Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Cell Sci ; 137(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477340

RESUMEN

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Asunto(s)
Transporte Axonal , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Cinesinas , Animales , Transporte Axonal/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios Homólogos a Pleckstrina , Procesamiento Proteico-Postraduccional
2.
Microbiol Spectr ; 11(6): e0228123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855596

RESUMEN

IMPORTANCE: Decreasing the camptothecin productivity by fungi with storage and subculturing is the challenge that halts their further implementation to be an industrial platform for camptothecin (CPT) production. The highest differentially abundant proteins were Pleckstrin homology (PH) domain-containing proteins and Peptidyl-prolyl cis/trans isomerase that fluctuated with the subculturing of A. terreus with a remarkable relation to CPT biosynthesis and restored with addition of F. elastica microbiome.


Asunto(s)
Dominios Homólogos a Pleckstrina , Proteómica , Isomerasa de Peptidilprolil , Camptotecina
3.
Biomed Pharmacother ; 165: 115024, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37399719

RESUMEN

The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.


Asunto(s)
Proteínas Sanguíneas , Dominios Homólogos a Pleckstrina , Humanos , Sitios de Unión , Proteínas Sanguíneas/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica
4.
Biosci Rep ; 43(7)2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37340985

RESUMEN

The general transcription factor TFIIH is a multi-subunit complex involved in transcription, DNA repair, and cell cycle in eukaryotes. In the human p62 subunit and the budding yeast Saccharomyces cerevisiae Tfb1 subunit of TFIIH, the pleckstrin homology (PH) domain (hPH/scPH) recruits TFIIH to transcription-start and DNA-damage sites by interacting with an acidic intrinsically disordered region in transcription and repair factors. Whereas metazoan PH domains are highly conserved and adopt a similar structure, fungal PH domains are divergent and only the scPH structure is available. Here, we have determined the structure of the PH domain from Tfb1 of fission yeast Schizosaccharomyces pombe (spPH) by NMR. spPH holds an architecture, including the core and external backbone structures, that is closer to hPH than to scPH despite having higher amino acid sequence identity to scPH. In addition, the predicted target-binding site of spPH shares more amino acid similarity with scPH, but spPH contains several key residues identified in hPH as required for specific binding. Using chemical shift perturbation, we have identified binding modes of spPH to spTfa1, a homologue of hTFIIEα, and to spRhp41, a homologue of the repair factors hXPC and scRad4. Both spTfa1 and spRhp41 bind to a similar but distinct surface of spPH by modes that differ from those of target proteins binding to hPH and scPH, revealing that the PH domain of TFIIH interacts with its target proteins in a polymorphic manner in Metazoa, and budding and fission yeasts.


Asunto(s)
Dominios Homólogos a Pleckstrina , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Estructura Terciaria de Proteína , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Sitios de Unión , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Structure ; 31(4): 424-434.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36863339

RESUMEN

Ca2+-dependent activator proteins for secretion (CAPSs) are required for Ca2+-regulated exocytosis in neurons and neuroendocrine cells. CAPSs contain a pleckstrin homology (PH) domain that binds PI(4,5)P2-membrane. There is also a C2 domain residing adjacent to the PH domain, but its function remains unclear. In this study, we solved the crystal structure of the CAPS-1 C2PH module. The structure showed that the C2 and PH tandem packs against one another mainly via hydrophobic residues. With this interaction, the C2PH module exhibited enhanced binding to PI(4,5)P2-membrane compared with the isolated PH domain. In addition, we identified a new PI(4,5)P2-binding site on the C2 domain. Disruption of either the tight interaction between the C2 and PH domains or the PI(4,5)P2-binding sites on both domains significantly impairs CAPS-1 function in Ca2+-regulated exocytosis at the Caenorhabditis elegans neuromuscular junction (NMJ). These results suggest that the C2 and PH domains constitute an effective unit to promote Ca2+-regulated exocytosis.


Asunto(s)
Proteínas de Unión al Calcio , Dominios Homólogos a Pleckstrina , Animales , Proteínas de Unión al Calcio/química , Exocitosis , Dominios Proteicos , Sitios de Unión , Caenorhabditis elegans/metabolismo
6.
Inflamm Res ; 72(3): 373-385, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562794

RESUMEN

OBJECTIVE: Pleckstrin homology domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) is linked to various pathological states. However, whether PHLPP2 mediates diabetic retinopathy is unaddressed. This work explored the biological function of PHLPP2 in modulating high glucose (HG)-elicited damage of retinal ganglion cells (RGCs), an in vitro model for studying diabetic retinopathy. METHODS: Mouse RGCs were treated with HG to establish a cell model. PHLPP2 was silenced by transfecting specific shRNAs targeting PHLPP2. RT-qPCR, immunoblotting, CCK-8 assay, flow cytometry, TUNEL assay, and ELISA were carried out. RESULTS: Significant increases in PHLPP2 levels were observed in cultured RGCs exposed to HG. The severe damages evoked by HG to RGCs were remarkably weakened in PHLPP2-silenced RGCs, including improved cell survival, attenuated cell apoptosis, repressed oxidative stress, and prohibited proinflammatory response. The silencing of PHLPP2 strengthened the activation of Nrf2 in HG-treated RGCs via modulation of the Akt-GSK-3ß axis. Interruption of the Akt-GSK-3ß axis reversed PHLPP2-silencing-elicited Nrf2 activation. The protective effects of PHLPP2 silencing on HG-induced injury of RGCs were diminished by Nrf2 inhibition. CONCLUSIONS: The loss of PHLPP2 was beneficial for HG-injured RGCs through the effect on the Akt-GSK-3ß-Nrf2 pathway. This work suggests a possible role of PHLPP2 in diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/farmacología , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal , Proteínas Repetidas Ricas en Leucina , Dominios Homólogos a Pleckstrina , Células Ganglionares de la Retina/metabolismo , Retinopatía Diabética/genética , Estrés Oxidativo , Glucosa/farmacología , Apoptosis
7.
Cardiovasc Drugs Ther ; 37(6): 1087-1101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35715527

RESUMEN

PURPOSE: Ischemic postconditioning (IPostC) alleviates myocardial ischemia/reperfusion (IR) injury, but the protective effect is lost during diabetes. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is able to inactivate Akt. Our previous study found that PHLPP1 expression was upregulated in diabetic hearts. We presumed that the attenuation of myocardial injury by IPostC might be hindered by PHLPP1 overexpression in diabetic animals. METHODS AND RESULTS: Nondiabetic and diabetic mice were subjected to 45 min of ischemia followed by 2 h of reperfusion with or without IPostC. H9c2 cells were exposed to normal or high glucose and were subjected to 4 h of hypoxia followed by 4 h of reoxygenation with or without hypoxic postconditioning (HPostC). IPostC attenuated postischemic infarction, apoptosis, creatine kinase-MB, and oxidative stress, which were accompanied by increased p-Akt and decreased PHLPP1 expression and p-Mst1 in nondiabetic but not in diabetic mice. PHLPP1 knockdown or an Mst1 inhibitor reduced hypoxia/reoxygenation (HR)-induced cardiomyocyte damage in H9c2 cells exposed to normal glucose, but the effect was abolished by a PI3K/Akt inhibitor. HPostC attenuated HR-induced cardiomyocyte injury and oxidative stress accompanied by increased p-Akt as well as decreased PHLPP1 expression and p-Mst1 in H9c2 cells exposed to normal glucose but not high glucose. In addition, HPostC in combination with PHLPP1 knockdown or PHLPP1 knockdown alone reduced cell death and oxidative stress in H9c2 cells exposed to high glucose, which was hindered by PI3K/Akt inhibitor. CONCLUSION: IPostC prevented myocardial IR injury partly through PHLPP1/Akt/Mst1 signaling, and abnormalities in this pathway may be responsible for the loss of IPostC cardioprotection in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Poscondicionamiento Isquémico , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Repetidas Ricas en Leucina , Infarto del Miocardio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Poscondicionamiento Isquémico/métodos , Dominios Homólogos a Pleckstrina , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Hipoxia/complicaciones , Glucosa
8.
Dis Markers ; 2022: 1292648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408463

RESUMEN

Introduction: The global incidence of brain tumors, the most common of which is lower grade glioma (LGG), remains high. Pleckstrin homology domain-containing family A member 4 (PLEKHA4) has been reported to be related to tumor invasion and growth. However, its role and correlation with immunity in LGG remain elusive. Methods: We evaluated the expression pattern, prognostic value, biological functions, and immune effects of PLEKHA4 in LGG. We also analyzed the association between PLEKHA4 levels in different tumors, patient prognosis, and its role in tumor immunity. Depending on the type of research data, we used statistical methods such as Student's t-tests, Mann-Whitney U tests one-way ANOVA tests Kruskal-Wallis tests Pearson's or Spearman's correlation analysis Chi-square and Fisher's exact tests in this paper. Results and Conclusions. The results revealed that PLEKHA4 levels were markedly elevated in most tumors (such as LGG). High PLEKHA4 levels are associated with poor overall survival (OS), progression-free interval (PFI) rates, and disease-specific survival (DSS) in LGG patients. Cox regression analysis and nomograms showed that PLEKHA4 levels are independent prognostic factors for LGG patients. According to functional enrichment analysis, PLEKHA4 levels in LGG are associated with immune infiltration and immunotherapy. In conclusion, PLEKHA4 is a potential prognostic marker and immunotherapy target for LGG.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Pronóstico , Dominios Homólogos a Pleckstrina , Glioma/patología , Neoplasias Encefálicas/metabolismo , Análisis de Regresión
9.
Elife ; 112022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35968932

RESUMEN

Akt is a Ser/Thr protein kinase that plays a central role in metabolism and cancer. Regulation of Akt's activity involves an autoinhibitory intramolecular interaction between its pleckstrin homology (PH) domain and its kinase domain that can be relieved by C-tail phosphorylation. PH domain mutant E17K Akt is a well-established oncogene. Previously, we reported that the conformation of autoinhibited Akt may be shifted by small molecule allosteric inhibitors limiting the mechanistic insights from existing X-ray structures that have relied on such compounds (Chu et al., 2020). Here, we discover unexpectedly that a single mutation R86A Akt exhibits intensified autoinhibitory features with enhanced PH domain-kinase domain affinity. Structural and biochemical analysis uncovers the importance of a key interaction network involving Arg86, Glu17, and Tyr18 that controls Akt conformation and activity. Our studies also shed light on the molecular basis for E17K Akt activation as an oncogenic driver.


Asunto(s)
Dominios Homólogos a Pleckstrina , Proteínas Proto-Oncogénicas c-akt , Oncogenes , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
10.
Mol Microbiol ; 118(3): 155-174, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35766104

RESUMEN

Kinesins are motor proteins found in all eukaryotic lineages that move along microtubules to mediate cellular processes such as mitosis and intracellular transport. In trypanosomatids, the kinesin superfamily has undergone a prominent expansion, resulting in one of the most diverse kinesin repertoires that includes the two kinetoplastid-restricted families X1 and X2. Here, we characterize in Trypanosoma brucei TbKifX2A, an orphaned X2 kinesin. TbKifX2A tightly interacts with TbPH1, a kinesin-like protein with a likely inactive motor domain, a rarely reported occurrence. Both TbKifX2A and TbPH1 localize to the microtubule quartet (MtQ), a characteristic but poorly understood cytoskeletal structure that wraps around the flagellar pocket as it extends to the cell body anterior. The proximal proteome of TbPH1 revealed two other interacting proteins, the flagellar pocket protein FP45 and intriguingly another X2 kinesin, TbKifX2C. Simultaneous ablation of TbKifX2A/TbPH1 results in the depletion of FP45 and TbKifX2C and also an expansion of the flagellar pocket, among other morphological defects. TbKifX2A is the first motor protein to be localized to the MtQ. The observation that TbKifX2C also associates with the MtQ suggests that the X2 kinesin family may have co-evolved with the MtQ, both kinetoplastid-specific traits.


Asunto(s)
Cinesinas , Proteínas Protozoarias , Trypanosoma brucei brucei , Citoesqueleto/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Dominios Homólogos a Pleckstrina , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo
11.
Biophys J ; 121(12): 2419-2435, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35591789

RESUMEN

Syncytial cells contain multiple nuclei and have local distribution and function of cellular components despite being synthesized in a common cytoplasm. The syncytial Drosophila blastoderm embryo shows reduced spread of organelle and plasma membrane-associated proteins between adjacent nucleo-cytoplasmic domains. Anchoring to the cytoarchitecture within a nucleo-cytoplasmic domain is likely to decrease the spread of molecules; however, its role in restricting this spread has not been assessed. In order to analyze the cellular mechanisms that regulate the rate of spread of plasma membrane-associated molecules in the syncytial Drosophila embryos, we express a pleckstrin homology (PH) domain in a localized manner at the anterior of the embryo by tagging it with the bicoid mRNA localization signal. Anteriorly expressed PH domain forms an exponential gradient in the anteroposterior axis with a longer length scale compared with Bicoid. Using a combination of experiments and theoretical modeling, we find that the characteristic distribution and length scale emerge due to plasma membrane sequestration and restriction within an energid. Loss of plasma membrane remodeling to form pseudocleavage furrows shows an enhanced spread of PH domain but not Bicoid. Modeling analysis suggests that the enhanced spread of the PH domain occurs due to the increased spread of the cytoplasmic population of the PH domain in pseudocleavage furrow mutants. Our analysis of cytoarchitecture interaction in regulating plasma membrane protein distribution and constraining its spread has implications on the mechanisms of spread of various molecules, such as morphogens in syncytial cells.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Membrana Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Dominios Homólogos a Pleckstrina
12.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628517

RESUMEN

Neurofibromin, the main RasGAP in the nervous system, is a 2818 aa protein with several poorly characterized functional domains. Mutations in the NF1-encoding gene lead to an autosomal dominant syndrome, neurofibromatosis, with an incidence of 1 out of 3000 newborns. Missense mutations spread in the Sec14-PH-encoding sequences as well. Structural data could not highlight the defect in mutant Sec14-PH functionality. By performing molecular dynamics simulations at different temperatures, we found that the lid-lock is fundamental for the structural interdependence of the NF1 bipartite Sec14-PH domain. In fact, increased flexibility in the lid-lock loop, observed for the K1750Δ mutant, leads to disconnection of the two subdomains and can affect the stability of the Sec14 subdomain.


Asunto(s)
Neurofibromatosis 1 , Neurofibromina 1 , Genes de Neurofibromatosis 1 , Humanos , Recién Nacido , Simulación de Dinámica Molecular , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Dominios Homólogos a Pleckstrina
13.
Mol Biol Rep ; 49(5): 4123-4128, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35526246

RESUMEN

BACKGROUND: Pleckstrin homology (PH) domains are common modules of ∼120 amino acids found in proteins involved in signalling, cytoskeletal organization, membrane transport, and modification of phospholipids. Previous live cell studies have involved the use of the green-fluorescent protein (GFP) labelling of PH-domain of phospholipase C δ1 (PLC δ1) to study the interactions of molecules at the membrane interface. METHODS AND RESULTS: For this study, the aim was to construct and express the GFP-PH domain of PLC δ1 in the Saccharomyces cerevisiae BY4741. The transformants expressing GFP-PH domain of PLC δ1 displayed localised fluorescence to the cell periphery (plasma membrane) while the negative control expressed GFP within the cytoplasm only. No GFP was observed in the non-transformed yeast cells. CONCLUSIONS: Thus, this technique could be useful in future molecular interactions studies targeted specifically at the yeast cell membrane interface in live yeast cells.


Asunto(s)
Dominios Homólogos a Pleckstrina , Saccharomyces cerevisiae , Animales , Proteínas Sanguíneas , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mamíferos/metabolismo , Fosfolipasa C delta , Fosfoproteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/metabolismo
14.
Bioengineered ; 13(3): 7868-7880, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35291911

RESUMEN

The detailed function of ARAP1-AS1, the antisense RNA of Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1), in lung adenocarcinoma (LUAD) has not been clearly elucidated and required further investigation. Our study is committed to exploring the role of ARAP1-AS1 in LUAD. Gene expression in LUAD was measured by real-time quantitative polymerase-chain reaction (RT-qPCR). The influence of ARAP1-AS1 on LUAD cell malignant behaviors was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, Transwell invasion assay and wound healing assay. Subcellular fractionation assay detected the cellular localization of ARAP1-AS1 in LUAD. The protein levels were subjected to western blotting. RNA immunoprecipitation (RIP) and luciferase reporter assay were employed to verify the interaction between ARAP1-AS1, ARAP1 and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). Our investigation identified that ARAP1-AS1 was upregulated in LUAD cells and tissues. ARAP1-AS1 silencing repressed LUAD cell growth and migration. Furthermore, ARAP1-AS1 knockdown altered the expression of its sense mRNA, ARAP1. ARAP1-AS1 could recruit EZH2 to inhibit ARAP1 expression. Additionally, the downregulation of ARAP1 reversed ARAP1-AS1 downregulation-induced repression of cell growth and migration in LUAD. In conclusion, ARAP1-AS1 recruited EZH2 to silence ARAP1, facilitating cell proliferation, migration and invasion in LUAD. Our study demonstrated the possibility of ARAP1-AS1 to be a novel therapeutic target for LUAD. [Figure: see text].


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Repetición de Anquirina , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas Activadoras de GTPasa , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Dominios Homólogos a Pleckstrina , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
15.
Clin Genet ; 102(1): 72-77, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35347702

RESUMEN

Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures. We describe the phenotypic spectrum associated with missense variants in PH domain of IQSEC2, further delineating the genotype-phenotype correlation for this X-linked gene.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Mutación , Fenotipo , Dominios Homólogos a Pleckstrina
16.
Biomol NMR Assign ; 16(1): 27-30, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34739631

RESUMEN

Phafin2 is a peripheral protein that triggers cellular signaling from endosomal and lysosomal compartments. The specific subcellular localization of Phafin2 is mediated by the presence of a tandem of phosphatidylinositol 3-phosphate (PtdIns3P)-binding domains, the pleckstrin homology (PH) and the Fab-1, YOTB, Vac1, and EEA1 (FYVE) domains. The requirement for both domains for binding to PtdIns3P still remains unclear. To understand the molecular interactions of the Phafin2 PH domain in detail, we report its nearly complete 1H, 15N, and 13C backbone resonance assignments.


Asunto(s)
Dominios Homólogos a Pleckstrina , Proteínas de Transporte Vesicular , Endosomas/metabolismo , Endosomas/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
17.
Nucleic Acids Res ; 50(1): 1-16, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34268577

RESUMEN

In eukaryotes, three RNA polymerases (RNAPs) play essential roles in the synthesis of various types of RNA: namely, RNAPI for rRNA; RNAPII for mRNA and most snRNAs; and RNAPIII for tRNA and other small RNAs. All three RNAPs possess a short flexible tail derived from their common subunit RPB6. However, the function of this shared N-terminal tail (NTT) is not clear. Here we show that NTT interacts with the PH domain (PH-D) of the p62 subunit of the general transcription/repair factor TFIIH, and present the structures of RPB6 unbound and bound to PH-D by nuclear magnetic resonance (NMR). Using available cryo-EM structures, we modelled the activated elongation complex of RNAPII bound to TFIIH. We also provide evidence that the recruitment of TFIIH to transcription sites through the p62-RPB6 interaction is a common mechanism for transcription-coupled nucleotide excision repair (TC-NER) of RNAPI- and RNAPII-transcribed genes. Moreover, point mutations in the RPB6 NTT cause a significant reduction in transcription of RNAPI-, RNAPII- and RNAPIII-transcribed genes. These and other results show that the p62-RPB6 interaction plays multiple roles in transcription, TC-NER, and cell proliferation, suggesting that TFIIH is engaged in all RNAP systems.


Asunto(s)
ARN Polimerasa II/química , Factor de Transcripción TFIIH/química , Sitios de Unión , Células HeLa , Humanos , Simulación del Acoplamiento Molecular , Dominios Homólogos a Pleckstrina , Unión Proteica , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/metabolismo
18.
Hepatology ; 76(3): 612-629, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34767673

RESUMEN

BACKGROUND AND AIMS: HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS: Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Leucina , Neoplasias Hepáticas/patología , Dominios Homólogos a Pleckstrina , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Fosfatasa 1/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo
19.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34884682

RESUMEN

Bacteriocins synthesis is initiated from an inactive precursor, which is composed of an N-terminal leader peptide attached to a C-terminal pro-peptide. However, leaderless bacteriocins (LLB) do not possess this N-terminal leader peptide nor undergo post-translational modifications. These atypical bacteriocins are observed to be immediately active after their translation in the cytoplasm. However, although considered to be simple, the biosynthetic pathway of LLB remains to be fully understood. Enterocin DD14 (EntDD14) is a two-peptide LLB produced by Enterococcus faecalis 14, which is a strain isolated from meconium. In silico analysis of DNA encoding EntDD14 located a cluster of 10 genes ddABCDEFGHIJ, where ddE and ddF encode the peculiar DdE and DdF proteins, carrying pleckstrin homology (PH) domains. These modules are quite common in Eucarya proteins and are known to be involved in intracellular signaling or cytoskeleton organization. To elucidate their role within the EntDD14 genetic determinants, we constructed deletion mutants of the ddE and ddF genes. As a result, the mutants were unable to export EntDD14 outside of the cytoplasm even though there was a clear expression of structural genes ddAB encoding EntDD14, and genes ddHIJ encoding an ABC transporter. Importantly, in these mutant strains (ΔddE and ΔddF), EntDD14 was detected by mass spectrometry in the intracellular soluble fraction exerting, upon its accumulation, a toxic effect on the producing strain as revealed by cell-counting and confocal microscopy analysis. Taken together, these results clearly indicate that PH domain-containing proteins, such as DdE and DdF, are involved in the transport of the leaderless two-peptide EntDD14.


Asunto(s)
Bacteriocinas/metabolismo , Dominios Homólogos a Pleckstrina , Bacteriocinas/genética , Hidrocarburos Aromáticos con Puentes/metabolismo , Simulación por Computador , Enterococcus faecalis , Operón
20.
Nat Commun ; 12(1): 5393, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518553

RESUMEN

Dynamin belongs to the large GTPase superfamily, and mediates the fission of vesicles during endocytosis. Dynamin molecules are recruited to the neck of budding vesicles to assemble into a helical collar and to constrict the underlying membrane. Two helical forms were observed: the one-start helix in the constricted state and the two-start helix in the super-constricted state. Here we report the cryoEM structure of a super-constricted two-start dynamin 1 filament at 3.74 Å resolution. The two strands are joined by the conserved GTPase dimeric interface. In comparison with the one-start structure, a rotation around Hinge 1 is observed, essential for communicating the chemical power of the GTPase domain and the mechanical force of the Stalk and PH domain onto the underlying membrane. The Stalk interfaces are well conserved and serve as fulcrums for adapting to changing curvatures. Relative to one-start, small rotations per interface accumulate to bring a drastic change in the helical pitch. Elasticity theory rationalizes the diversity of dynamin helical symmetries and suggests corresponding functional significance.


Asunto(s)
Microscopía por Crioelectrón/métodos , Dinamina I/química , Dinamina I/ultraestructura , Simulación de Dinámica Molecular , Dominios Homólogos a Pleckstrina , Conformación Proteica , Multimerización de Proteína , Algoritmos , Dinamina I/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Mutación , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...