Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.202
Filtrar
1.
J Physiol ; 602(10): 2253-2264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38638084

RESUMEN

Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.


Asunto(s)
Carbidopa , Potenciales Evocados Motores , Levodopa , Estimulación Magnética Transcraneal , Humanos , Masculino , Levodopa/farmacología , Adulto , Potenciales Evocados Motores/efectos de los fármacos , Estimulación Magnética Transcraneal/métodos , Carbidopa/farmacología , Adulto Joven , Inhibición Neural/efectos de los fármacos , Método Doble Ciego , Dopaminérgicos/farmacología , Dopamina/farmacología , Combinación de Medicamentos , Nervio Mediano/fisiología , Nervio Mediano/efectos de los fármacos
2.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38587319

RESUMEN

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Asunto(s)
Cannabidiol , Fármacos Neuroprotectores , Femenino , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cannabidiol/farmacología , Cannabidiol/metabolismo , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Dopamina/farmacología , Apelina/metabolismo , Apelina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/toxicidad , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología , Hipocampo/metabolismo , Expresión Génica
3.
Pestic Biochem Physiol ; 200: 105825, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582589

RESUMEN

Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.


Asunto(s)
Dopamina , Drosophila melanogaster , Tephritidae , Animales , Dopamina/metabolismo , Dopamina/farmacología , Drosophila melanogaster/metabolismo , Memoria , Antagonistas de Dopamina/farmacología
4.
J Org Chem ; 89(9): 5977-5987, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38557022

RESUMEN

Mellpaladines A-C (1-3) and dopargimine (4) are dopamine-derived guanidine alkaloids isolated from a specimen of Palauan Didemnidae tunicate as possible modulators of neuronal receptors. In this study, we isolated the dopargimine derivative 1-carboxydopargimine (5), three additional mellpaladines D-F (6-8), and serotodopalgimine (9), along with a dimer of serotonin, 5,5'-dihydroxy-4,4'-bistryptamine (10). The structures of these compounds were determined based on spectrometric and spectroscopic analyses. Compound 4 and its congeners dopargine (11), nordopargimine (15), and 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-1-yl)ethan-1-amine (16) were synthetically prepared for biological evaluations. The biological activities of all isolated compounds were evaluated in comparison with those of 1-4 using a mouse behavioral assay upon intracerebroventricular injection, revealing key functional groups in the dopargimines and mellpaladines for in vivo behavioral toxicity. Interestingly, these alkaloids also emerged during a screen of our marine natural product library aimed at identifying antiviral activities against dengue virus, SARS-CoV-2, and vesicular stomatitis Indiana virus (VSV) pseudotyped with Ebola virus glycoprotein (VSV-ZGP).


Asunto(s)
Alcaloides , Dopamina , Urocordados , Animales , Alcaloides/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/síntesis química , Urocordados/química , Ratones , Dopamina/química , Dopamina/farmacología , Estructura Molecular , Guanidina/química , Guanidina/farmacología , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/síntesis química , Guanidinas/química , Guanidinas/farmacología , Guanidinas/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos , Humanos
5.
Neuropharmacology ; 249: 109893, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428482

RESUMEN

Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.


Asunto(s)
Cannabidiol , Ratones , Animales , Masculino , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Dopamina/farmacología , Ratones Endogámicos C57BL , Receptores de Dopamina D2/metabolismo , Núcleo Accumbens , Dolor , Receptores de Dopamina D1/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Ratones Transgénicos
6.
Bull Environ Contam Toxicol ; 112(4): 51, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556558

RESUMEN

Esketamine (ESK) is the S-enantiomer of ketamine racemate (a new psychoactive substance) that can result in illusions, and alter hearing, vision, and proprioception in human and mouse. Up to now, the neurotoxicity caused by ESK at environmental level in fish is still unclear. This work studied the effects of ESK on behaviors and transcriptions of genes in dopamine and GABA pathways in zebrafish larvae at ranging from 12.4 ng L- 1 to 11141.1 ng L- 1 for 7 days post fertilization (dpf). The results showed that ESK at 12.4 ng L- 1 significantly reduced the touch response of the larvae at 48 hpf. ESK at 12.4 ng L- 1 also reduced the time and distance of larvae swimming at the outer zone during light period, which implied that ESK might potentially decrease the anxiety level of larvae. In addition, ESK increased the transcription of th, ddc, drd1a, drd3 and drd4a in dopamine pathway. Similarly, ESK raised the transcription of slc6a1b, slc6a13 and slc12a2 in GABA pathway. This study suggested that ESK could affect the heart rate and behaviors accompanying with transcriptional alterations of genes in DA and GABA pathways at early-staged zebrafish, which resulted in neurotoxicity in zebrafish larvae.


Asunto(s)
Dopamina , Ketamina , Humanos , Animales , Ratones , Dopamina/metabolismo , Dopamina/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Ketamina/metabolismo , Ketamina/farmacología , Larva , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
7.
Nat Commun ; 15(1): 2699, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538636

RESUMEN

Even after successful extinction, conditioned fear can return. Strengthening the consolidation of the fear-inhibitory safety memory formed during extinction is one way to counteract return of fear. In a previous study, we found that post-extinction L-DOPA administration improved extinction memory retrieval 24 h later. Furthermore, spontaneous post-extinction reactivations of a neural activation pattern evoked in the ventromedial prefrontal cortex (vmPFC) during extinction predicted extinction memory retrieval, L-DOPA increased the number of these reactivations, and this mediated the effect of L-DOPA on extinction memory retrieval. Here, we conducted a preregistered replication study of this work in healthy male participants. We confirm that spontaneous post-extinction vmPFC reactivations predict extinction memory retrieval. This predictive effect, however, was only observed 90 min after extinction, and was not statistically significant at 45 min as in the discovery study. In contrast to our previous study, we find no evidence that L-DOPA administration significantly enhances retrieval and that this is mediated by enhancement of the number of vmPFC reactivations. However, additional non-preregistered analyses reveal a beneficial effect of L-DOPA on extinction retrieval when controlling for the trait-like stable baseline levels of salivary alpha-amylase enzymatic activity. Further, trait salivary alpha-amylase negatively predicts retrieval, and this effect is reduced by L-DOPA treatment. Importantly, the latter findings result from non-preregistered analyses and thus further investigation is needed.


Asunto(s)
Dopamina , alfa-Amilasas Salivales , Humanos , Masculino , Dopamina/farmacología , Levodopa/farmacología , alfa-Amilasas Salivales/farmacología , Extinción Psicológica/fisiología , Memoria , Corteza Prefrontal/fisiología
8.
Sci Rep ; 14(1): 6509, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499566

RESUMEN

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Asunto(s)
Cocaína , Receptores Opioides kappa , Ratas , Animales , Receptores Opioides kappa/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Motivación , Dopamina/farmacología , Ratas Sprague-Dawley , Fenmetrazina/farmacología , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Autoadministración
9.
Neurosci Lett ; 827: 137734, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38499279

RESUMEN

Identifying additional noninvasive biomarkers for affective disorders, such as unipolar major depressive disorder (MDD) and bipolar disorder (BD), could aid in the diagnosis and treatment of these prevalent and debilitating neuropsychiatric conditions. One such candidate biomarker is the loudness dependence of the auditory evoked potential (LDAEP), an event-related potential that measures responsiveness of the auditory cortex to different intensities of sound. The LDAEP has been associated with MDD and BD, including therapeutic response to particular classes of antidepressant drugs, while also correlating with several other neuropsychiatric disorders. It has been suggested that increased values of the LDAEP indicate low central serotonergic neurotransmission, further implicating this EEG measure in depression. Here, we briefly review the literature on the LDAEP in affective disorders, including its association with serotonergic signaling, as well as with that of other neurotransmitters such as dopamine. We summarize key findings on the LDAEP and the genetics of these neurotransmitters, as well as prediction of response to particular classes of antidepressants in MDD, including SSRIs versus noradrenergic agents. The possible relationship between this EEG measure and suicidality is addressed. We also briefly analyze acute pharmacologic studies of serotonin and/or dopamine precursor depletion and the LDAEP. In conclusion, the existing literature suggests that serotonin and norepinephrine may modulate the LDAEP in an opposing manner, and that this event-related marker may be of use in predicting response to chronic treatment with particular pharmacologic agents in the context of affective disorders, such as MDD and BD, including in the presence of suicidality.


Asunto(s)
Trastorno Depresivo Mayor , Serotonina , Humanos , Serotonina/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Dopamina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina , Potenciales Evocados Auditivos/fisiología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Electroencefalografía
10.
Altern Lab Anim ; 52(2): 94-106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445454

RESUMEN

Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 µM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.


Asunto(s)
Benzoquinonas , Metanfetamina , Ratas , Animales , Células PC12 , Especies Reactivas de Oxígeno/farmacología , Metanfetamina/toxicidad , Dopamina/farmacología , Apoptosis , Glutatión/farmacología , Diferenciación Celular
11.
J Neuroimmunol ; 389: 578325, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432046

RESUMEN

The use of synthetic cannabinoid receptor agonists (SCRAs) poses major psychiatric risks. We previously showed that repeated exposure to the prototypical SCRA JWH-018 induces alterations in dopamine (DA) transmission, abnormalities in the emotional state, and glial cell activation in the mesocorticolimbic DA circuits of rats. Despite growing evidence suggesting the relationship between substance use disorders (SUD) and neuroinflammation, little is known about the impact of SCRAs on the neuroimmune system. Here, we investigated whether repeated JWH-018 exposure altered neuroimmune signaling, which could be linked with previously reported central effects. Adult male Sprague-Dawley (SD) rats were exposed to JWH-018 (0.25 mg/kg, i.p.) for fourteen consecutive days, and the expression of cytokines, chemokines, and growth factors was measured seven days after treatment discontinuation in the striatum, cortex, and hippocampus. Moreover, microglial (ionized calcium-binding adaptor molecule 1, IBA-1) and astrocyte (glial fibrillary acidic protein, GFAP) activation markers were evaluated in the caudate-putamen (CPu). Repeated JWH-018 exposure induces a perturbation of neuroimmune signaling specifically in the striatum, as shown by increased levels of cytokines [interleukins (IL) -2, -4, -12p70, -13, interferon (IFN) γ], chemokines [macrophage inflammatory protein (MIP) -1α, -3α], and growth factors [macrophage colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF)], together with increased IBA-1 and GFAP expression in the CPu. JWH-018 exposure induces persistant brain region-specific immune alterations up to seven days after drug discontinuation, which may contribute to the behavioral and neurochemical dysregulations in striatal areas that play a role in the reward-related processes that are frequently impaired in SUD.


Asunto(s)
Cannabinoides , Indoles , Naftalenos , Factor A de Crecimiento Endotelial Vascular , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Cannabinoides/metabolismo , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Encéfalo/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Microglía/metabolismo , Dopamina/farmacología
12.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38346894

RESUMEN

When rats are given discrete choices between social interactions with a peer and opioid or psychostimulant drugs, they choose social interaction, even after extensive drug self-administration experience. Studies show that like drug and nondrug food reinforcers, social interaction is an operant reinforcer and induces dopamine release. However, these studies were conducted with same-sex peers. We examined if peer sex influences operant social interaction and the role of estrous cycle and striatal dopamine in same- versus opposite-sex social interaction. We trained male and female rats (n = 13 responders/12 peers) to lever-press (fixed-ratio 1 [FR1] schedule) for 15 s access to a same- or opposite-sex peer for 16 d (8 d/sex) while tracking females' estrous cycle. Next, we transfected GRAB-DA2m and implanted optic fibers into nucleus accumbens (NAc) core and dorsomedial striatum (DMS). We then retrained the rats for 15 s social interaction (FR1 schedule) for 16 d (8 d/sex) and recorded striatal dopamine during operant responding for a peer for 8 d (4 d/sex). Finally, we assessed economic demand by manipulating FR requirements for a peer (10 d/sex). In male, but not female rats, operant responding was higher for the opposite-sex peer. Female's estrous cycle fluctuations had no effect on operant social interaction. Striatal dopamine signals for operant social interaction were dependent on the peer's sex and striatal region (NAc core vs DMS). Results indicate that estrous cycle fluctuations did not influence operant social interaction and that NAc core and DMS dopamine activity reflect sex-dependent features of volitional social interaction.


Asunto(s)
Condicionamiento Operante , Dopamina , Ratas , Animales , Masculino , Femenino , Dopamina/farmacología , Interacción Social , Cuerpo Estriado , Inhibidores de Captación de Dopamina/farmacología , Núcleo Accumbens
13.
ACS Chem Neurosci ; 15(4): 772-782, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38301116

RESUMEN

Free, ionic zinc (Zn2+) modulates neurotransmitter dynamics in the brain. However, the sub-s effects of transient concentration changes of Zn2+ on neurotransmitter release and uptake are not well understood. To address this lack of knowledge, we have combined the photolysis of the novel caged Zn2+ compound [Zn(DPAdeCageOMe)]+ with fast scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes in live, whole brain preparations from zebrafish (Danio rerio). After treating the brain with [Zn(DPAdeCageOMe)]+, Zn2+ was released by application of light that was gated through a computer-controlled shutter synchronized with the FSCV measurements and delivered through a 1 mm fiber optic cable. We systematically optimized the photocage concentration and light application parameters, including the total duration and light-to-electrical stimulation delay time. While sub-s Zn2+ application with this method inhibited DA reuptake, assessed by the first-order rate constant (k) and half-life (t1/2), it had no effect on the electrically stimulated DA overflow ([DA]STIM). Increasing the photocage concentration and light duration progressively inhibited uptake, with maximal effects occurring at 100 µM and 800 ms, respectively. Furthermore, uptake was inhibited 200 ms after Zn2+ photorelease, but no measurable effect occurred after 800 ms. We expect that application of this method to the zebrafish whole brain and other preparations will help expand the current knowledge of how Zn2+ affects neurotransmitter release/uptake in select neurological disease states.


Asunto(s)
Dopamina , Pez Cebra , Animales , Dopamina/farmacología , Fotólisis , Encéfalo , Neurotransmisores , Estimulación Eléctrica , Microelectrodos
14.
Neuropharmacology ; 248: 109851, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325772

RESUMEN

Heightened risk-based decision-making is observed across several neuropsychiatric disorders including schizophrenia, bipolar disorder, and Parkinson's disease, yet no treatments exist that effectively normalize this aberrant behavior. Preclinical risk-based decision-making paradigms have identified the important modulatory roles of dopamine and sex in the performance of such tasks, though specific task parameters may alter such effects (e.g., punishment and reward values). Previous work has highlighted the role of dopamine 2-like receptors (D2R) during performance of the Risk Preference Task (RPT) in male rats, however sex was not considered as a factor in this study, nor were treatments identified that reduced risk preference. Here, we utilized the RPT to determine sex-dependent differences in baseline performance and impact of the D2R receptor agonist pramipexole (PPX), and antagonist sulpiride (SUL) on behavioral performance. Female rats exhibited heightened risk-preference during baseline testing. Consistent with human studies, PPX increased risk-preference across sex, though the effects of PPX were more pronounced in female animals. Importantly, SUL reduced risk-preference in these rats across sexes. Thus, under the task specifications of the RPT that does not include punishment, female rats were more risk-preferring and required higher PPX doses to promote risky choices compared to males. Furthermore, blockade of D2R receptors may reduce risk-preference of rats, though further studies are required.


Asunto(s)
Dopamina , Caracteres Sexuales , Humanos , Ratas , Femenino , Masculino , Animales , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Pramipexol/farmacología , Receptores Dopaminérgicos , Toma de Decisiones , Recompensa
15.
STAR Protoc ; 5(1): 102889, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341851

RESUMEN

Dopaminergic neurons derived from human induced pluripotent stem cells recapitulate key pathogenic phenotypes observed in Parkinson's disease (PD). Here, we present a protocol to analyze oxidized dopamine and the recruitment of parkin onto synaptic vesicles in neurons derived from patients with mutations in parkin that cause autosomal recessive PD. We describe steps for neuronal differentiation, live-cell microscopy, detection of oxidized dopamine, and labeling of synaptic vesicles. These protocols can be applied to studies of other forms of genetic and sporadic forms of PD. For complete details on the use and execution of this protocol, please refer to Song et al.1,2.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Dopamina/farmacología , Neuronas Dopaminérgicas , Enfermedad de Parkinson/patología , Microscopía , Ubiquitina-Proteína Ligasas
16.
Int J Biol Macromol ; 261(Pt 2): 129932, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309399

RESUMEN

Hydrogels possessing both conductive characteristics and notable antibacterial and antioxidant properties hold considerable significance within the realm of wound healing and recovery. The object of current study is the development of conductive hydrogels with antibacterial and antioxidant properties, emphasizing their potential for effective wound healing, especially in treating third-degree burns. For this purpose, various conductive hydrogels are developed based on tragacanth and silk fibroin, with variable dopamine functionalized carboxyl-capped aniline pentamer (CAP@DA). The FTIR analysis confirms that the CAP powder was successfully synthesized and modified with DA. The results show that the incorporation of CAP@DA into hydrogels can increase the porosity and swellability of the hydrogels. Additionally, the mechanical and viscoelastic properties of the hydrogels are also improved. The release of vancomycin from the hydrogels is sustained over time, and the hydrogels are effective in inhibiting the growth of Methicillin-resistant Staphylococcus aureus (MRSA). In vitro cell studies of the hydrogels show that all hydrogels are biocompatible and support cell attachment. The hydrogels' tissue adhesiveness yielded a satisfactory hemostatic outcome in a rat-liver injury model. The third-degree burn was created on the dorsal back paravertebral region of the rats and then grafted with hydrogels. The burn was monitored for 3, 7, and 14 days to evaluate the efficacy of the hydrogel in promoting wound healing. The hydrogels revealed treatment effect, resulting in enhancements in wound closure, dermal collagen matrix production, new blood formation, and anti-inflammatory properties. Better results were obtained for hydrogel with increasing CAP@DA. In summary, the multifunctional conducive hydrogel, featuring potent antibacterial properties, markedly facilitated the wound regeneration process.


Asunto(s)
Quemaduras , Fibroínas , Staphylococcus aureus Resistente a Meticilina , Tragacanto , Ratas , Animales , Antioxidantes/farmacología , Fibroínas/farmacología , Dopamina/farmacología , Tragacanto/farmacología , Hidrogeles/farmacología , Cicatrización de Heridas , Quemaduras/tratamiento farmacológico , Hemostasis , Antibacterianos/farmacología
17.
Eur J Pharmacol ; 968: 176384, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38342360

RESUMEN

Basal electroretinogram (ERG) oscillations have shown predictive value for modifiable risk factors for type 2 diabetes. However, their origin remains unknown. Here, we seek to establish the pharmacological profile of the low delta-like (δ1) wave in the mouse because it shows light sensitivity in the form of a decreased peak frequency upon photopic exposure. Applying neuropharmacological drugs by intravitreal injection, we eliminated the δ1 wave using lidocaine or by blocking all chemical and electrical synapses. The δ1 wave was insensitive to the blockade of photoreceptor input, but was accelerated when all inhibitory or ionotropic inhibitory receptors in the retina were antagonized. The sole blockade of GABAA, GABAB, GABAC, and glycine receptors also accelerated the δ1 wave. In contrast, the gap junction blockade slowed the δ1 wave. Both GABAA receptors and gap junctions contribute to the light sensitivity of the δ1 wave. We further found that the day light-activated neuromodulators dopamine and nitric oxide donors mimicked the effect of photopic exposure on the δ1 wave. All drug effects were validated through light flash-evoked ERG responses. Our data indicate that the low δ-like intrinsic wave detected by the non-photic ERG arises from an inner retinal circuit regulated by inhibitory neurotransmission and nitric oxide/dopamine-sensitive gap junction-mediated communication.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dopamina , Ratones , Animales , Dopamina/farmacología , Fotofobia , Estimulación Luminosa , Retina , Electrorretinografía , Neurotransmisores/farmacología , Receptores de GABA-A , Ácido gamma-Aminobutírico/farmacología
18.
J Exp Zool A Ecol Integr Physiol ; 341(4): 389-399, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334250

RESUMEN

Japanese eel (Anguilla japonica) is a commercially important fish species in Asia. Understanding factors like photoperiod, temperature, and lunar cycles is crucial for successful aquaculture and managing its reproduction. Melatonin and dopamine (DA) are essential for regulating reproduction in vertebrates, including fish. This study investigated the effects of melatonin and DA on the reproductive system of mature male Japanese eels to better understand reproductive regulation in fish. To clarify the effects of these hormones on sexual maturation in eels, a critical stage in the reproductive process, sexual maturation was induced by injecting human chorionic gonadotropin, which stimulates the production of sex hormones. To check the effect of melatonin and DA on sexual maturation, DA, melatonin, and DA + domperidone were intraperitoneally injected into fish from each group (six per treatment) at a dose of 1 mg/kg body weight. The fish were then examined using quantitative RT-PCR by comparing the messenger RNA level of reproduction-related genes (gonadotropin releasing hormone 1; gnrh1, gonadotropin releasing hormone 2; gnrh2, follicle stimulating hormone; fshß, luteinizing hormone; lhß and DA receptor 2b; d2b), involved in the gonadotropic axis in eels, to those that received a control injection. The results indicate significant differences in the expression levels of gnrh1, gnrh2 and d2b in the brain and d2b, fshß, lhß in the pituitary at different stages of sexual maturation. Melatonin appears to enhance the production of sex gonadotropins, whereas DA inhibits them. These findings suggest an interaction between melatonin and DA in regulating reproduction in Japanese eels.


Asunto(s)
Anguilla , Melatonina , Humanos , Masculino , Animales , Anguilla/genética , Anguilla/metabolismo , Melatonina/farmacología , Dopamina/farmacología , Dopamina/metabolismo , Maduración Sexual , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo
19.
Cell Commun Signal ; 22(1): 134, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374093

RESUMEN

BACKGROUND: Although the neurotransmitter dopamine (DA) plays a crucial pathophysiologic role after traumatic brain injury (TBI), its function and specific underlying mechanisms of action remain unclear. METHODS: Adult male mice underwent controlled cortical impact (CCI). We administered DA intraperitoneally to mice for 14 consecutive days, starting 8 h before CCI. On day 3 after brain injury, cortical lesion volume and brain water content were measured. On days 7-13, behavioral tests were performed. RESULTS: Herein we report that DA inhibits neural death after injury, which is mediated via the dopamine D1 receptor (DRD1). Our results also showed that DRD1 signaling promotes RIPK1 ubiquitination via the E3 ubiquitin ligase Chip and then degradation through autophagy. Importantly, in vivo data revealed that DRD1 signaling prevented neural death, suppressed neuroinflammation, and restored many TBI-related functional sequelae. CONCLUSIONS: These data reveal a novel mechanism involving dopamine, and suggest that DRD1 activation positively regulates Chip-mediated ubiquitylation of RIPK1-leading to its autophagic degradation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dopamina , Animales , Masculino , Ratones , Autofagia/efectos de los fármacos , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Ratones Endogámicos C57BL , Ubiquitinación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
20.
Braz J Med Biol Res ; 57: e12857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381881

RESUMEN

MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.


Asunto(s)
Amidohidrolasas , Endocannabinoides , Núcleo Accumbens , Ratones , Masculino , Animales , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Antidepresivos/farmacología , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...