Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Exp Physiol ; 106(11): 2185-2197, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34605090

RESUMEN

NEW FINDINGS: What is the central question of this study? 3,5-Diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models, and ameliorates insulin resistance: what are its effects on cardiac electrical and contractile properties and autonomic regulation? What is the main finding and its importance? Chronic 3,5-T2 administration has no adverse effects on cardiac function. Remarkably, 3,5-T2 improves the autonomous control of the rat heart and protects against ischaemia-reperfusion injury. ABSTRACT: The use of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) to treat metabolic diseases has been hindered by potential adverse effects on liver, lipid metabolism and cardiac electrical properties. It is recognized that 3,5-diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models and ameliorates insulin resistance, suggesting 3,5-T2 as a potential therapeutic tool. However, a comprehensive assessment of cardiac electrical and contractile properties has not been made so far. Three-month-old Wistar rats were daily administered vehicle, 3,5-T2 or 3,5-T2+T4 and no signs of atrial or ventricular arrhythmia were detected in non-anaesthetized rats during 90 days. Cardiac function was preserved as heart rate, left ventricle diameter and shortening fraction in 3,5-T2-treated rats compared to vehicle and 3,5-T2+T4 groups. Power spectral analysis indicated an amelioration of the heart rate variability only in 3,5-T2-treated rats. An increased baroreflex sensitivity at rest was observed in both 3,5-T2-treated groups. Finally, 3,5-T2 Langendorff-perfused hearts presented a significant recovery of left ventricular function and remarkably smaller infarction area after ischaemia-reperfusion injury. In conclusion, chronic 3,5-T2 administration ameliorates tonic cardiac autonomic control and confers cardioprotection against ischaemia-reperfusion injury in healthy male rats.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Diyodotironinas/farmacología , Diyodotironinas/uso terapéutico , Corazón , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Wistar
2.
Front Endocrinol (Lausanne) ; 12: 703170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322094

RESUMEN

3,5-diiodo-thyronine (T2), an endogenous metabolite of thyroid hormones, exerts beneficial metabolic effects. When administered to overweight rats receiving a high fat diet (HFD), it significantly reduces body fat accumulation, which is a risk factor for the development of an inflammatory state and of related metabolic diseases. In the present study, we focused our attention on T2 actions aimed at improving the adverse effects of long-lasting HFD such as the adipocyte inflammatory response. For this purpose, three groups of rats were used throughout: i) receiving a standard diet for 14 weeks; ii) receiving a HFD for 14 weeks, and iii) receiving a HFD for 14 weeks with a simultaneous daily injection of T2 for the last 4 weeks. The results showed that T2 administration ameliorated the expression profiles of pro- and anti-inflammatory cytokines, reduced macrophage infiltration in white adipose tissue, influenced their polarization and reduced lymphocytes recruitment. Moreover, T2 improved the expression of hypoxia markers, all altered in HFD rats, and reduced angiogenesis by decreasing the pro-angiogenic miR126 expression. Additionally, T2 reduced the oxidative damage of DNA, known to be associated to the inflammatory status. This study demonstrates that T2 is able to counteract some adverse effects caused by a long-lasting HFD and to produce beneficial effects on inflammation. Irisin and SIRT1 pathway may represent a mechanism underlying the above described effects.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Diyodotironinas/farmacología , Hipoxia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Grasa Intraabdominal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Adipoquinas/metabolismo , Animales , Daño del ADN , Hipoxia/metabolismo , Hipoxia/patología , Inflamación/etiología , Inflamación/patología , Grasa Intraabdominal/inmunología , Grasa Intraabdominal/metabolismo , Macrófagos/inmunología , Masculino , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Sobrepeso/fisiopatología , Estrés Oxidativo , Ratas , Ratas Wistar
3.
Thyroid ; 31(7): 1135-1146, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33637021

RESUMEN

Background: The thyroid hormone (TH) metabolite 3,5-diiodothyronine (3,5-T2) is considered as a potential drug for treatment of nonalcoholic fatty liver disease (NAFLD) based on its prominent antisteatotic effects in murine models of obesity without the detrimental thyromimetic side effects known for classical TH. To expand our understanding of its mode of action, we comprehensively characterized the effects of 3,5-T2 on hepatic gene expression in a diet-induced murine model of obesity by a combined liver proteome and transcriptome analysis. Materials and Methods: Male C57BL/6 mice fed high-fat diet (HFD) to induce NAFLD or standard diet (SD) as control were treated with 2.5 µg/g body weight 3,5-T2 or saline for 4 weeks. We performed mass spectrometry analyses and integrated those proteome data with earlier published microarray-based transcriptome data from the same animals. In addition, concentrations of several sex steroids in serum and different tissues were determined by gas chromatography-tandem mass spectrometry. Results: We observed limited concordance between transcripts and proteins exhibiting differential abundance under 3,5-T2 treatment, which was only partially explainable by methodological reasons and might, therefore, reflect noncanonical post-transcriptional events. The treatment affected the levels of more and partially different proteins under HFD as compared with SD, demonstrating response modulation by the hepatic lipid load. The hepatic physiological signatures of 3,5-T2 treatment inferable from the omics data comprised the reduction of oxidative stress and alteration of apolipoprotein profiles, both due to decreased liver fat content. In addition, induction of several classical TH target genes and genes involved in the biosynthesis of cholesterol, bile acids (BAs), and male sex steroids was observed. The latter finding was supported by hepatic sex steroid measurements. Conclusion: While confirming the beneficial hepatic liver fat reduction by 3,5-T2 treatment, our data suggest that besides the well-known induction of fatty acid oxidation the stimulation of cholesterol- and BA synthesis with subsequent excretion of the latter through bile might represent a further important mechanism in this context. The obvious intensified male sex steroid exposition of the liver in 3,5-T2-treated HFD animals can be predicted to cause enhanced hepatic "masculinization," with not yet clear but potentially detrimental physiological consequences.


Asunto(s)
Dieta Alta en Grasa , Diyodotironinas/farmacología , Hígado/efectos de los fármacos , Proteoma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Proteoma/metabolismo
4.
Mol Cell Endocrinol ; 499: 110604, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580898

RESUMEN

Until three decades, ago 3,5-diiodothyronine (3,5-T2) and 3,3'-diiodothyronine (3,3'-T2) were considered products of thyroid hormone catabolism without biological activity. Some metabolic effects have been described in rodents, but the physiological relevance in humans and the mechanisms of action are unknown. Aim of this work was to investigate the role and the mechanisms of action of 3,5-T2 and 3,3'-T2 in the regulation of metabolic homeostasis in human liver. We used primary human hepatocytes freshly isolated from donors and grown on Matrigel as the golden standard in vitro model to study human hepatic metabolism. Results show that diiodothyronines in the range of plasma physiological concentrations reduced hepatic lipid accumulation, by modulating the activity of the mTORC1/Raptor complex through an AMPK-mediated mechanism, and stimulated the mTORC2/Rictor complex-activated pathway, leading to the down regulation of the expression of key gluconeogenic genes. Hence, we propose that diiodothyronines act as key regulators of hepatic metabolic homeostasis in humans.


Asunto(s)
Diyodotironinas/farmacología , Hepatocitos/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Masculino , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Triglicéridos/metabolismo
5.
Sci Rep ; 9(1): 16645, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719576

RESUMEN

The 3,5-diiodo-L-thyronine (T2) has emerged as an active iodothyronine and its beneficial effects on glucose metabolism including glucose tolerance and insulin resistance is well established. However, little is known about its molecular mechanisms. Given the emerging importance of microRNAs in various metabolic diseases, in this study a possible link between the effects of T2 on glucose metabolism and miRNA expression was investigated by using an in vivo model in which T2 was administered in rats receiving a high fat diet, a condition known to impair glucose homeostasis. The results showed that T2-treated rats had a better tolerance to glucose load and a better performance at the insulin tolerance test in comparison to high fat diet animals. Interestingly, in the serum of the animals treated with T2 there was a general decrease of miRNAs with miR-22a-3p, miR-34c-5p and miR-33a-3p significantly downregulated. Furthermore, miR-22a-3p had the largest variation pointing toward its preeminent role in T2 metabolic effect. In fact, in liver there was an up-regulation of its target (Transcription Factor 7) Tcf7, which had an important impact on gluconeogenesis. This study provide, for the first time, evidences that miRNAs are involved in the effects exerted by T2 on glucose homeostasis.


Asunto(s)
Diyodotironinas/farmacología , Gluconeogénesis/efectos de los fármacos , MicroARNs/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , MicroARNs/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Cells ; 8(3)2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889829

RESUMEN

The conversion of white adipose cells into beige adipose cells is known as browning, a process affecting energy metabolism. It has been shown that 3,5 diiodo-l-thyronine (T2), an endogenous metabolite of thyroid hormones, stimulates energy expenditure and a reduction in fat mass. In light of the above, the purpose of this study was to test whether in an animal model of fat accumulation, T2 has the potential to activate a browning process and to explore the underlying mechanism. Three groups of rats were used: (i) receiving a standard diet for 14 weeks; (ii) receiving a high-fat diet (HFD) for 14 weeks; and (iii) receiving a high fat diet for 10 weeks and being subsequently treated for four weeks with an HFD together with the administration of T2. We showed that T2 was able to induce a browning in the white adipose tissue of T2-treated rats. We also showed that some miRNA (miR133a and miR196a) and MAP kinase 6 were involved in this process. These results indicate that, among others, the browning may be another cellular/molecular mechanism by which T2 exerts its beneficial effects of contrast to overweight and of reduction of fat mass in rats subjected to HFD.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Diyodotironinas/farmacología , Vivienda para Animales , Sobrepeso/patología , Temperatura , Adenilato Quinasa/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Adiposidad/efectos de los fármacos , Animales , Diyodotironinas/administración & dosificación , Regulación hacia Abajo/efectos de los fármacos , Fibronectinas/sangre , Insulina/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación/efectos de los fármacos , Ratas Wistar , Factores de Transcripción/metabolismo , Proteína Desacopladora 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
7.
IUBMB Life ; 71(7): 863-872, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30707786

RESUMEN

Hepatic de novo lipogenesis (DNL), the process by which carbohydrates are converted into lipids, is strictly controlled by nutritional and hormonal status. 3,5-Diiodo-L-thyronine (T2), a product of the 3,5,3'-triiodo-L-thyronine (T3) peripheral metabolism, has been shown to mimic some T3 effects on lipid metabolism by a short-term mechanism independent of protein synthesis. Here, we report that T2, administered for 1 week to hypothyroid rats, increases total fatty acid synthesis from acetate in isolated hepatocytes. Studies carried out on liver subcellular fractions demonstrated that T2 not only increases the activity and the expression of acetyl-CoA carboxylase and fatty acid synthase but also of other proteins linked to DNL such as the mitochondrial citrate carrier and the cytosolic ATP citrate lyase. Parallelly, T2 stimulates the activities of enzymes supplying cytosolic NADPH needed for the reductive steps of DNL. With respect to both euthyroid and hypothyroid rats, T2 administration decreases the hepatic mRNA level of SREBP-1, a transcription factor which represents a master regulator of DNL. However, when compared to hypothyroid rats T2 significantly increases, without bringing to the euthyroid value, the content of both mature (nSREBP-1), and precursor (pSREBP-1) forms of the SREBP-1 protein as well as their ratio. Moreover, T2 administration strongly augmented the nuclear content of ChREBP, another crucial transcription factor involved in the regulation of lipogenic genes. Based on these results, we can conclude that in the liver of hypothyroid rats the transcriptional activation by T2 of DNL genes could depend, at least in part, on SREBP-1- and ChREBP-dependent mechanisms. © 2019 IUBMB Life, 2019.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diyodotironinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipotiroidismo/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/patología , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Activación Transcripcional
8.
Nutrients ; 11(2)2019 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691227

RESUMEN

When administered to rats receiving a high-fat diet (HFD), 3,5-diiodo-L-thyronine (3,5-T2) [at a dose of 25 µg/100 g body weight (BW)] is known to increase energy expenditure and to prevent HFD-induced adiposity. Here, we investigated which cellular and molecular processes in visceral white adipose tissue (VAT) contributed to the beneficial effect of 3,5-T2 over time (between 1 day and 4 weeks following administration). 3,5-T2 programmed the adipocyte for lipolysis by rapidly inducing hormone sensitive lipase (HSL) phosphorylation at the protein kinase A-responsive site Ser563, accompanied with glycerol release at the 1-week time-point, contributing to the partial normalization of adipocyte volume with respect to control (N) animals. After two weeks, when the adipocyte volumes of HFD-3,5-T2 rats were completely normalized to those of the controls (N), 3,5-T2 consistently induced HSL phosphorylation at Ser563, indicative of a combined effect of 3,5-T2-induced adipose lipolysis and increasing non-adipose oxidative metabolism. VAT proteome analysis after 4 weeks of treatment revealed that 3,5-T2 significantly altered the proteomic profile of HFD rats and produced a marked pro-angiogenic action. This was associated with a reduced representation of proteins involved in lipid storage or related to response to oxidative stress, and a normalization of the levels of those involved in lipogenesis-associated mitochondrial function. In conclusion, the prevention of VAT mass-gain by 3,5-T2 occurred through different molecular pathways that, together with the previously reported stimulation of resting metabolism and liver fatty acid oxidation, are associated with an anti adipogenic/lipogenic potential and positively impact on tissue health.


Asunto(s)
Dieta Alta en Grasa , Diyodotironinas/farmacología , Grasa Intraabdominal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Masculino , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteómica , Ratas , Ratas Wistar , Aumento de Peso/efectos de los fármacos
9.
Cell Physiol Biochem ; 47(6): 2471-2483, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29990992

RESUMEN

BACKGROUND/AIMS: Both 3,5-diiodo-L-thyronine (3,5-T2) and 3,5,3'-triiodo-L-tyronine (T3) affect energy metabolism having mitochondria as a major target. However, the underlying mechanisms are poorly understood. Here, using a model of chemically induced hypothyroidism in male Wistar rats, we investigated the effect of administration of either 3,5-T2 or T3 on liver oxidative capacity through their influence on mitochondrial processes including: proton-leak across the mitochondrial inner membrane; complex I-, complex II- and glycerol-3-phosphate-linked respiratory pathways; respiratory complex abundance and activities as well as individual complex aggregation into supercomplexes. METHODS: Hypothyroidism was induced by propylthiouracil and iopanoic acid; 3,5-T2 and T3 were intraperitoneally administered at 25 and 15 µg/100 g BW for 1 week, respectively. Resulting alterations in mitochondrial function were studied by combining respirometry, Blue Native-PAGE followed by in-gel activity, and Western blot analyses. RESULTS: Administration of 3,5-T2 and T3 to hypothyroid (hypo) rats enhanced mitochondrial respiration rate with only T3 effectively stimulating proton-leak (450% vs. Hypo). T3 significantly enhanced complex I (+145% vs. Hypo), complex II (+66% vs. Hypo), and glycerol-3 phosphate dehydrogenase (G3PDH)-linked oxygen consumptions (about 6- fold those obtained in Hypo), while 3,5-T2 administration selectively restored Euthyroid values of complex II- and increased G3PDH- linked respiratory pathways (+165% vs. Hypo). The mitochondrial abundance of all respiratory complexes and of G3PDH was increased by T3 administration whereas 3,5-T2 only increased complex V and G3PDH abundance. 3,5-T2 enhanced complex I and complex II in gel activities with less intensity than did T3, and T3 also enhanced the activity of all other respiratory complexes tested. In addition, only T3 enhanced individual respiratory component complex assembly into supercomplexes. CONCLUSIONS: The reported data highlight novel molecular mechanisms underlying the effect elicited by iodothyronine administration to hypothyroid rats on mitochondrial processes related to alteration in oxidative capacity in the liver. The differential effects elicited by the two iodothyronines indicate that 3,5-T2, by influencing the kinetic properties of specific mitochondrial respiratory pathways, would promote a rapid response of the organelle, while T3, by enhancing the abundance of respiratory chain component and favoring the organization of respiratory chain complex in supercomplexes, would induce a slower and prolonged response of the organelle.


Asunto(s)
Diyodotironinas/farmacología , Hipotiroidismo/metabolismo , Mitocondrias Hepáticas/metabolismo , Triyodotironina/farmacología , Animales , Transporte de Electrón/efectos de los fármacos , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/patología , Masculino , Mitocondrias Hepáticas/patología , Ratas , Ratas Wistar
10.
Sci Rep ; 7(1): 15043, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118400

RESUMEN

Although 3,5,3'-triiodothyronine (T3) is considered to be the primary bioactive thyroid hormone (TH) due to its high affinity for TH nuclear receptors (TRs), new data suggest that 3,5-diiodothyronine (T2) can also regulate transcriptional networks. To determine the functional relevance of these bioactive THs, RNA-seq analysis was conducted in the cerebellum, thalamus-pituitary and liver of tilapia treated with equimolar doses of T2 or T3. We identified a total of 169, 154 and 2863 genes that were TH-responsive (FDR < 0.05) in the tilapia cerebellum, thalamus-pituitary and liver, respectively. Among these, 130, 96 and 349 genes were uniquely regulated by T3, whereas 22, 40 and 929 were exclusively regulated by T2 under our experimental paradigm. The expression profiles in response to TH treatment were tissue-specific, and the diversity of regulated genes also resulted in a variety of different pathways being affected by T2 and T3. T2 regulated gene networks associated with cell signalling and transcriptional pathways, while T3 regulated pathways related to cell signalling, the immune system, and lipid metabolism. Overall, the present work highlights the relevance of T2 as a key bioactive hormone, and reveals some of the different functional strategies that underpin TH pleiotropy.


Asunto(s)
Encéfalo/metabolismo , Diyodotironinas/farmacología , Hígado/metabolismo , Tilapia/genética , Transcriptoma/efectos de los fármacos , Triyodotironina/farmacología , Animales , Análisis por Conglomerados , Proteínas de Peces/genética , Regulación de la Expresión Génica/efectos de los fármacos , Especificidad de Órganos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Ann Hepatol ; 16(5): 707-719, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28809727

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in industrialized countries and is associated with increased risk of cardiovascular, hepatic and metabolic diseases. Molecular mechanisms on the root of the disrupted lipid homeostasis in NAFLD and potential therapeutic strategies can benefit of in vivo and in vitro experimental models of fatty liver. Here, we describe the high fat diet (HFD)-fed rat in vivo model, and two in vitro models, the primary cultured rat fatty hepatocytes or the FaO rat hepatoma fatty cells, mimicking human NAFLD. Liver steatosis was invariably associated with increased number/size of lipid droplets (LDs) and modulation of expression of genes coding for key genes of lipid metabolism such as peroxisome proliferator-activated receptors (Ppars) and perilipins (Plins). In these models, we tested the anti-steatotic effects of 3,5-L-diiodothyronine (T2), a metabolite of thyroid hormones. T2 markedly reduced triglyceride content and LD size acting on mRNA expression of both Ppars and Plins. T2 also stimulated mitochondrial oxidative metabolism of fatty acids. We conclude that in vivo and especially in vitro models of NAFLD are valuable tools to screen a large number of compounds counteracting the deleterious effect of liver steatosis. Because of the high and negative impact of liver steatosis on human health, ongoing experimental studies from our group are unravelling the ultimate translational value of such cellular models of NAFLD.


Asunto(s)
Diyodotironinas/farmacología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Línea Celular Tumoral , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Ensayos Analíticos de Alto Rendimiento , Humanos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Transducción de Señal/efectos de los fármacos , Investigación Biomédica Traslacional/métodos
12.
J Biol Regul Homeost Agents ; 31(2): 503-508, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28685559

RESUMEN

3,5-diiodo-L-thyronine (T2), a naturally existing iodothyronine, has biological effects on humans, but no information is available on its action on pancreatic b-cells. We evaluated its effect vs triiodothyronine (T3), on glucose-induced insulin secretion in INS-1e cells, a rat insulinoma line, and on human islets. INS-1e were incubated in the presence/absence of T2 or T3 (0.1 nmol/L-10 µmol/L), and glucose (3.3, 7.5, 11.0, and 20 mmol/L). Insulin release and content (at 11.0 and 20 mmol/L glucose) were significantly (p less than 0.01) stimulated by 1-100 nmol/L T2 and 0.1 nmol/L-1.0 µmol/L T3, and inhibited with higher concentrations of both (1–10 µmol/L T2 and 10 µmol/L T3). Human islets were incubated with 3.3 mmol/L glucose in presence/absence of T3 or T2 (0.1 nmol/L, 0.1 µmol/L, and 1 µmol/L). T2 (0.1 nmol/L-0.1 µmol/L) significantly (p less than0.01) stimulated insulin secretion, while higher concentrations (1 µmol/L) inhibited it. A modest increase in insulin secretion was evidenced with 1 µmol/L T3. In conclusion, T2 and T3 have a direct regulatory role in insulin secretion, depending on their concentrations and the glucose level itself. At concentrations near the physiological range, T2 enhances glucose-induced insulin secretion in both rat b-cells and human islets.


Asunto(s)
Diyodotironinas/farmacología , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Triyodotironina/farmacología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Secreción de Insulina , Ratas
13.
Sci Rep ; 7(1): 2023, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515456

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a major health problem worldwide, and is often associated with lipotoxic injury, defective mitochondrial function, and insulin resistance. Thyroid hormones (THs) are important regulators of hepatic lipid metabolism. Among the THs, diiodothyronine (T2) and triiodothyronine (T3) have shown promising results in lowering hepatic fat content in various models of NAFLD. In this study, we used a targeted metabolomics approach to investigate the differential effects of T2 and T3 on the early metabolic adaptation in the livers of rats fed high fat diet (HFD), a period when hepatosteatosis is reversible. Our results showed that both T2 and T3 strongly induced autophagy and intra-hepatic acylcarnitine flux but prevented the generation of sphingolipid/ceramides in animals fed HFD. Interestingly, although both T2 and T3 decreased hepatic fat content, only T2 was able to rescue the impairment in AKT and MAPK/ERK pathways caused by HFD. In summary, we have identified and characterized the effects of T2 and T3 on hepatic metabolism during short-term exposure to HFD. These findings illuminate the common and divergent metabolic pathways by T2 and T3 that also may be important in the prevention and treatment of NAFLD.


Asunto(s)
Dieta Alta en Grasa , Diyodotironinas/metabolismo , Hígado/metabolismo , Metaboloma , Metabolómica , Triyodotironina/metabolismo , Animales , Autofagia , Diyodotironinas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipólisis , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Ratas , Esfingolípidos/biosíntesis , Triyodotironina/farmacología
14.
Acta Physiol (Oxf) ; 220(2): 238-250, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27770485

RESUMEN

AIM: Thyroid hormones regulate metabolic response. While triiodothyronine (T3) is usually considered to be the active form of thyroid hormone, one form of diiodothyronine (3,5-T2) exerts T3-like effects on energy consumption and lipid metabolism. 3,5-T2 also improves glucose tolerance in rats and 3,5-T2 levels correlate with fasting glucose in humans. Presently, however, little is known about mechanisms of 3,5-T2 effects on glucose metabolism. Here, we set out to compare effects of T3, 3,5-T2 and another form of T2 (3,3-T2) in a mouse model of diet-induced obesity and determined effects of T3 and 3,5-T2 on markers of classical insulin sensitization to understand how diiodothyronines influence blood glucose. METHODS: Cell- and protein-based assays of thyroid hormone action. Assays of metabolic parameters in mice. Analysis of transcript and protein levels in different tissues by qRT-PCR and Western blot. RESULTS: T3 and 3,5-T2 both reduce body weight, adiposity and body temperature despite increased food intake. 3,3'-T2 lacks these effects. T3 and 3,5-T2 reduce blood glucose levels, whereas 3,3'-T2 worsens glucose tolerance. Neither T3 nor 3,5-T2 affects markers of insulin sensitization in skeletal muscle or white adipose tissue (WAT), but both reduce hepatic GLUT2 glucose transporter levels and glucose output. T3 and 3,5-T2 also induce expression of mitochondrial uncoupling proteins (UCPs) 3 and 1 in skeletal muscle and WAT respectively. CONCLUSIONS: 3,5-T2 influences glucose metabolism in a manner that is distinct from insulin sensitization and involves reductions in hepatic glucose output and changes in energy utilization.


Asunto(s)
Glucemia/efectos de los fármacos , Diyodotironinas/farmacología , Resistencia a la Insulina , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad , Triyodotironina/farmacología
15.
J Bioenerg Biomembr ; 48(5): 521-529, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27854029

RESUMEN

The role of 3,5-diiodo-L-thyronine (T2), initially considered only a 3,3',5-triiodo-L-thyronine (T3) catabolite, in the bioenergetic metabolism is of growing interest. In this study we investigated the acute effects (within 1 h) of T2 administration to hypothyroid rats on liver mitochondria fatty acid uptake and ß-oxidation rate, mitochondrial efficiency (by measuring proton leak) and mitochondrial oxidative damage (by determining H2O2 release). Fatty acid uptake into mitochondria was measured assaying carnitine palmitoyl transferase (CPT) I and II activities, and fatty acid ß-oxidation using palmitoyl-CoA as a respiratory substrate. Mitochondrial fatty acid pattern was defined by gas-liquid chromatography. In hypothyroid + T2 vs hypothyroid rats we observed a raise in the serum level of nonesterified fatty acids (NEFA), in the mitochondrial CPT system activity and in the fatty acid ß-oxidation rate. A parallel increase in the respiratory chain activity, mainly from succinate, occurs. When fatty acids are chelated by bovine serum albumin, a T2-induced increase in both state 3 and state 4 respiration is observed, while, when fatty acids are present, mitochondrial uncoupling occurs together with increased proton leak, responsible for mitochondrial thermogenesis. T2 administration decreases mitochondrial oxidative stress as determined by lower H2O2 production. We conclude that in rat liver mitochondria T2 acutely enhances the rate of fatty acid ß-oxidation, and the activity of the downstream respiratory chain. The T2-induced increase in proton leak may contribute to mitochondrial thermogenesis and to the reduction of oxidative stress. Our results strengthen the previously reported ability of T2 to reduce adiposity, dyslipidemia and to prevent liver steatosis.


Asunto(s)
Diyodotironinas/farmacología , Metabolismo Energético/efectos de los fármacos , Hipotiroidismo/tratamiento farmacológico , Mitocondrias Hepáticas/metabolismo , Animales , Diyodotironinas/administración & dosificación , Transporte de Electrón/efectos de los fármacos , Ácidos Grasos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Desacopladores/farmacología
16.
J Mol Endocrinol ; 56(4): 311-23, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26903510

RESUMEN

The endogenous thyroid hormone (TH) metabolite 3,5-diiodo-l-thyronine (3,5-T2) acts as a metabolically active substance affecting whole-body energy metabolism and hepatic lipid handling in a desirable manner. Considering possible adverse effects regarding thyromimetic action of 3,5-T2 treatment in rodents, the current literature remains largely controversial. To obtain further insights into molecular mechanisms and to identify novel target genes of 3,5-T2 in liver, we performed a microarray-based liver tissue transcriptome analysis of male lean and diet-induced obese euthyroid mice treated for 4 weeks with a dose of 2.5 µg/g bw 3,5-T2 Our results revealed that 3,5-T2 modulates the expression of genes encoding Phase I and Phase II enzymes as well as Phase III transporters, which play central roles in metabolism and detoxification of xenobiotics. Additionally, 3,5-T2 changes the expression of TH responsive genes, suggesting a thyromimetic action of 3,5-T2 in mouse liver. Interestingly, 3,5-T2 in obese but not in lean mice influences the expression of genes relevant for cholesterol and steroid biosynthesis, suggesting a novel role of 3,5-T2 in steroid metabolism of obese mice. We concluded that treatment with 3,5-T2 in lean and diet-induced obese male mice alters the expression of genes encoding hepatic xenobiotic-metabolizing enzymes that play a substantial role in catabolism and inactivation of xenobiotics and TH and are also involved in hepatic steroid and lipid metabolism. The administration of this high dose of 3,5-T2 might exert adverse hepatic effects. Accordingly, the conceivable use of 3,5-T2 as pharmacological hypolipidemic agent should be considered with caution.


Asunto(s)
Diyodotironinas/farmacología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación de la Expresión Génica/efectos de los fármacos , Esteroides/metabolismo , Hormonas Tiroideas/metabolismo , Xenobióticos/metabolismo , Animales , Ácidos y Sales Biliares/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Obesidad/genética , Obesidad/metabolismo , Farmacogenética , Transcriptoma
17.
Mol Cell Endocrinol ; 425: 103-10, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26820127

RESUMEN

T3 and cortisol activate or repress gene expression in virtually every vertebrate cell mainly by interacting with their nuclear hormone receptors. In contrast to the mechanisms for hormone gene activation, the mechanisms involved in gene repression remain elusive. In teleosts, the thyroid hormone receptor beta gene or thrb produces two isoforms of TRß1 that differ by nine amino acids in the ligand-binding domain of the long-TRß1, whereas the short-TRß1 lacks the insert. Previous reports have shown that the genomic effects exerted by 3,5-T2, a product of T3 outer-ring deiodination, are mediated by the long-TRß1. Furthermore, 3,5-T2 and T3 down-regulate the expression of long-TRß1 and short-TRß1, respectively. In contrast, cortisol has been shown to up-regulate the expression of thrb. To understand the molecular mechanisms for thrb modulation by thyroid hormones and cortisol, we used an in silico approach to identify thyroid- and cortisol-response elements within the proximal promoter of thrb from tilapia. We then characterized the identified response elements by EMSA and correlated our observations with the effects of THs and cortisol upon expression of thrb in tilapia. Our data show that 3,5-T2 represses thrb expression and impairs its up-regulation by cortisol possibly through a transrepression mechanism. We propose that for thrb down-regulation, ligands other than T3 are required to orchestrate the pleiotropic effects of thyroid hormones in vertebrates.


Asunto(s)
Diyodotironinas/farmacología , Hidrocortisona/farmacología , Receptores beta de Hormona Tiroidea/genética , Tilapia/metabolismo , Animales , Simulación por Computador , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas , Elementos de Respuesta , Transducción de Señal/efectos de los fármacos , Receptores beta de Hormona Tiroidea/metabolismo , Tilapia/genética , Transcripción Genética/efectos de los fármacos
18.
Curr Drug Deliv ; 13(3): 330-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26593437

RESUMEN

Overweight and obesity related metabolic disorders, commonly sharing a pathogenic excess of body adiposity, are world-wide epidemic leading to increasing morbidity and mortality. The related conditions include, among the others, liver steatosis, insulin resistance, and cardiovascular risk. Effective and safe anti-obesity drugs are still needed. Likely without undesirable side effects, an ideal treatment should be able to counteract the numerous causes associated with excess of body adiposity putatively modulating the delicate balance between feeding and energy expenditure, untimely controlling the adipose mass. In the past, thyroid hormones have been tested in reducing weight and lipid accumulation, however, the concomitant induction of a thyrotoxicosis state limited their use. Recent studies in rodents revealed that 3,5- diiodo-L-thyronine (T2), an endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities. Specifically, when exogenously administered, T2 increases the resting metabolic rate and elicits short-term beneficial hypolipidemic effects, without being thyrotoxic, at lest in high fat diet fed rats. Now, a matter of interest is whether T2 can be considered or not a potential anti-obesity pharmacological agent. Actually, very few studies have been performed as far as it concerns the effects of T2 in humans and further analyses on larger cohorts to test time of use- and dose-dependent actions as well as the putative occurrence of T2 induced undesirable side effects, are needed. Here, an updated overview of the current literature on T2 bioactivity is furnished with a particular focus on those effects which may be defined "beneficial" vs. "deleterious" ones above all in view of its putative pharmacological use.


Asunto(s)
Fármacos Antiobesidad/farmacología , Diyodotironinas/farmacología , Hipolipemiantes/farmacología , Animales , Diyodotironinas/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Glándula Tiroides/metabolismo , Triyodotironina/metabolismo
19.
PLoS One ; 10(10): e0140837, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26485433

RESUMEN

Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2) reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d) or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP) rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32). This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003). There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a), genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase), and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase). Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be necessary before diiodothyronines can be considered an effective treatment for NAFLD and dyslipidemia.


Asunto(s)
Composición Corporal/efectos de los fármacos , Diyodotironinas/farmacología , Hígado Graso/prevención & control , Resistencia a la Insulina , Hígado/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Diyodotironinas/uso terapéutico , Insulina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
20.
Endocrinology ; 156(11): 3889-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26322373

RESUMEN

Mutations in the gene encoding the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), cause mental retardation in humans associated with a specific thyroid hormone phenotype manifesting high serum T3 and low T4 and rT3 levels. Moreover, these patients have failure to thrive, and physiological changes compatible with thyrotoxicosis. Recent studies in Mct8-deficient (Mct8KO) mice revealed that the high serum T3 causes increased energy expenditure. The TH analog, diiodothyropropionic acid (DITPA), enters cells independently of Mct8 transport and shows thyromimetic action but with a lower metabolic activity than TH. In this study DITPA was given daily ip to adult Mct8KO mice to determine its effect on thyroid tests in serum and metabolism (total energy expenditure, respiratory exchange rate, and food and water intake). In addition, we measured the expression of TH-responsive genes in the brain, liver, and muscles to assess the thyromimetic effects of DITPA. Administration of 0.3 mg DITPA per 100 g body weight to Mct8KO mice brought serum T3 levels and the metabolic parameters studied to levels observed in untreated Wt animals. Analysis of TH target genes revealed amelioration of the thyrotoxic state in liver, somewhat in the soleus, but there was no amelioration of the brain hypothyroidism. In conclusion, at the dose used, DITPA mainly ameliorated the hypermetabolism of Mct8KO mice. This thyroid hormone analog is suitable for the treatment of the hypermetabolism in patients with MCT8 deficiency, as suggested in limited preliminary human trials.


Asunto(s)
Diyodotironinas/farmacología , Proteínas de Transporte de Membrana/deficiencia , Discapacidad Intelectual Ligada al Cromosoma X/prevención & control , Hipotonía Muscular/prevención & control , Atrofia Muscular/prevención & control , Propionatos/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Diyodotironinas/administración & dosificación , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Glutatión Transferasa/genética , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Humanos , Inyecciones Intraperitoneales , Isoenzimas/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Discapacidad Intelectual Ligada al Cromosoma X/sangre , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Hipotonía Muscular/sangre , Hipotonía Muscular/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/sangre , Atrofia Muscular/metabolismo , Propionatos/administración & dosificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simportadores , Hormonas Tiroideas/sangre , Tirotropina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...