Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.095
Filtrar
1.
Methods Mol Biol ; 2800: 1-10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709473

RESUMEN

The fruit fly Drosophila is a well-established invertebrate model that enables in vivo imaging of innate immune cell (e.g., macrophage) migration and signaling at high spatiotemporal resolution within the intact, living animal. While optimized methods already exist to enable flow cytometry-based macrophage isolation from Drosophila at various stages of development, there remains a need for more rapid and gentle methods to isolate living macrophages for downstream ex vivo applications. Here, we describe techniques for rapid and direct isolation of living macrophages from mature Drosophila pupae and their downstream ex vivo preparation for live imaging and immunostaining. This strategy enables straightforward access to physiologically relevant innate immune cells, both circulating and tissue-resident populations, for subsequent imaging of signal transduction.


Asunto(s)
Macrófagos , Pupa , Animales , Pupa/citología , Macrófagos/citología , Macrófagos/metabolismo , Drosophila , Separación Celular/métodos , Citometría de Flujo/métodos , Drosophila melanogaster/citología
2.
Nature ; 626(8000): 819-826, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326621

RESUMEN

To navigate, we must continuously estimate the direction we are headed in, and we must correct deviations from our goal1. Direction estimation is accomplished by ring attractor networks in the head direction system2,3. However, we do not fully understand how the sense of direction is used to guide action. Drosophila connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that connect the head direction system to the locomotor system. Here we use imaging, electrophysiology and chemogenetic stimulation during navigation to show how these populations function. Each population receives a shifted copy of the head direction vector, such that their three reference frames are shifted approximately 120° relative to each other. Each cell type then compares its own head direction vector with a common goal vector; specifically, it evaluates the congruence of these vectors via a nonlinear transformation. The output of all three cell populations is then combined to generate locomotor commands. PFL3R cells are recruited when the fly is oriented to the left of its goal, and their activity drives rightward turning; the reverse is true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of steering as directional error increases, effectively managing the tradeoff between speed and accuracy. Together, our results show how a map of space in the brain can be combined with an internal goal to generate action commands, via a transformation from world-centric coordinates to body-centric coordinates.


Asunto(s)
Encéfalo , Drosophila melanogaster , Objetivos , Cabeza , Neuronas , Orientación Espacial , Navegación Espacial , Animales , Encéfalo/citología , Encéfalo/fisiología , Conectoma , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Locomoción/fisiología , Neuronas/clasificación , Neuronas/fisiología , Orientación Espacial/fisiología , Navegación Espacial/fisiología , Factores de Tiempo
3.
Nature ; 626(8000): 808-818, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326612

RESUMEN

Neuronal signals that are relevant for spatial navigation have been described in many species1-10. However, a circuit-level understanding of how such signals interact to guide navigational behaviour is lacking. Here we characterize a neuronal circuit in the Drosophila central complex that compares internally generated estimates of the heading and goal angles of the fly-both of which are encoded in world-centred (allocentric) coordinates-to generate a body-centred (egocentric) steering signal. Past work has suggested that the activity of EPG neurons represents the fly's moment-to-moment angular orientation, or heading angle, during navigation2,11. An animal's moment-to-moment heading angle, however, is not always aligned with its goal angle-that is, the allocentric direction in which it wishes to progress forward. We describe FC2 cells12, a second set of neurons in the Drosophila brain with activity that correlates with the fly's goal angle. Focal optogenetic activation of FC2 neurons induces flies to orient along experimenter-defined directions as they walk forward. EPG and FC2 neurons connect monosynaptically to a third neuronal class, PFL3 cells12,13. We found that individual PFL3 cells show conjunctive, spike-rate tuning to both the heading angle and the goal angle during goal-directed navigation. Informed by the anatomy and physiology of these three cell classes, we develop a model that explains how this circuit compares allocentric heading and goal angles to build an egocentric steering signal in the PFL3 output terminals. Quantitative analyses and optogenetic manipulations of PFL3 activity support the model. Finally, using a new navigational memory task, we show that flies expressing disruptors of synaptic transmission in subsets of PFL3 cells have a reduced ability to orient along arbitrary goal directions, with an effect size in quantitative accordance with the prediction of our model. The biological circuit described here reveals how two population-level allocentric signals are compared in the brain to produce an egocentric output signal that is appropriate for motor control.


Asunto(s)
Encéfalo , Drosophila melanogaster , Objetivos , Cabeza , Vías Nerviosas , Orientación Espacial , Navegación Espacial , Animales , Potenciales de Acción , Encéfalo/citología , Encéfalo/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Locomoción , Neuronas/metabolismo , Optogenética , Orientación Espacial/fisiología , Percepción Espacial/fisiología , Memoria Espacial/fisiología , Navegación Espacial/fisiología , Transmisión Sináptica
4.
Nature ; 626(7997): 212-220, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086419

RESUMEN

Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes1. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models2-6, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create 'dual-code' enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.


Asunto(s)
Células , Aprendizaje Profundo , Drosophila melanogaster , Elementos de Facilitación Genéticos , Biología Sintética , Animales , Humanos , Animales Modificados Genéticamente/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Células/clasificación , Células/metabolismo , Neuroglía/metabolismo , Encéfalo/citología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas Represoras/metabolismo
5.
Nature ; 624(7991): 425-432, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38057665

RESUMEN

Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.


Asunto(s)
Fármacos Antidiuréticos , Enfermedades Renales , Neoplasias , Neuropéptidos , Receptores de Neuroquinina-3 , Animales , Humanos , Ratones , Fármacos Antidiuréticos/metabolismo , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Enfermedades Renales/complicaciones , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Túbulos de Malpighi/citología , Túbulos de Malpighi/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Óxido Nítrico Sintasa/metabolismo , Receptores de Neuroquinina-3/antagonistas & inhibidores , Receptores de Neuroquinina-3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Arginina Vasopresina/metabolismo , Proteínas de Drosophila/metabolismo , Neuropéptidos/metabolismo
6.
Nature ; 623(7986): 356-365, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880370

RESUMEN

Resource-seeking behaviours are ordinarily constrained by physiological needs and threats of danger, and the loss of these controls is associated with pathological reward seeking1. Although dysfunction of the dopaminergic valuation system of the brain is known to contribute towards unconstrained reward seeking2,3, the underlying reasons for this behaviour are unclear. Here we describe dopaminergic neural mechanisms that produce reward seeking despite adverse consequences in Drosophila melanogaster. Odours paired with optogenetic activation of a defined subset of reward-encoding dopaminergic neurons become cues that starved flies seek while neglecting food and enduring electric shock punishment. Unconstrained seeking of reward is not observed after learning with sugar or synthetic engagement of other dopaminergic neuron populations. Antagonism between reward-encoding and punishment-encoding dopaminergic neurons accounts for the perseverance of reward seeking despite punishment, whereas synthetic engagement of the reward-encoding dopaminergic neurons also impairs the ordinary need-dependent dopaminergic valuation of available food. Connectome analyses reveal that the population of reward-encoding dopaminergic neurons receives highly heterogeneous input, consistent with parallel representation of diverse rewards, and recordings demonstrate state-specific gating and satiety-related signals. We propose that a similar dopaminergic valuation system dysfunction is likely to contribute to maladaptive seeking of rewards by mammals.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Drosophila melanogaster , Castigo , Recompensa , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Electrochoque , Aprendizaje/fisiología , Odorantes/análisis , Optogenética , Inanición , Modelos Animales
7.
Nature ; 623(7987): 562-570, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880372

RESUMEN

Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.


Asunto(s)
Ritmo Circadiano , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Percepción Visual , Animales , Acetilcolina/metabolismo , Relojes Biológicos/fisiología , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Histamina/metabolismo , Neurotransmisores/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Receptores Colinérgicos/metabolismo , Receptores Histamínicos/metabolismo , Percepción Visual/fisiología , Percepción Visual/efectos de la radiación
8.
Nature ; 622(7984): 794-801, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821705

RESUMEN

Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.


Asunto(s)
Encéfalo , Drosophila melanogaster , Vías Nerviosas , Neuronas , Desempeño Psicomotor , Vocalización Animal , Animales , Femenino , Masculino , Encéfalo/citología , Encéfalo/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Vocalización Animal/fisiología
9.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526610

RESUMEN

Drosophila is an important model for studying heart development and disease. Yet, single-cell transcriptomic data of its developing heart have not been performed. Here, we report single-cell profiling of the entire fly heart using ∼3000 Hand-GFP embryos collected at five consecutive developmental stages, ranging from bilateral migrating rows of cardiac progenitors to a fused heart tube. The data revealed six distinct cardiac cell types in the embryonic fly heart: cardioblasts, both Svp+ and Tin+ subtypes; and five types of pericardial cell (PC) that can be distinguished by four key transcription factors (Eve, Odd, Ct and Tin) and include the newly described end of the line PC. Notably, the embryonic fly heart combines transcriptional signatures of the mammalian first and second heart fields. Using unique markers for each heart cell type, we defined their number and location during heart development to build a comprehensive 3D cell map. These data provide a resource to track the expression of any gene in the developing fly heart, which can serve as a reference to study genetic perturbations and cardiac diseases.


Asunto(s)
Drosophila melanogaster , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Corazón/embriología , Análisis de Expresión Génica de una Sola Célula , Ganglios Linfáticos/citología , Ganglios Linfáticos/embriología , Embrión no Mamífero , Desarrollo Embrionario , Biomarcadores , Organogénesis
10.
Science ; 380(6650): eadg0934, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319212

RESUMEN

Aging is characterized by a decline in tissue function, but the underlying changes at cellular resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas, a single-nucleus transcriptomic map of the whole aging Drosophila. We characterized 163 distinct cell types and performed an in-depth analysis of changes in tissue cell composition, gene expression, and cell identities. We further developed aging clock models to predict fly age and show that ribosomal gene expression is a conserved predictive factor for age. Combining all aging features, we find distinctive cell type-specific aging patterns. This atlas provides a valuable resource for studying fundamental principles of aging in complex organisms.


Asunto(s)
Envejecimiento , Senescencia Celular , Drosophila melanogaster , Animales , Envejecimiento/genética , Perfilación de la Expresión Génica , Transcriptoma , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Atlas como Asunto
11.
Nature ; 617(7962): 798-806, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138087

RESUMEN

Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.


Asunto(s)
Drosophila melanogaster , Homeostasis , Orgánulos , Fosfatos , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Orgánulos/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Proteómica , Transferencia Resonante de Energía de Fluorescencia , Lipidómica , Citosol/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
12.
Nature ; 617(7962): 777-784, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100911

RESUMEN

Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.


Asunto(s)
Encéfalo , Percepción de Color , Drosophila melanogaster , Aprendizaje , Memoria , Neuronas , Percepción Olfatoria , Animales , Encéfalo/citología , Encéfalo/fisiología , Dopamina/metabolismo , Aprendizaje/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Neuronas GABAérgicas/metabolismo , Neuronas Serotoninérgicas/metabolismo , Memoria/fisiología , Percepción Olfatoria/fisiología , Neuronas Dopaminérgicas/metabolismo , Inhibición Neural , Percepción de Color/fisiología , Odorantes/análisis
14.
Cell Rep ; 42(2): 112093, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36773292

RESUMEN

Apical-basal polarity and cell-fate determinants are crucial for the cell fate and control of stem cell numbers. However, their interplay leading to a precise stem cell number remains unclear. Drosophila pupal intestinal stem cells (pISCs) asymmetrically divide, generating one apical ISC progenitor and one basal Prospero (Pros)+ enteroendocrine mother cell (EMC), followed by symmetric divisions of each daughter before adulthood, providing an ideal system to investigate the outcomes of polarity loss. Using lineage tracing and ex vivo live imaging, we identify an interlocked polarity regulation network precisely determining ISC number: Bazooka inhibits Pros accumulation by activating Notch signaling to maintain stem cell fate in pISC apical daughters. A threshold of Pros promotes differentiation to EMCs and avoids ISC-like cell fate, and over-threshold of Pros inhibits miranda expression to ensure symmetric divisions in pISC basal daughters. Our work suggests that a polarity-dependent threshold of a differentiation factor precisely controls stem cell number.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Recuento de Células , Diferenciación Celular , Polaridad Celular , Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Intestinos
15.
Elife ; 122023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744859

RESUMEN

Tissue-intrinsic defense mechanisms eliminate aberrant cells from epithelia and thereby maintain the health of developing tissues or adult organisms. 'Interface surveillance' comprises one such distinct mechanism that specifically guards against aberrant cells which undergo inappropriate cell fate and differentiation programs. The cellular mechanisms which facilitate detection and elimination of these aberrant cells are currently unknown. We find that in Drosophila imaginal discs, clones of cells with inappropriate activation of cell fate programs induce bilateral JNK activation at clonal interfaces, where wild type and aberrant cells make contact. JNK activation is required to drive apoptotic elimination of interface cells. Importantly, JNK activity and apoptosis are highest in interface cells within small aberrant clones, which likely supports the successful elimination of aberrant cells when they arise. Our findings are consistent with a model where clone size affects the topology of interface contacts and thereby the strength of JNK activation in wild type and aberrant interface cells. Bilateral JNK activation is unique to 'interface surveillance' and is not observed in other tissue-intrinsic defense mechanisms, such as classical 'cell-cell competition'. Thus, bilateral JNK interface signaling provides an independent tissue-level mechanism to eliminate cells with inappropriate developmental fate but normal cellular fitness. Finally, oncogenic Ras-expressing clones activate 'interface surveillance' but evade elimination by bilateral JNK activation. Combined, our work establishes bilateral JNK interface signaling and interface apoptosis as a new hallmark of interface surveillance and highlights how oncogenic mutations evade tumor suppressor function encoded by this tissue-intrinsic surveillance system.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Células Epiteliales , Proteínas Quinasas JNK Activadas por Mitógenos , Animales , Apoptosis , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Epitelio/metabolismo , Genes Supresores de Tumor , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Células Epiteliales/citología , Células Epiteliales/metabolismo
16.
Nature ; 615(7950): 111-116, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813962

RESUMEN

Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.


Asunto(s)
Criptocromos , Drosophila melanogaster , Campos Magnéticos , Animales , Criptocromos/química , Criptocromos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Flavina-Adenina Dinucleótido/metabolismo , Triptófano/metabolismo , Electrofisiología , Conducta Animal , Análisis de la Célula Individual , Neuronas/citología , Neuronas/metabolismo
17.
Nature ; 610(7931): 349-355, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171290

RESUMEN

Entomopathogenic nematodes are widely used as biopesticides1,2. Their insecticidal activity depends on symbiotic bacteria such as Photorhabdus luminescens, which produces toxin complex (Tc) toxins as major virulence factors3-6. No protein receptors are known for any Tc toxins, which limits our understanding of their specificity and pathogenesis. Here we use genome-wide CRISPR-Cas9-mediated knockout screening in Drosophila melanogaster S2R+ cells and identify Visgun (Vsg) as a receptor for an archetypal P. luminescens Tc toxin (pTc). The toxin recognizes the extracellular O-glycosylated mucin-like domain of Vsg that contains high-density repeats of proline, threonine and serine (HD-PTS). Vsg orthologues in mosquitoes and beetles contain HD-PTS and can function as pTc receptors, whereas orthologues without HD-PTS, such as moth and human versions, are not pTc receptors. Vsg is expressed in immune cells, including haemocytes and fat body cells. Haemocytes from Vsg knockout Drosophila are resistant to pTc and maintain phagocytosis in the presence of pTc, and their sensitivity to pTc is restored through the transgenic expression of mosquito Vsg. Last, Vsg knockout Drosophila show reduced bacterial loads and lethality from P. luminescens infection. Our findings identify a proteinaceous Tc toxin receptor, reveal how Tc toxins contribute to P. luminescens pathogenesis, and establish a genome-wide CRISPR screening approach for investigating insecticidal toxins and pathogens.


Asunto(s)
Toxinas Bacterianas , Sistemas CRISPR-Cas , Proteínas de Drosophila , Drosophila melanogaster , Edición Génica , Factores de Virulencia , Animales , Toxinas Bacterianas/metabolismo , Agentes de Control Biológico , Culicidae , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Cuerpo Adiposo/citología , Técnicas de Silenciamiento del Gen , Hemocitos , Humanos , Mariposas Nocturnas , Mucinas , Control Biológico de Vectores , Fagocitosis , Photorhabdus/metabolismo , Secuencias Repetitivas de Aminoácido , Transgenes , Factores de Virulencia/metabolismo
18.
Science ; 377(6606): eabn5800, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926038

RESUMEN

Drosophila melanogaster is a powerful, long-standing model for metazoan development and gene regulation. We profiled chromatin accessibility in almost 1 million and gene expression in half a million nuclei from overlapping windows spanning the entirety of embryogenesis. Leveraging developmental asynchronicity within embryo collections, we applied deep neural networks to infer the age of each nucleus, resulting in continuous, multimodal views of molecular and cellular transitions in absolute time. We identify cell lineages; infer their developmental relationships; and link dynamic changes in enhancer usage, transcription factor (TF) expression, and the accessibility of TFs' cognate motifs. With these data, the dynamics of enhancer usage and gene expression can be explored within and across lineages at the scale of minutes, including for precise transitions like zygotic genome activation.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Animales , Linaje de la Célula/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Redes Neurales de la Computación , Análisis de la Célula Individual
19.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35831024

RESUMEN

Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid ß42 (Aß42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.


Asunto(s)
Péptidos beta-Amiloides , Proteínas de Drosophila , Drosophila melanogaster , Retículo Endoplásmico , Mitocondrias , Fragmentos de Péptidos , Enfermedad de Alzheimer , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Aptitud Genética , Locomoción/efectos de los fármacos , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/toxicidad
20.
Science ; 376(6595): 818-823, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587967

RESUMEN

In many vertebrate and invertebrate organisms, gametes develop within groups of interconnected cells called germline cysts formed by several rounds of incomplete divisions. We found that loss of the deubiquitinase USP8 gene in Drosophila can transform incomplete divisions of germline cells into complete divisions. Conversely, overexpression of USP8 in germline stem cells is sufficient for the reverse transformation from complete to incomplete cytokinesis. The ESCRT-III proteins CHMP2B and Shrub/CHMP4 are targets of USP8 deubiquitinating activity. In Usp8 mutant sister cells, ectopic recruitment of ESCRT proteins at intercellular bridges causes cysts to break apart. A Shrub/CHMP4 variant that cannot be ubiquitinated does not localize at abscission bridges and cannot complete abscission. Our results uncover ubiquitination of ESCRT-III as a major switch between two types of cell division.


Asunto(s)
División Celular , Proteínas de Drosophila , Drosophila melanogaster , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteasas Ubiquitina-Específicas , Animales , Citocinesis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Células Germinativas/citología , Células Germinativas/fisiología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...