that severe Cdc14 depletion has no effect on the kinetics of mitotic exit and bulk Cdk substrate dephosphorylation, but causes a cell separation defect and is ultimately lethal. Phosphoproteomic analysis revealed that Cdc14 is highly selective for distinct Cdk sites in vivo and does not catalyze widespread Cdk substrate dephosphorylation. We conclude that additional phosphatases likely contribute substantially to Cdk substrate dephosphorylation and coordination of mitotic exit in budding yeast, similar to in other eukaryotes, and the critical mitotic exit functions of Cdc14 require trace amounts of enzyme. We propose that Cdc14 plays very specific, and often different, roles in counteracting Cdk phosphorylation in all species.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Mitosis/genética , Proteínas Tirosina Fosfatasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/genética , División del Núcleo Celular/genética , Organismos Modificados Genéticamente , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
10.
FEBS Lett ; 591(7): 1029-1040, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28245054

RESUMEN

In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1+ gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of anaphase-promoting complex/cyclosome (APC/C) activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores.


Asunto(s)
Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Meiosis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Western Blotting , Proteínas Cdc20/genética , Proteínas Cdh1/genética , División del Núcleo Celular/genética , Microscopía Fluorescente , Mutación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Factores de Tiempo
11.
J Microbiol Biotechnol ; 27(6): 1198-1203, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28335590

RESUMEN

Hrr25, a casein kinase 1 δ/ε homolog in budding yeast, is essential to set up mono-orientation of sister kinetochores during meiosis. Hrr25 kinase activity coordinates sister chromatid cohesion via cohesin phosphorylation. Here, we investigated the prophase role of Hrr25 using the auxin-inducible degron system and by ectopic expression of Hrr25 during yeast meiosis. Hrr25 mediates nuclear division in meiosis I but does not affect DNA replication. We also found that initiation of meiotic double-strand breaks as well as joint molecule formation were normal in HRR25-deficient cells. Thus, Hrr25 is essential for termination of meiotic division but not homologous recombination.


Asunto(s)
Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Recombinación Homóloga , Meiosis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/enzimología , Saccharomycetales/genética , División del Núcleo Celular/genética , Segregación Cromosómica , Roturas del ADN de Doble Cadena , Profase/genética , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/fisiología , Esporas Fúngicas/fisiología
12.
Fungal Genet Biol ; 88: 54-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26854071

RESUMEN

The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed that nuclear division did not occur across the septal plane. We detected the presence of nucleolar fragments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionally maintained multiple nucleoli, suggesting either polyploidy, multiple nuclei and/or aneuploidy of ChrR., while the migration pattern of sister nuclei differed between unbranched and branched hyphae. The presented movie challenges and extends previous concepts of C. albicans cell division.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/genética , División del Núcleo Celular/genética , Aneuploidia , División Celular , Nucléolo Celular/genética , Núcleo Celular/genética , Humanos , Hifa/genética , Hifa/crecimiento & desarrollo , Ploidias , Imagen de Lapso de Tiempo/instrumentación , Imagen de Lapso de Tiempo/métodos , Virulencia
13.
Harmful Algae ; 52: 23-33, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-28073468

RESUMEN

Photosynthesis in the ciliate Mesodinium rubrum is achieved using a consortium of cryptophyte algal organelles enclosed in its specialized vacuole. A time-series microarray analysis was conducted on the photosynthetic ciliate using an oligochip containing 15,654 primers designed from EST data of the cryptophyte prey, Teleaulax amphioxeia. The cryptophycean nuclei were transcriptionally active over 13 weeks and approximately 13.5% of transcripts in the ciliate came from the sequestered nuclei. The cryptophyte nuclei and chloroplasts could divide in the ciliate, which were loosely synchronized with host cell division. A large epigenetic modification occurred after the cryptophyte nuclei were sequestered into the ciliate. Most cryptophyte genes involved in the light and dark reactions of photosynthesis, chlorophyll assimilation, as well as in DNA methylation, were consistently up-regulated in the ciliate. The imbalance of division rate between the sequestered cryptophyte nuclei and host nuclei may be the reason for the eventual cessation of the kleptoplastidy.


Asunto(s)
Cilióforos/genética , Criptófitas/genética , Regulación de la Expresión Génica , División del Núcleo Celular/genética , Clorofila/metabolismo , Epigénesis Genética , Fotosíntesis/fisiología
14.
Plant Cell Rep ; 33(5): 819-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24667993

RESUMEN

KEY MESSAGE: Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles. Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.


Asunto(s)
Arabidopsis/genética , División del Núcleo Celular/genética , Gametogénesis en la Planta/genética , Cinesinas/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Flores/genética , Genes Reporteros , Genotipo , Cinesinas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Especificidad de Órganos , Óvulo Vegetal/genética , Fenotipo , Filogenia , Polen/genética , Regiones Promotoras Genéticas/genética , Alineación de Secuencia
15.
Curr Biol ; 23(23): R1045-7, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24309281

RESUMEN

How do nuclear components, apart from chromosomes, partition equally to daughter nuclei during mitosis? In Schizosaccharomyces japonicus, the conserved LEM-domain nuclear envelope protein Man1 ensures the formation of identical daughter nuclei by coupling nuclear pore complexes to the segregating chromosomes.


Asunto(s)
División del Núcleo Celular/genética , Estructuras del Núcleo Celular/genética , Segregación Cromosómica/genética , Proteínas de Complejo Poro Nuclear/genética , Schizosaccharomyces/genética , Cromosomas/genética , Mitosis , Poro Nuclear/genética , Proteínas de Schizosaccharomyces pombe/genética
16.
PLoS One ; 7(12): e52799, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251712

RESUMEN

Conjugation in Tetrahymena thermophila involves a developmental program consisting of three prezygotic nuclear divisions, pronuclear exchange and fusion, and postzygotic and exconjugant stages. The conjugation junction structure appears during the initiation of conjugation development, and disappears during the exconjugant stage. Many structural and functional proteins are involved in the establishment and maintenance of the junction structure in T. thermophila. In the present study, a zinc finger protein-encoding gene ZFR1 was found to be expressed specifically during conjugation and to localize specifically to the conjugation junction region. Truncated Zfr1p localized at the plasma membrane in ordered arrays and decorated Golgi apparatus located adjacent to basal body. The N-terminal zinc finger and C-terminal hydrophobic domains of Zfr1p were found to be required for its specific conjugation junction localization. Conjugation development of ZFR1 somatic knockout cells was aborted at the pronuclear exchange and fusion conjugation stages. Furthermore, Zfr1p was found to be important for conjugation junction stability during the prezygotic nuclear division stage. Taken together, our data reveal that Zfr1p is required for the stability and integrity of the conjugation junction structure and essential for the sexual life cycle of the Tetrahymena cell.


Asunto(s)
Conjugación Genética/genética , Desarrollo Sexual/fisiología , Tetrahymena thermophila/fisiología , Dedos de Zinc , Secuencia de Aminoácidos , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , División del Núcleo Celular/genética , División del Núcleo Celular/fisiología , Conjugación Genética/fisiología , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Estadios del Ciclo de Vida/genética , Estadios del Ciclo de Vida/fisiología , Datos de Secuencia Molecular , Desarrollo Sexual/genética , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
17.
Oncogene ; 31(23): 2836-48, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21986947

RESUMEN

Mutations of p53 in cancer can result in a gain of function associated with tumour progression and metastasis. We show that inducible expression of several p53 'hotspot' mutants promote a range of centrosome abnormalities, including centrosome amplification, increased centrosome size and loss of cohesion, which lead to mitotic defects and multinucleation. These mutant p53-expressing cells also show a change in morphology and enhanced invasive capabilities. Consequently, we sought for a means to specifically target the function of mutant p53 in cancer cells. This study has identified ANKRD11 as a key regulator of the oncogenic potential of mutant p53. Loss of ANKRD11 expression with p53 mutation defines breast cancer patients with poor prognosis. ANKRD11 alleviates the mitotic defects driven by mutant p53 and suppresses mutant p53-mediated mesenchymal-like transformation and invasion. Mechanistically, we show that ANKRD11 restores a native conformation to the mutant p53 protein and causes dissociation of the mutant p53-p63 complex. This represents the first evidence of an endogenous protein with the capacity to suppress the oncogenic properties of mutant p53.


Asunto(s)
Neoplasias de la Mama/patología , División del Núcleo Celular/genética , Mutación/genética , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Centrosoma/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoprecipitación , Invasividad Neoplásica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/metabolismo
18.
DNA Repair (Amst) ; 10(9): 978-90, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21839691

RESUMEN

Excision repair cross complementing gene 1 (ERCC1) associated with xeroderma pigmentosum group F (XPF) is a heterodimeric endonuclease historically involved in the excision of bulky helix-distorting DNA lesions during nucleotide excision repair (NER) but also in the repair of DNA interstrand crosslinks. ERCC1 deficient mice show severe growth retardation associated with premature replicative senescence leading to liver failure and death at four weeks of age. In humans, ERCC1 is overexpressed in hepatocellular carcinoma and in the late G1 phase of hepatocyte cell cycle. To investigate whether ERCC1 could be involved in human hepatocyte cell growth and cell cycle progression, we knocked-down ERCC1 expression in the human hepatocellular carcinoma cell line Huh7 by RNA interference. ERCC1 knocked-down cells were delayed in their cell cycle and became multinucleated. This phenotype was rescued by ERCC1 overexpression. Multinucleation was not liver specific since it also occurred in HeLa and in human fibroblasts knocked-down for ERCC1. Multinucleated cells arose after drastic defects leading to flawed metaphase and cytokinesis. Interestingly, multinucleation did not appear after knocking-down other NER enzymes such as XPC and XPF, suggesting that NER deficiency was not responsible for multinucleation. Moreover, XPF mutant human fibroblasts formed multinucleated cells after ERCC1 knock-down but not after XPF knock-down. Therefore our results seem consistent with ERCC1 being involved in multinucleation but not XPF. This work reveals a new role for ERCC1 distinct from its known function in DNA repair, which may be independent of XPF. The role for ERCC1 in mitotic progression may be critical during development, particularly in humans.


Asunto(s)
División del Núcleo Celular/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Células HeLa , Humanos , Receptores X del Hígado , Mitosis/genética , Mutación/genética , Receptores Nucleares Huérfanos/metabolismo
19.
Genetika ; 47(4): 499-507, 2011 Apr.
Artículo en Ruso | MEDLINE | ID: mdl-21675239

RESUMEN

Two original mechanisms of nuclear restitution related to different processes of meiotic division of pollen mother cells (PMCs) have been found in male meiosis of the lines of maize haploids no. 2903 and no. 2904. The first mechanism, which is characteristic of haploid no. 2903, consists in spindle deformation (bend) in the conventional metaphase-anaphase I. This leads to asymmetric incomplete cytokinesis with daughter cell membranes in the form of incisions on the mother cell membrane. As a result, the chromosomes of the daughter nuclei are combined into a common spindle during the second meiotic division, and a dyad of haploid microspores is formed at the tetrad stage. The frequency of this abnormality is about 50%. The second restitution mechanism, which has been observed in PMCs of haploid no. 2904, results from disturbance of the fusion of membrane vesicles (plastosomes) at the moment of formation of daughter cell membranes and completion of cytokinesis in the first meiotic division. This type of cell division yields a binuclear monad. In the second meiotic division, the chromosomes of the daughter nuclei form a common spindle, and meiosis results in a dyad of haploid microspores. The frequency of this abnormality is as high as 15%. As a result, haploid lines no. 2903 and no. 2904 partly restore fertility.


Asunto(s)
División del Núcleo Celular/genética , Citocinesis/fisiología , Meiosis/fisiología , Zea mays , Núcleo Celular/genética , Cromosomas de las Plantas/genética , Haploidia , Huso Acromático/genética , Zea mays/citología , Zea mays/genética
20.
Eukaryot Cell ; 10(6): 791-802, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21478432

RESUMEN

Cryptococcus neoformans is the leading cause of fungal meningitis in immunocomprised populations. Although extensive studies have been conducted on signal transduction pathways important for fungal sexual reproduction and virulence, how fungal virulence is regulated during infection is still not understood. In this study, we identified the F-box protein Fbp1, which contains a putative F-box domain and 12 leucine-rich repeats (LRR). Although fbp1 mutants showed normal growth and produced normal major virulence factors, such as melanin and capsule, Fbp1 was found to be essential for fungal virulence, as fbp1 mutants were avirulent in a murine systemic-infection model. Fbp1 is also important for fungal sexual reproduction. Basidiospore production was blocked in bilateral mating between fbp1 mutants, even though normal dikaryotic hyphae were observed during mating. In vitro assays of stress responses revealed that fbp1 mutants are hypersensitive to SDS, but not calcofluor white (CFW) or Congo red, indicating that Fbp1 may regulate cell membrane integrity. Fbp1 physically interacts with Skp1 homologues in both Saccharomyces cerevisiae and C. neoformans via its F-box domain, suggesting it may function as part of an SCF (Skp1, Cullins, F-box proteins) E3 ligase. Overall, our study revealed that the F-box protein Fbp1 is essential for fungal sporulation and virulence in C. neoformans, which likely represents a conserved novel virulence control mechanism that involves the SCF E3 ubiquitin ligase-mediated proteolysis pathway.


Asunto(s)
Conjugación Genética , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , División del Núcleo Celular/genética , Recuento de Colonia Microbiana , Secuencia Conservada , Cryptococcus neoformans/fisiología , Proteínas F-Box/química , Proteínas F-Box/genética , Femenino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Macrófagos/microbiología , Macrófagos/patología , Meiosis/genética , Ratones , Datos de Secuencia Molecular , Fagocitosis , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transcripción Genética , Virulencia , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...