Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.683
Filtrar
1.
Redox Biol ; 72: 103144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613920

RESUMEN

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.


Asunto(s)
Grafito , Óxido Nítrico , Grafito/química , Óxido Nítrico/metabolismo , Humanos , Nanoestructuras/química , Porosidad , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/administración & dosificación , Proliferación Celular/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos
2.
Nat Commun ; 15(1): 3610, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688927

RESUMEN

Puberty is a crucial phase for the development of female sexual behavior. Growing evidence suggests that stress during this period may interfere with the development of sexual behavior. However, the neural circuits involved in this alteration remain elusive. Here, we demonstrated in mice that pubertal stress permanently disrupted sexual performance without affecting sexual preference. This was associated with a reduced expression and activation of neuronal nitric oxide synthase (nNOS) in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Fiber photometry revealed that VMHvl nNOS neurons are strongly responsive to male olfactory cues with this activation being substantially reduced in pubertally stressed females. Finally, treatment with a NO donor partially restored sexual performance in pubertally stressed females. This study provides insights into the involvement of VMHvl nNOS in the processing of olfactory cues important for the expression of female sexual behavior. In addition, exposure to stress during puberty disrupts the integration of male olfactory cues leading to reduced sexual behavior.


Asunto(s)
Óxido Nítrico Sintasa de Tipo I , Conducta Sexual Animal , Maduración Sexual , Estrés Psicológico , Animales , Femenino , Masculino , Conducta Sexual Animal/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Ratones , Estrés Psicológico/fisiopatología , Neuronas/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Señales (Psicología) , Ratones Endogámicos C57BL , Olfato/fisiología , Donantes de Óxido Nítrico/farmacología
3.
Biomed Pharmacother ; 174: 116540, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579400

RESUMEN

Rheumatoid arthritis (RA) is characterized by high level of reactive oxygen species (ROS) and proinflammatory cytokines, which facilitate the activation of the inflammatory signaling such as NF-κB pathway and exacerbate the development of inflammation. Herein, we designed a nanodrug by encapsulating the NO donor S-nitrosoglutathione (GSNO) into an emulsion and coating the surface with a polydopamine (PDA) layer to yield GSNO@PDA, which simultaneously scavenged the extra ROS and suppressed NF-κB signaling for potent RA treatment. To enhance the cellular uptake and NO generation efficiency, dextran sulfate (DS) and Cu2+ were anchored on the surface of GSNO@PDA to obtain the final formulation GSNO@PDA@DS. Our results demonstrated that GSNO@PDA@DS were successfully prepared and the modification of DS effectively boosted the cellular uptake of GSNO@PDA@DS. Moreover, GSNO@PDA@DS lowered cellular ROS and elevated intracellular NO, resulting in a decrease of M1 phenotype, inhibition of NF-κB pathway and down-regulation of proinflammatory cytokine tumor necrosis factor-α (TNF-α). Further in vivo studies confirmed that GSNO@PDA@DS significantly relieved symptoms and bone erosion by regulating the microenvironment of RA, highlighting the potential of GSNO@PDA@DS for RA therapy through ROS scavenging and NO-mediated suppression of inflammatory signaling.


Asunto(s)
Artritis Reumatoide , FN-kappa B , Donantes de Óxido Nítrico , Polímeros , Especies Reactivas de Oxígeno , S-Nitrosoglutatión , Especies Reactivas de Oxígeno/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Animales , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/administración & dosificación , Ratones , FN-kappa B/metabolismo , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/administración & dosificación , Células RAW 264.7 , Polímeros/química , Indoles/farmacología , Indoles/administración & dosificación , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/administración & dosificación , Sinergismo Farmacológico , Masculino , Transducción de Señal/efectos de los fármacos , Sulfato de Dextran , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Sistemas de Liberación de Medicamentos/métodos
4.
Am J Obstet Gynecol ; 230(3S): S669-S695, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462252

RESUMEN

This review assessed the efficacy and safety of pharmacologic agents (prostaglandins, oxytocin, mifepristone, hyaluronidase, and nitric oxide donors) and mechanical methods (single- and double-balloon catheters, laminaria, membrane stripping, and amniotomy) and those generally considered under the rubric of complementary medicine (castor oil, nipple stimulation, sexual intercourse, herbal medicine, and acupuncture). A substantial body of published reports, including 2 large network meta-analyses, support the safety and efficacy of misoprostol (PGE1) when used for cervical ripening and labor induction. Misoprostol administered vaginally at doses of 50 µg has the highest probability of achieving vaginal delivery within 24 hours. Regardless of dosing, route, and schedule of administration, when used for cervical ripening and labor induction, prostaglandin E2 seems to have similar efficacy in decreasing cesarean delivery rates. Globally, although oxytocin represents the most widely used pharmacologic agent for labor induction, its effectiveness is highly dependent on parity and cervical status. Oxytocin is more effective than expectant management in inducing labor, and the efficacy of oxytocin is enhanced when combined with amniotomy. However, prostaglandins administered vaginally or intracervically are more effective in inducing labor than oxytocin. A single 200-mg oral tablet of mifepristone seems to represent the lowest effective dose for cervical ripening. The bulk of the literature assessing relaxin suggests this agent has limited benefit when used for this indication. Although intracervical injection of hyaluronidase may cause cervical ripening, the need for intracervical administration has limited the use of this agent. Concerning the vaginal administration of nitric oxide donors, including isosorbide mononitrate, isosorbide, nitroglycerin, and sodium nitroprusside, the higher incidence of side effects with these agents has limited their use. A synthetic hygroscopic cervical dilator has been found to be effective for preinduction cervical ripening. Although a pharmacologic agent may be administered after the use of the synthetic hygroscopic dilator, in an attempt to reduce the interval to vaginal delivery, concomitant use of mechanical and pharmacologic methods is being explored. Combining the use of a single-balloon catheter with dinoprostone, misoprostol, or oxytocin enhances the efficacy of these pharmacologic agents in cervical ripening and labor induction. The efficacy of single- and double-balloon catheters in cervical ripening and labor induction seems similar. To date, the combination of misoprostol with an intracervical catheter seems to be the best approach when balancing delivery times with safety. Although complementary methods are occasionally used by patients, given the lack of data documenting their efficacy and safety, these methods are rarely used in hospital settings.


Asunto(s)
Abortivos no Esteroideos , Misoprostol , Oxitócicos , Femenino , Humanos , Embarazo , Maduración Cervical , Dinoprostona , Hialuronoglucosaminidasa/efectos adversos , Hialuronoglucosaminidasa/farmacología , Trabajo de Parto Inducido/métodos , Mifepristona , Donantes de Óxido Nítrico/efectos adversos , Donantes de Óxido Nítrico/farmacología , Oxitocina
5.
Biomed Pharmacother ; 173: 116378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492437

RESUMEN

Several investigational nitric oxide donors were originally created to correct vascular endothelial dysfunction in cardiovascular diseases. These 48 compounds contain an urea-like moiety attached to the well-known NO donors isosorbide 2- and 5-mononitrate. CR-0305 and CR-0202 were synthesized and found to be nontoxic in the cell lines HMEC-1, A549/hACE2 and VeroE6. CR-0305 induced vasodilation in human coronary arteries ex vivo. Since NO can also have antiviral properties, a study of drug-protein interactions with SARS-CoV-2 was undertaken using in silico modeling. CR-0305 experimentally outperformed the other compounds, including CR-0202, in binding the catalytic site of SARS-CoV-2 papain-like protease (PLpro). PLpro is a primary target for therapeutic inhibition of SARS-CoV-2 as it mediates viral replication and modulates host innate immune responses. CR-0305 is predicted to sit firmly in the PLpro catalytic pocket as confirmed by molecular dynamics simulations, wherein stability of binding to the catalytic site of PLpro induces a conformational change in the BL2 loop to a more closed conformation as observed previously with GRL0617. Surface plasmon resonance was performed with CR-0305 and CR-0202 to characterize binding affinity to purified SARS-CoV-2 PLpro protein. CR-0305 and CR-0202 also inhibited SARS-CoV-2 infection compared to vehicle as measured by virus N protein staining with a specific antibody in A549-ACE2 and VeroE6 cells at 20 µM. CR-0305 is a coronary vasodilator that appears to bind to the catalytic site of the PLpro of SARS-CoV-2 while targeting delivery of antiviral NO to cells infected by SARS-CoV-2, suggesting multiple indications for future development.


Asunto(s)
COVID-19 , Péptido Hidrolasas , Humanos , Papaína , SARS-CoV-2 , Donantes de Óxido Nítrico/farmacología , Vasodilatadores , Antivirales/farmacología , Inhibidores de Proteasas , Simulación del Acoplamiento Molecular
6.
Chembiochem ; 25(8): e202300801, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430555

RESUMEN

Inefficient wound healing poses a global health challenge with a lack of efficient treatments. Wound healing issues often correlate with low endogenous nitric oxide (NO) levels. While exogenous delivery with NO-releasing compounds represents a promising therapeutic strategy, controlling the release of the highly reactive NO remains challenging. Phosphodiesterase 5 (PDE5) inhibitors, like sildenafil, have also been shown to promote wound healing. This study explores hybrid compounds, combining NO-releasing diazeniumdiolates with a sildenafil-derived PDE5 inhibitor. One compound demonstrated a favorable NO-release profile, triggered by an esterase (prodrug), and displayed in vitro nanomolar inhibition potency against PDE5 and thrombin-induced platelet aggregation. Both factors are known to promote blood flow and oxygenation. Thus, our findings unveil promising prospects for effective wound healing treatments.


Asunto(s)
Compuestos Azo , Donantes de Óxido Nítrico , Inhibidores de Fosfodiesterasa 5 , GMP Cíclico , Óxido Nítrico , Donantes de Óxido Nítrico/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Cicatrización de Heridas
7.
Nitric Oxide ; 145: 1-7, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309328

RESUMEN

Nitric oxide (NO), as a vital cellular signalling molecule in physiological processes, has been found to play an important role in various biological functions. In this study, we rationally designed three NO donors by tethering nitrobenzene derivatives to three fluorescent chromophores. NX-NO was found to release NO and exhibit a high fluorescence turn-on signal ratio upon exposure to LED yellow light. Additionally, it had excellent photo-stability and good inhibitory activity against cancer cell proliferation, and was successfully applied to cell imaging. Moreover, we detected the release of NO and fluorescence response in the blood of a mouse, suggesting its potential therapeutic application in living organisms.


Asunto(s)
Colorantes Fluorescentes , Donantes de Óxido Nítrico , Ratones , Animales , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico , Fluorescencia , Proliferación Celular
8.
Biochem Pharmacol ; 222: 116068, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387529

RESUMEN

Non-small cell lung cancer (NSCLC) still lacks effective treatment because of its extensive mutation diversity and frequent drug resistance. Therefore, it is urgent to develop new therapeutic strategies for NSCLC. In this study, we evaluated the inhibitory effect of a new coumarin-furoxan hybrid compound 9, a nitric oxide (NO) donor drug, on NSCLC proliferation and its mechanism. Our results show that compound 9 can inhibit the growth of four NSCLC cell lines and H1975 xenograft model in a dose-dependent manner. Compound 9 effectively releases high concentrations of NO within the mitochondria, leading to cellular oxidative stress, mitochondrial dysfunction, and apoptosis. Moreover, compound 9 inhibits JAK2/STAT3 protein phosphorylation and induces S-nitrosylation modification of STAT3, ultimately resulting in endogenous apoptosis in NSCLC. Additionally, compound 9 significantly induces NSCLC ferroptosis by depleting intracellular GSH, elevating MDA levels, inhibiting SLC7A11/GSH protein expression, and negatively regulating the JAK2/STAT3 pathway. In summary, this study elucidates the inhibitory effects of compound 9 on NSCLC proliferation and provides insights into the underlying mechanisms, offering new possibilities for NSCLC treatment strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Oxadiazoles , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Apoptosis , Cumarinas/farmacología , Cumarinas/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Janus Quinasa 2/metabolismo
9.
Acta Biomater ; 176: 128-143, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278340

RESUMEN

Chronic diabetic wounds are a severe complication of diabetes, often leading to high treatment costs and high amputation rates. Numerous studies have revealed that nitric oxide (NO) therapy is a promising option because it favours wound revascularization. Here, base-paired injectable adhesive hydrogels (CAT) were prepared using adenine- and thymine-modified chitosan (CSA and CST). By further introducing S-nitrosoglutathione (GSNO) and binary l-arginine (bArg), we obtained a NO sustained-release hydrogel (CAT/bArg/GSON) that was more suitable for the treatment of chronic wounds. The results showed that the expression of HIF-1α and VEGF was upregulated in the CAT/bArg/GSON group, and improved blood vessel regeneration was observed, indicating an important role of NO. In addition, the research findings revealed that following treatment with the CAT/bArg/GSON hydrogel, the viability of Staphylococcus aureus and Escherichia coli decreased to 14 ± 2 % and 6 ± 1 %, respectively. Moreover, the wound microenvironment was improved, as evidenced by a 60 ± 1 % clearance of DPPH. In particular, histological examination and immunohistochemical staining results showed that wounds treated with CAT/bArg/GSNO exhibited denser neovascularization, faster epithelial tissue regeneration, and thicker collagen deposition. Overall, this study proposes an effective strategy to prepare injectable hydrogel dressings with dual NO donors. The functionality of CAT/bArg/GSON has been thoroughly demonstrated in research on chronic wound vascular regeneration, indicating that CAT/bArg/GSON could be a potential option for promoting chronic wound healing. STATEMENT OF SIGNIFICANCE: This article prepares a chitosan hydrogel utilizing the principle of complementary base pairing, which offers several advantages, including good adhesion, biocompatibility, and flow properties, making it a good material for wound dressings. Loaded GSNO and bArg can steadily release NO and l-arginine through the degradation of the gel. Then, the released l-arginine not only possesses antioxidant properties but can also continue to generate a small amount of NO under the action of NOS. This design achieves a sustained and stable supply of NO at the wound site, maximizing the angiogenesis-promoting and antibacterial effects of NO. More neovascularization and abundant collagen were observed in the regenerated tissues. This study provides an effective repair hydrogel material for diabetic wound.


Asunto(s)
Quitosano , Diabetes Mellitus , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Donantes de Óxido Nítrico/farmacología , Adhesivos/farmacología , Quitosano/farmacología , Quitosano/química , Angiogénesis , Cicatrización de Heridas , Colágeno/farmacología , Antibacterianos/farmacología , Arginina/farmacología
10.
Biomed Pharmacother ; 171: 116143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219387

RESUMEN

Nitric oxide (NO) is a small vasodilator playing a key role in the pathogenesis of portal hypertension. Here, we assessed the potential therapeutic effect of a NO donor targeted to the liver by poly(beta-amino ester) nanoparticles (pBAE NPs) in experimental cirrhosis. Retinol-functionalized NO donor pBAE NPs (Ret pBAE NPs) were synthetized with the aim of actively targeting the liver. Administration of Ret pBAE NPs resulted in uptake and transfection by the liver and spleen. NPs were not found in other organs or the systemic circulation. Treatment with NO donor Ret pBAE NPs (30 mg/ kg body weight) significantly decreased aspartate aminotransferase, lactate dehydrogenase and portal pressure (9.75 ± 0.64 mmHg) compared to control NPs (13.4 ± 0.53 mmHg) in cirrhotic rats. There were no effects on mean arterial pressure and cardiac output. Liver-targeted NO donor NPs reduced collagen fibers and steatosis, activation of hepatic stellate cells and mRNA expression of profibrogenic and proinflammatory genes. Finally, Ret pBAE NPs displayed efficient transfection in human liver slices. Overall, liver-specific NO donor NPs effectively target the liver and mitigated inflammation and portal hypertension in cirrhotic rats. The use of Ret pBAE may prove to be an effective therapeutic strategy to treat advanced liver disease.


Asunto(s)
Hipertensión Portal , Cirrosis Hepática Experimental , Nanopartículas , Ratas , Humanos , Animales , Óxido Nítrico/metabolismo , Hígado , Hipertensión Portal/tratamiento farmacológico , Cirrosis Hepática Experimental/metabolismo , Donantes de Óxido Nítrico/farmacología , Cirrosis Hepática/tratamiento farmacológico
11.
Nitric Oxide ; 142: 26-37, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989410

RESUMEN

Nitric oxide (NO) is a versatile signaling molecule that plays a crucial role in regulating postharvest fruit quality. The utilization of NO donors to elevate endogenous NO levels and induce NO-mediated responses represents a promising strategy for extending fruit shelf-life after harvest. However, the effectiveness of NO treatment is influenced by various factors, including formulation and application methods. In this review, we investigate the impact of NO supply on different fruits, aiming to prolong postharvest shelf-life and enhance fruit quality. Furthermore, we delve into the underlying mechanisms of NO action, particularly its interactions with ethylene and reactive oxygen species (ROS). Excitingly, we also highlight the emerging field of nanotechnology in postharvest applications, discussing the use of nanoparticles as a novel approach for achieving sustained release of NO and enhancing its effects. By harnessing the potential of nanotechnology, our review is a starting point to help identify gaps and future directions in this important, emerging field.


Asunto(s)
Frutas , Óxido Nítrico , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , Transducción de Señal , Nanotecnología
12.
J Med Chem ; 67(1): 479-491, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38110353

RESUMEN

The platinum(IV) prodrug strategy is attractive for the synergistic antitumor effect. High levels (>400 nM) of nitric oxide (NO) exert promising cancer inhibition effects via multiple mechanisms. Herein, we designed and synthesized a new group of integrated bioorthogonal self-catalyzed NO donor/Pt(IV) prodrugs bearing long alkyl chains to enhance the stability in circulation, while the cytoplasmic reductants trigger cascade activation to release Pt and NO in tumor cells. Specifically, compound 10c exhibited an improved stability, favorable pharmacokinetic properties (AUC(0-t) of 2210.10 h*ng/mL), potent anti-triple-negative breast cancer (TNBC) effects (71.08% tumor growth inhibition (TGI) against the MDA-MB-231 xenograft model), potent in vivo anti-TNBC lung metastasis activity, and acceptable low toxicity. Importantly, NO released from 10c leads to the S-nitrosation of metal transporters Atox1&ATP7a in TNBC cells, which increases the Pt retention and inhibits lysyl oxidase, generating synergistic tumoricidal and antimetastatic activity. These results may inspire further study on the synergistical therapy of Pt and NO for the treatment of TNBC.


Asunto(s)
Antineoplásicos , Profármacos , Neoplasias de la Mama Triple Negativas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Platino (Metal) , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Profármacos/farmacología , Profármacos/uso terapéutico , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Catálisis , Línea Celular Tumoral
13.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040654

RESUMEN

AIMS: Four nitric oxide (NO) donors, S-nitrosoglutathione (GSNO), S-nitrosocysteine (CySNO), S-nitroso-N-acetylcysteine (SNAC), and 2-(2-S-nitroso propionamide) acetic acid (GAS) were prepared and their physicochemical characteristics were analyzed. Besides, the antibacterial properties of NO donors were investigated against Escherichia coli and Staphylococcus aureus. METHODS AND RESULTS: UV-visible absorption spectrum and Fourier transform infrared spectrum verified the successful preparation of RSNOs. All NO donors (10 mmol l-1) could release NO continuously, and the amount of NO release was from 80.22 µmol l-1 to 706.63 µmol l-1, in which the release of NO from SNAC was the highest, and the release of NO from NaNO2 was the least. The inhibition zone indicated that all NO donors showed stronger antibacterial activity against E. coli and S. aureus, and the antibacterial ability was in the order of SNAC > GSNO > CySNO > GAS > NaNO2 for both E. coli and S. aureus (P < 0.05). Scanning electron microscopy(SEM) showed that all NO donors could result in varying degrees of damage to cell wall and membrane of both E. coli and S. aureus and the damage of E. coli was more severe. CONCLUSION: Four alternative NO donors were successfully synthesized. All alternative NO donors showed better antibacterial properties against E. coli and S. aureus than NaNO2.


Asunto(s)
Donantes de Óxido Nítrico , Staphylococcus aureus , Donantes de Óxido Nítrico/farmacología , Staphylococcus aureus/metabolismo , S-Nitrosoglutatión/farmacología , Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Antibacterianos/farmacología
14.
J Enzyme Inhib Med Chem ; 38(1): 2290461, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38061801

RESUMEN

A new series of bis-triazole 19a-l was synthesised for the purpose of being hybrid molecules with both anti-inflammatory and anti-cancer activities and assessed for cell cycle arrest, NO release. Compounds 19c, 19f, 19h, 19 l exhibited COX-2 selectivity indexes in the range of 18.48 to 49.38 compared to celecoxib S.I. = 21.10), inhibit MCF-7 with IC50 = 9-16 µM compared to tamoxifen (IC50 = 27.9 µM). and showed good inhibitory activity against HEP-3B with IC50 = 4.5-14 µM compared to sorafenib (IC50 = 3.5 µM) (HEP-3B). Moreover, derivatives 19e, 19j, 19k, 19 l inhibit HCT-116 with IC50 = 5.3-13.7 µM compared to 5-FU with IC50 = 4.8 µM (HCT-116). Compounds 19c, 19f, 19h, 19 l showed excellent inhibitory activity against A549 with IC50 = 3-4.5 µM compared to 5-FU with IC50 = 6 µM (A549). Compounds 19c, 19f, 19h, 19 l inhibit aromatase (IC50 of 22.40, 23.20, 22.70, 30.30 µM), EGFR (IC50 of 0.112, 0.205, 0.169 and 0.066 µM) and B-RAFV600E (IC50 of 0.09, 0.06, 0.07 and 0.05 µM).


Asunto(s)
Antineoplásicos , Donantes de Óxido Nítrico , Ciclooxigenasa 2/metabolismo , Celecoxib , Estructura Molecular , Donantes de Óxido Nítrico/farmacología , Relación Estructura-Actividad , Aromatasa/metabolismo , Línea Celular Tumoral , Antiinflamatorios/farmacología , Triazoles/farmacología , Receptores ErbB/metabolismo , Apoptosis , Fluorouracilo , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología
15.
Chin J Nat Med ; 21(12): 916-926, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143105

RESUMEN

Natural products are essential sources of antitumor drugs. One such molecule, ß-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor ß-elemene derivatives were designed, with ß-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.


Asunto(s)
Leucemia , Sesquiterpenos , Humanos , Ratones , Animales , Línea Celular Tumoral , Donantes de Óxido Nítrico/farmacología , Sesquiterpenos/farmacología , Leucemia/tratamiento farmacológico , Bioensayo , Proliferación Celular
16.
Dalton Trans ; 52(46): 17176-17184, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37937931

RESUMEN

The synthesized complexes, cis-[Ru(NO)(NO2)(phen)2](PF6)2 (NONO2P) and cis-[Ru(NO)(NO2)(bpy)2](PF6)2 (NONO2B), were characterized by using elemental analysis, voltammetry and electronic and vibrational spectroscopy. Under electrochemical and photochemical stimulation in an aqueous medium, there are indications of the formation of complexes, which suggests that the nitro and nitrosyl groups are converted into nitric oxide. Both compounds do not show cytotoxic activity against human umbilical vein endothelial cells (HUVECs). The cis-[Ru(NO)(NO2)(phen)2](PF6)2 complex presented vasorelaxation activity in superior mesenteric arteries from Wistar rats: the biphasic concentration-response curve indicates two sites of action. In the presence of NO scavengers, we observed an impaired relaxing effect induced by NONO2P, suggesting that the vasorelaxant effect is due to NO production from this compound.


Asunto(s)
Donantes de Óxido Nítrico , Rutenio , Ratas , Animales , Humanos , Donantes de Óxido Nítrico/farmacología , Vasodilatadores/farmacología , Dióxido de Nitrógeno , Células Endoteliales , Ratas Wistar , Óxido Nítrico , Rutenio/farmacología , Rutenio/química
17.
Int J Pharm ; 648: 123576, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37926176

RESUMEN

The healing of diabetic wounds is challenging due to redox imbalances. Herein, the thermogelling system AR-ACP hydrogel, with encapsulated biosafe nitric oxide (NO) donor L-arginine and resveratrol as an ROS scavenger, is established for sustainable wound therapy in the diabetic state. The innovated AR-ACP hydrogel dressings shows the sol-gel transition at 34 °C, allowing the hydrogel to fully cover wounds. The combination of L-arginine and resveratrol showed a prominent effect on anti-oxidative activity. The elimination of superoxide anions from the activated immune cells/oxidative cells by resveratrol maintained the NO-proangiogenic factors generated from L-arginine. Furthermore, the AR-ACP hydrogel endowed outstanding features such as haemocompatibility, non-skin irradiation as well as antibacterial activity. In the in vivo diabetic mice model, complete epidermal regeneration comparable to undamaged skin was observed with AR-ACP hydrogel. The synergy between L-arginine and resveratrol in the ACP hydrogel facilitated neovascularisation in the early stage, resulting in the higher balance in cellularity growth and collagen deposition in the dermal layer compared to control groups. Taken together, our findings demonstrate that the use of a customised ACP-based hydrogel, with the additional L-arginine and resveratrol, resulted in significant skin regeneration in the diabetic state.


Asunto(s)
Diabetes Mellitus Experimental , Donantes de Óxido Nítrico , Animales , Ratones , Especies Reactivas de Oxígeno , Donantes de Óxido Nítrico/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Resveratrol/farmacología , Antibacterianos , Arginina , Peces , Hidrogeles
18.
ACS Nano ; 17(20): 20098-20111, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37805936

RESUMEN

Given its abundant physiological functions, nitric oxide (NO) has attracted much attention as a cancer therapy. The sensitive release and great supply capacity are significant indicators of NO donors and their performance. Here, a transition metal nitride (TMN) MoN@PEG is adopted as an efficient NO donor. The release process starts with H+-triggered denitrogen owing to the high electronegativity of the N atom and weak Mo-N bond. Then, these active NHx are oxidized by O2 and other reactive oxygen species (ROS) to form NO, endowing specific release to the tumor microenvironment (TME). With a porous nanosphere structure (80 nm), MoN@PEG does not require an extra carrier for NO delivery, contributing to ultrahigh atomic utilization for outstanding release ability (94.1 ± 5.6 µM). In addition, it can also serve as a peroxidase and sonosensitizer for anticancer treatment. To further improve the charge separation, MoN-Pt@PEG was prepared to enhance the sonodynamic therapy (SDT) effect. Accordingly, ultrasound (US) further promotes NO generation due to more ROS generation, facilitating in situ peroxynitrite (·ONOO-) generation with great cytotoxicity. At the same time, the nanostructure also degrades gradually, leading to high elimination (94.6%) via feces and urine within 14-day. The synergistic NO and chemo-/sono-dynamic therapy brings prominent antitumor efficiency and further activates the immune response to inhibit metastasis and recurrence. This work develops a family of NO donors that would further widen the application of NO therapy in other fields.


Asunto(s)
Nanosferas , Neoplasias , Terapia por Ultrasonido , Humanos , Óxido Nítrico , Donantes de Óxido Nítrico/farmacología , Molibdeno/farmacología , Porosidad , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Microambiente Tumoral
19.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836704

RESUMEN

Several lines of evidence suggest that scarcity of the gaseous molecule nitric oxide (NO) is associated with the pathogenesis of schizophrenia. Therefore, compounds, such as NO donors, that can normalize NO levels might be of utility for the treatment of this pathology. It has been previously shown that the NO donor molsidomine attenuated schizophrenia-like behavioral deficits caused by glutamate hypofunction in rats. The aim of the current study was to investigate the efficacy of molsidomine and that of the joint administration of this NO donor with sub-effective doses of the non-typical antipsychotics clozapine and risperidone to counteract memory deficits associated with dysregulation of the brain dopaminergic system in rats. Molsidomine (2 and 4 mg/kg) attenuated spatial recognition and emotional memory deficits induced by the mixed dopamine (DA) D1/D2 receptor agonist apomorphine (0.5 mg/kg). Further, the joint administration of sub-effective doses of molsidomine (1 mg/kg) with those of clozapine (0.1 mg/kg) or risperidone (0.03 mg/kg) counteracted non-spatial recognition memory impairments caused by apomorphine. The present findings propose that molsidomine is sensitive to DA dysregulation since it attenuates memory deficits induced by apomorphine. Further, the current findings reinforce the potential of molsidomine as a complementary molecule for the treatment of schizophrenia.


Asunto(s)
Apomorfina , Clozapina , Ratas , Animales , Apomorfina/farmacología , Molsidomina/efectos adversos , Donantes de Óxido Nítrico/farmacología , Agonistas de Dopamina/farmacología , Óxido Nítrico , Dopamina , Risperidona , Ratas Wistar , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente
20.
Crit Rev Oncog ; 28(1): 1-13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824383

RESUMEN

The role of nitric oxide (NO) in cancer has been a continuous challenge and particularly the contradictory findings in the literature reporting NO with either anti-cancer properties or pro-cancer properties. This dilemma was largely resolved by the level of NO/inducible nitric oxide synthase in the tumor environment as well as other cancer-associated gene activations in different cancers. The initial findings on the role of NO as an anti-cancer agent was initiated in the late 1990's in Dr. Larry Keefer's laboratory, who had been studying and synthesizing many compounds with releasing NO under different conditions. Using an experimental model with selected NO compounds they demonstrated for the first time that NO can inhibit tumor cell proliferation and sensitizes drug-resistant cancer cells to chemotherapy-induced cytotoxicity. This initial finding was the backbone and the foundation of subsequent reports by the Keefer's laboratory and followed by many others to date on NO-mediated anti-cancer activities and the clinical translation of NO donors in cancer therapy. Our laboratory initiated studies on NO-mediated anti-cancer therapy and chemo-immuno-sensitization following Keefer's findings and used one of his synthesized NO donors, namely, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate), throughout most of our studies. Many of Keefer's collaborators and other investigators have reported on the selected compound, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl] diazen-1-ium-1,2-diolate (JS-K), and its therapeutic role in many tumor model systems. Several lines of evidence that investigated the treatment with NO donors in various cancer models revealed that a large number of gene products are modulated by NO, thus emphasizing the pleiotropic effects of NO on cancers and the identification of many targets of therapeutic significance. The present review reports historically of several examples reported in the literature that emanated on NO-mediated anti-cancer activities by the Keefer's laboratory and his collaborators and other investigators including my laboratory at the University of California at Los Angeles.


Asunto(s)
Neoplasias , Donantes de Óxido Nítrico , Humanos , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Neoplasias/tratamiento farmacológico , Compuestos Azo/farmacología , Óxido Nítrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...