Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.154
Filtrar
1.
J Tradit Chin Med ; 44(3): 437-447, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767627

RESUMEN

OBJECTIVE: To evaluate the analgesic effects of total flavonoids of Longxuejie (Resina Dracaenae Cochinchinensis) (TFDB) and explore the possible analgesic mechanism associated with transient receptor potential vanilloid 1 (TRPV1). METHODS: Whole-cell patch clamp technique was used to observe the effects of TFDB on capsaicin-induced TRPV1 currents. Rat experiments in vivo were used to observe the analgesic effects of TFDB. Western blot and immunofluorescence experiments were used to test the change of TRPV1 expression in DRG neurons induced by TFDB. RESULTS: Results showed that TFDB inhibited capsaicin-induced TRPV1 receptor currents in acutely isolated dorsal root ganglion (DRG) neurons of rats and the half inhibitory concentration was (16.7 ± 1.6) mg/L. TFDB (2-20 mg/kg) showed analgesic activity in the phase Ⅱ of formalin test and (0.02-2 mg per paw) reduced capsaicin-induced licking times of rats. TFDB (20 mg/kg) was fully efficacious on complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia and capsaicin could weaken the analgesic effects. The level of TRPV1 expressions of DRG neurons was also decreased in TFDB-treated CFA-inflammatory pain rats. CONCLUSION: All these results indicated that the analgesic effect of TFDB may contribute to their modulations on both function and expression of TRPV1 channels in DRG neurons.


Asunto(s)
Analgésicos , Flavonoides , Ganglios Espinales , Ratas Sprague-Dawley , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Ratas , Flavonoides/farmacología , Analgésicos/farmacología , Analgésicos/química , Masculino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Humanos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732214

RESUMEN

Pain is a complex and multifaceted experience. Recent research has increasingly focused on the role of endoplasmic reticulum (ER) stress in the induction and modulation of pain. The ER is an essential organelle for cells and plays a key role in protein folding and calcium dynamics. Various pathological conditions, such as ischemia, hypoxia, toxic substances, and increased protein production, may disturb protein folding, causing an increase in misfolding proteins in the ER. Such an overload of the folding process leads to ER stress and causes the unfolded protein response (UPR), which increases folding capacity in the ER. Uncompensated ER stress impairs intracellular signaling and cell function, resulting in various diseases, such as diabetes and degenerative neurological diseases. ER stress may be a critical universal mechanism underlying human diseases. Pain sensations involve the central as well as peripheral nervous systems. Several preclinical studies indicate that ER stress in the nervous system is enhanced in various painful states, especially in neuropathic pain conditions. The purpose of this narrative review is to uncover the intricate relationship between ER stress and pain, exploring molecular pathways, implications for various pain conditions, and potential therapeutic strategies.


Asunto(s)
Estrés del Retículo Endoplásmico , Dolor , Respuesta de Proteína Desplegada , Humanos , Animales , Dolor/metabolismo , Dolor/fisiopatología , Retículo Endoplásmico/metabolismo , Transducción de Señal , Neuralgia/metabolismo , Neuralgia/fisiopatología , Pliegue de Proteína
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731855

RESUMEN

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Asunto(s)
Cricetulus , Modelos Animales de Enfermedad , Esfingomielina Fosfodiesterasa , Canales Catiónicos TRPM , beta-Ciclodextrinas , Animales , Esfingomielina Fosfodiesterasa/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Ratones , Humanos , Células CHO , beta-Ciclodextrinas/farmacología , Células HEK293 , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacología , Analgésicos/uso terapéutico , Pregnenolona/farmacología , Supervivencia Celular/efectos de los fármacos
4.
J Clin Invest ; 134(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690736

RESUMEN

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Asunto(s)
Ganglios Espinales , Proteínas de la Membrana , Dolor , Animales , Ratones , Ganglios Espinales/metabolismo , Dolor/genética , Dolor/metabolismo , Dolor/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Humanos , Nociceptores/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/inmunología , Interferón Tipo I/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/inmunología
5.
J Clin Invest ; 134(9)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690737

RESUMEN

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Asunto(s)
Proteínas de la Membrana , Nociceptores , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nociceptores/metabolismo , Ganglios Espinales/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Inflamación/genética , Inflamación/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Dolor/metabolismo , Dolor/genética , Transducción de Señal , Masculino
6.
Zhen Ci Yan Jiu ; 49(5): 441-447, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764114

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan" (PC6) on pain response in mice injected with complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the mechanism of orexin 1 receptor (OX1R) -endogenous cannabinoid 1 receptor (CB1R) pathway in acupuncture analgesia. METHODS: A total of 48 male C57BL/6 mice were used in the present study. In the first part of this study, 18 mice were randomized into control, model and EA groups, with 6 mice in each group. In the second part of this study, 30 mice were randomized into control, model, EA, EA+Naloxone, EA+OX1R antagonist (SB33486) groups, with 6 mice in each group. Inflammatory pain model was established by subcutaneous injection of 20 µL CFA solution in the left hind paw. EA (2 Hz, 2 mA ) was applied to bilateral PC6 for 20 min, once a day for 5 consecutive days. The mice in the EA+Naloxone and EA+SB33486 groups were intraperitoneally injected with naloxone (10 mg/kg) or SB33486 (15 mg/kg) 15 min before EA intervention on day 5, respectively. Tail-flick method and Von Frey method were used to detect the thermal pain threshold and mechanical pain threshold of mice. Quantitative real-time PCR was used to detect the expression level of ß-endorphin mRNA in periaqueductal gray (PAG) of mice. The expression of OX1R positive cells in the lateral hypothalamic area (LH) and CB1R positive cells in the ventrolateral periaqueductal gray (vlPAG) were detected by immunofluorescence. RESULTS: Compared with the control group, the thermal pain threshold and mechanical pain threshold of the model group were decreased (P<0.001), the expression level of ß-endorphin mRNA in PAG was decreased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were decreased (P<0.05, P<0.001). Compared with the model group, the thermal pain threshold and mechanical pain threshold of the EA group were significantly increased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were increased (P<0.01, P<0.001). Compared with the EA group, the mechanical pain threshold in the EA+SB33486 group was significantly decreased (P<0.01), but there was no significant difference in the mechanical pain threshold between the EA+Naloxone group and EA group, and the numbers of OX1R positive neurons in LH and CB1R positive neurons in vlPAG were decreased in the EA+SB33486 group (P<0.001). CONCLUSIONS: EA at PC6 can achieve analgesic effect on CFA mice by activating the OX1R-CB1R pathway in the brain, and this effect is opioid-independent.


Asunto(s)
Puntos de Acupuntura , Encéfalo , Electroacupuntura , Ratones Endogámicos C57BL , Receptores de Orexina , Dolor , Animales , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Masculino , Ratones , Humanos , Dolor/metabolismo , Dolor/genética , Encéfalo/metabolismo , Manejo del Dolor , Inflamación/terapia , Inflamación/metabolismo , Inflamación/genética
7.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710054

RESUMEN

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Asunto(s)
Inflamación , Microglía , FN-kappa B , Netrina-1 , Neuropéptidos , Piroptosis , Transducción de Señal , Proteína de Unión al GTP rac1 , Animales , Piroptosis/fisiología , Piroptosis/efectos de los fármacos , Microglía/metabolismo , Ratones , Netrina-1/metabolismo , Proteína de Unión al GTP rac1/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Dolor/metabolismo , Línea Celular , Lipopolisacáridos
8.
Ann Med ; 56(1): 2329259, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38738380

RESUMEN

Opioids are the most prescribed drugs for the alleviation of pain. Both clinical and preclinical studies have reported strong evidence for sex-related divergence regarding opioid analgesia. There is an increasing amount of evidence indicating that gonadal hormones regulate the analgesic efficacy of opioids. This review presents an overview of the importance of gonadal steroids in modulating opioid analgesic responsiveness and focuses on elaborating what is currently known regarding the underlyingmechanism. We sought to identify the link between gonadal hormones and the effect of oipiod antinociception.


Gonadal hormones contribute to the sexual dimorphism of opioid antinociception.Generally, oestradiol is a negative modulator of opioid analgesia via both non-genomic and genomic effects.Testosterone facilitates opioid analgesia mainly through the transcriptional activities of androgen receptors.Under normal physiological conditions, progestin and oestrogen exist in parallel and have a combined effect. However, progestin alone could promote opioid analgesia by increasing the expression of opioid receptors.


Asunto(s)
Analgésicos Opioides , Hormonas Gonadales , Dolor , Analgésicos Opioides/farmacología , Humanos , Animales , Hormonas Gonadales/metabolismo , Masculino , Dolor/tratamiento farmacológico , Dolor/metabolismo , Femenino
9.
Sci Transl Med ; 16(742): eadk3506, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598614

RESUMEN

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly expressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene-related peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branching of pain-sensitive murine CGRP+ dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial tissue with little inflammation from humans with RA revealed CGRP+ pain-sensing neurons encasing blood vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into regions of synovial hypertrophy in RA.


Asunto(s)
Artritis Reumatoide , Péptido Relacionado con Gen de Calcitonina , Humanos , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Artritis Reumatoide/complicaciones , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Membrana Sinovial/patología , Inflamación/patología , Fibroblastos/patología , Dolor/metabolismo , Expresión Génica , Células Cultivadas
10.
Stem Cell Res Ther ; 15(1): 99, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581069

RESUMEN

BACKGROUND: Human induced pluripotent stem cell (iPSC)-derived peripheral sensory neurons present a valuable tool to model human diseases and are a source for applications in drug discovery and regenerative medicine. Clinically, peripheral sensory neuropathies can result in maladies ranging from a complete loss of pain to severe painful neuropathic disorders. Sensory neurons are located in the dorsal root ganglion and are comprised of functionally diverse neuronal types. Low efficiency, reproducibility concerns, variations arising due to genetic factors and time needed to generate functionally mature neuronal populations from iPSCs remain key challenges to study human nociception in vitro. Here, we report a detailed functional characterization of iPSC-derived sensory neurons with an accelerated differentiation protocol ("Anatomic" protocol) compared to the most commonly used small molecule approach ("Chambers" protocol). Anatomic's commercially available RealDRG™ were further characterized for both functional and expression phenotyping of key nociceptor markers. METHODS: Multiple iPSC clones derived from different reprogramming methods, genetics, age, and somatic cell sources were used to generate sensory neurons. Manual patch clamp was used to functionally characterize both control and patient-derived neurons. High throughput techniques were further used to demonstrate that RealDRGs™ derived from the Anatomic protocol are amenable to high throughput technologies for disease modelling. RESULTS: The Anatomic protocol rendered a purer culture without the use of mitomycin C to suppress non-neuronal outgrowth, while Chambers differentiations yielded a mix of cell types. Chambers protocol results in predominantly tonic firing when compared to Anatomic protocol. Patient-derived nociceptors displayed higher frequency firing compared to control subject with both, Chambers and Anatomic differentiation approaches, underlining their potential use for clinical phenotyping as a disease-in-a-dish model. RealDRG™ sensory neurons show heterogeneity of nociceptive markers indicating that the cells may be useful as a humanized model system for translational studies. CONCLUSIONS: We validated the efficiency of two differentiation protocols and their potential application for functional assessment and thus understanding the disease mechanisms from patients suffering from pain disorders. We propose that both differentiation methods can be further exploited for understanding mechanisms and development of novel treatments in pain disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Reproducibilidad de los Resultados , Células Receptoras Sensoriales/metabolismo , Dolor/metabolismo , Diferenciación Celular/fisiología
11.
Biochem Biophys Res Commun ; 710: 149875, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38604073

RESUMEN

Stress-induced hyperalgesia (SIH) is induced by repeated or chronic exposure to stressful or uncomfortable environments. However, the neural mechanisms involved in the modulatory effects of the periaqueductal gray (PAG) and its associated loops on SIH development hav e not been elucidated. In the present study, we used chronic restraint stress (CRS)-induced hyperalgesia as a SIH model and manipulated neuronal activity via a pharmacogenetic approach to investigate the neural mechanism underlying the effects of descending pain-modulatory pathways on SIH. We found that activation of PAG neurons alleviates CRS-induced hyperalgesia; on the other hand, PAG neurons inhibition facilitates CRS-induced hyperalgesia. Moreover, this modulatory effect is achieved by the neurons which projecting to the rostral ventromedial medulla (RVM). Our data thus reveal the functional role of the PAG-RVM circuit in SIH and provide analgesic targets in the brain for clinical SIH treatment.


Asunto(s)
Hiperalgesia , Sustancia Gris Periacueductal , Ratas , Ratones , Animales , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Dolor/metabolismo , Neuronas/metabolismo
12.
FASEB J ; 38(8): e23590, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38656553

RESUMEN

Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.


Asunto(s)
Hiperalgesia , Inflamación , Interleucina-6 , Microglía , Proteína Quinasa C-epsilon , Factor de Transcripción STAT3 , Animales , Masculino , Ratones , Adyuvante de Freund , Hiperalgesia/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Microglía/metabolismo , Dolor/metabolismo , Fosforilación , Unión Proteica , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C-epsilon/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
13.
Drug Des Devel Ther ; 18: 1265-1275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651136

RESUMEN

Background: Treating inflammatory pain (IP) continues to pose clinical challenge, because of the lack of effective pharmacological interventions. Microglial polarization serves as pivotal determinant in IP progress. Obacunone (OB), a low-molecular-weight compound with a diverse array of biological functions, having reported as an activator of nuclear factor E2-related factor 2 (Nrf2), exhibits anti-inflammatory property. However, it remains uncertain whether OB can alleviate IP by facilitating the transition of microglial polarization from the M1 to M2 state through modulating Nrf2/ heme oxygenase-1 (HO-1) pathway. Methods: We induced an mice IP model by subcutaneously administering Complete Freund's Adjuvant (CFA) into the hind paw. Paw withdrawal latency (PWL) in seconds (s) and paw withdrawal frequency (PWF) were employed to evaluate the establishment of the IP model, while a caliper was used to measure the maximal dorsoventral thickness of the mice paw. Nerve injury was assessed by Hematoxylin-Eosin (HE) Staining. Western blot and got conducted for detection of M1/M2 microglial polarization markers, Nrf2 and HO-1 in spinal cord tissues respectively. Results: In comparison to the control cohort, PWF, M1 phenotype marker iNOS, CD86, paw thickness increased significantly within CFA cohort, while PWL, M2 phenotype marker Arg-1, interleukin-10 (IL-10) decreased in the CFA group. In comparison to model cohort, OB treatment decreased PWF, paw thickness, M1 phenotype marker iNOS, CD86 significantly, while PWL, M2 phenotype marker Arg-1, IL-10, Nrf2, HO-1 increased significantly. The morphological injuries of sciatic nerve in CFA mice were obviously improved by OB treatment. OB inhibited the release of M1-related IL-1ß, CXCL1 but promoted M2-related TGF-ß, IL-10 in serum in CFA mice. The intervention of the Nrf2 inhibitor ML385 mitigated analgesic effect of OB. Conclusion: We demonstrate that OB is able to attenuate inflammatory pain via promoting microglia polarization from M1 to M2 and enhancing Nrf2/HO-1 signal. OB treatment may be a potential alternative agent in the treatment of IP.


Asunto(s)
Inflamación , Proteínas de la Membrana , Microglía , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Hemo-Oxigenasa 1/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Adyuvante de Freund , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Antiinflamatorios/química
14.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669335

RESUMEN

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Asunto(s)
Analgésicos Opioides , Locus Coeruleus , Bulbo Raquídeo , Dolor , Sustancia Gris Periacueductal , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Animales , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos Opioides/farmacología , Masculino , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos
15.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649200

RESUMEN

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Asunto(s)
Terapia por Acupuntura , Artritis Experimental , Quimiocina CXCL1 , Receptores de Interleucina-8B , Corteza Somatosensorial , Animales , Humanos , Masculino , Ratones , Ratas , Puntos de Acupuntura , Artritis Experimental/terapia , Artritis Experimental/metabolismo , Artritis Experimental/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Inflamación/terapia , Inflamación/metabolismo , Inflamación/genética , Ratones Endogámicos BALB C , Dolor/metabolismo , Dolor/genética , Manejo del Dolor , Ratas Wistar , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transducción de Señal , Corteza Somatosensorial/metabolismo
16.
J Headache Pain ; 25(1): 29, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454376

RESUMEN

BACKGROUND: Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS: Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS: Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1ß, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS: AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.


Asunto(s)
Trastornos Migrañosos , Nitroglicerina , Ratones , Animales , Nitroglicerina/efectos adversos , Microglía/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , FN-kappa B/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Sensibilización del Sistema Nervioso Central/fisiología , Inflamación Neurogénica/metabolismo , Dolor/metabolismo , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo
17.
Cells ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474361

RESUMEN

Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.


Asunto(s)
Gliosis , Células del Asta Posterior , Humanos , Gliosis/metabolismo , Células del Asta Posterior/metabolismo , Dolor/metabolismo , Asta Dorsal de la Médula Espinal , Derivados de la Morfina/metabolismo
18.
Sci Immunol ; 9(93): eadi5578, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427717

RESUMEN

Urinary tract infections (UTIs) account for almost 25% of infections in women. Many are recurrent (rUTI), with patients frequently experiencing chronic pelvic pain and urinary frequency despite clearance of bacteriuria after antibiotics. To elucidate the basis for these bacteria-independent bladder symptoms, we examined the bladders of patients with rUTI. We noticed a notable increase in neuropeptide content in the lamina propria and indications of enhanced nociceptive activity. In mice subjected to rUTI, we observed sensory nerve sprouting that was associated with nerve growth factor (NGF) produced by recruited monocytes and tissue-resident mast cells. Treatment of rUTI mice with an NGF-neutralizing antibody prevented sprouting and alleviated pelvic sensitivity, whereas instillation of native NGF into naïve mice bladders mimicked nerve sprouting and pain behavior. Nerve activation, pain, and urinary frequency were each linked to the presence of proximal mast cells, because mast cell deficiency or treatment with antagonists against receptors of several direct or indirect mast cell products was each effective therapeutically. Thus, our findings suggest that NGF-driven sensory sprouting in the bladder coupled with chronic mast cell activation represents an underlying mechanism driving bacteria-independent pain and voiding defects experienced by patients with rUTI.


Asunto(s)
Mastocitos , Vejiga Urinaria , Humanos , Ratones , Femenino , Animales , Vejiga Urinaria/inervación , Vejiga Urinaria/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Reinfección/complicaciones , Reinfección/metabolismo , Dolor/etiología , Dolor/metabolismo , Dolor/prevención & control
19.
Cell Calcium ; 119: 102870, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531262

RESUMEN

In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, ß- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.


Asunto(s)
Neuroinmunomodulación , Dolor , Canales Catiónicos TRPV , Humanos , Calcio/metabolismo , Capsaicina/farmacología , Dolor/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales
20.
Inflamm Res ; 73(4): 669-691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483556

RESUMEN

OBJECTIVE AND DESIGN: Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS: We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS: Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1ß up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1ß had this effect only on young and aged neurons, respectively. CONCLUSION: Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Hiperalgesia , Canal de Sodio Activado por Voltaje NAV1.8 , Dolor , Animales , Femenino , Ratas , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/farmacología , Analgésicos/uso terapéutico , Ganglios Espinales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Inflamación/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Células Receptoras Sensoriales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...