RESUMEN
Leucine-rich repeat (LRR) transmembrane proteins have been directly linked to neurodevelopmental and cognitive disorders. We have previously shown that the LRR transmembrane protein, leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), is a physiological regulator of dendrite complexity of hippocampal pyramidal neurons and social behavior. In this study, we performed a battery of behavioral tests to evaluate spatial memory and cognitive capabilities in Lrig1 mutant mice. The cognitive assessment demonstrated deficits in recognition and spatial memory, evaluated by novel object recognition and object location tests. Moreover, we found that Lrig1-deficient mice present specific impairments in the processing of similar but not dissimilar locations in a spatial pattern separation task, which was correlated with an enhanced dendritic growth and branching of Doublecortin-positive immature granule cells of the dentate gyrus. Altogether, these findings indicate that Lrig1 plays an essential role in controlling morphological and functional plasticity in the hippocampus.
Asunto(s)
Cognición , Hipocampo , Animales , Cognición/fisiología , Dendritas/metabolismo , Hipocampo/metabolismo , Dominios de Inmunoglobulinas , Leucina/metabolismo , RatonesRESUMEN
Class-I restricted T cell-associated molecule (CRTAM) is a member of the immunoglobulin superfamily, and it is closely related to nectin-like protein. CRTAM is expressed in activated CD8 T cells, NKT cells, NK cells and in a subpopulation CD4 T cells. In this study, we produce as recombinant proteins, the Ig-domains of CRTAM (IgV-IgC), the IgV, and the IgC. These proteins were successfully purified in the soluble fraction only if the stalk region was included. The recombinant CRTAM recognizes its ligand nectin-like 2 in a cell-free system. We also demonstrate that the IgC domain of CRTAM is recognized by the anti-hCRTAM monoclonal antibody C8 with a 0.62 nM affinity. In conclusion, the stalk region of CRTAM provides solubility for the expression of its Ig-domains as recombinant proteins.