Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L496-L507, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349115

RESUMEN

The utility of cell-free (cf) DNA has extended as a surrogate or clinical biomarker for various diseases. However, a more profound and expanded understanding of the diverse cfDNA population and its correlation with physiological phenotypes and environmental factors is imperative for using its full potential. The high-altitude (HA; altitude > 2,500 m above sea level) environment characterized by hypobaric hypoxia offers an observational case-control design to study the differential cfDNA profile in patients with high-altitude pulmonary edema (HAPE) (number of subjects, n = 112) and healthy HA sojourners (n = 111). The present study investigated cfDNA characteristics such as concentration, fragment length size, degree of integrity, and subfractions reflecting mitochondrial-cfDNA copies in the two groups. The total cfDNA level was significantly higher in patients with HAPE, and the level increased with increasing HAPE severity (P = 0.0036). A lower degree of cfDNA integrity of 0.346 in patients with HAPE (P = 0.001) indicated the prevalence of shorter cfDNA fragments in circulation in patients compared with the healthy HA sojourners. A significant correlation of cfDNA characteristics with the peripheral oxygen saturation levels in the patient group demonstrated the translational relevance of cfDNA molecules. The correlation was further supported by multivariate logistic regression and receiver operating characteristic curve. To our knowledge, our study is the first to highlight the association of higher cfDNA concentration, a lower degree of cfDNA integrity, and increased mitochondrial-derived cfDNA population with HAPE disease severity. Further deep profiling of cfDNA fragments, which preserves cell-type specific genetic and epigenetic features, can provide dynamic physiological responses to hypoxia.NEW & NOTEWORTHY This study observed altered cell-free (cf) DNA fragment patterns in patients with high-altitude pulmonary edema and the significant correlation of these patterns with peripheral oxygen saturation levels. This suggests deep profiling of cfDNA fragments in the future may identify genetic and epigenetic mechanisms underlying physiological and pathophysiological responses to hypoxia.


Asunto(s)
Mal de Altura , Ácidos Nucleicos Libres de Células , Hipertensión Pulmonar , Edema Pulmonar , Humanos , Altitud , Edema Pulmonar/genética , Mal de Altura/genética , Hipoxia/genética , Ácidos Nucleicos Libres de Células/genética , ADN
2.
Gene ; 870: 147384, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001572

RESUMEN

BACKGROUND: High altitude pulmonary edema (HAPE) is a high-altitude idiopathic disease with serious consequences due to hypoxia at high altitude, and there is individual genetic susceptibility. Whole-exome sequencing (WES) is an effective tool for studying the genetic etiology of HAPE and can identify potentially novel mutations that may cause protein instability and may contribute to the development of HAPE. MATERIALS AND METHODS: A total of 50 unrelated HAPE patients were examined using WES, and the available bioinformatics tools were used to perform an analysis of exonic regions. Using the Phenolyzer program, disease candidate gene analysis was carried out. SIFT, PolyPhen-2, Mutation Taster, CADD, DANN, and I-Mutant software were used to assess the effects of genetic variations on protein function. RESULTS: The results showed that rs368502694 (p. R1022Q) located in NOS3, rs1595850639 (p. G61S) located in MYBPC3, and rs1367895529 (p. R333H) located in ITGAV were correlated with a high risk of HAPE, and thus could be regarded as potential genetic variations associated with HAPE. CONCLUSION: WES was used in this study for the first time to directly screen genetic variations related to HAPE. Notably, our study offers fresh information for the subsequent investigation into the etiology of HAPE.


Asunto(s)
Mal de Altura , Edema Pulmonar , Humanos , Edema Pulmonar/genética , Altitud , Secuenciación del Exoma , Mal de Altura/genética
3.
Heart Fail Clin ; 19(1): 89-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36435576

RESUMEN

High-altitude pulmonary edema (HAPE) is the main cause of nontraumatic death at high altitude. HAPE development is not only related to the mode and speed of ascent and the maximum altitude reached, but also individual susceptibility plays an important role. In susceptible individuals, hypoxic pulmonary vasoconstriction leads to exaggerated elevated pulmonary arterial pressures and capillary leakage in the lungs. Thus, this review provides an overview of studies investigating the genetic background in HAPE susceptibles by focusing on specific variants, entire genes, genome-wide signatures, or family studies.


Asunto(s)
Mal de Altura , Hipertensión Pulmonar , Edema Pulmonar , Humanos , Altitud , Edema Pulmonar/genética , Mal de Altura/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/complicaciones
4.
J Biomol Struct Dyn ; 41(11): 5183-5198, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35666092

RESUMEN

High altitude pulmonary edema (HAPE) is a life threatening non-cardiogenic pulmonary edema that occurs in an otherwise healthy individuals travelling to altitude above 2500 m. Earlier studies have reported association of mutations in nuclear (nDNA) and mitochondrial DNA (mtDNA) with HAPE susceptibility. However, the molecular mechanisms involved in the pathobiology of HAPE have not been fully understood. The present study investigates the genetic predisposition to HAPE by analyzing the mtDNA mutations in HAPE susceptibles (n = 23) and acclimatized controls (n = 23) using next generation sequencing. Structural analysis of mutations was done using SWISS Model server and stability was determined using ΔΔG values. Meta-analysis of GSE52209 dataset was done to identify differentially expressed genes (DEGs) in HAPE susceptibles and acclimatized controls. Fourteen non-synonymous, conserved and pathogenic mutations were predicted using SIFT and PolyPhen scoring in protein coding genes, whereas six mutations in mt-tRNA genes showed association with HAPE (p ≤ 0.05). The structural analysis of these mutations revealed conformational changes in critical regions in Complexes I-V which are involved in subunit assembly and proton pumping activity. The protein-protein interaction network analysis of DEGs showed that HIF1α, EGLN2, EGLN3, PDK1, TFAM, PPARGC1α and NRF1 genes form highly interconnected cluster. Further, pathway enrichment analysis using DAVID revealed that "HIF-1 signaling", "oxidative phosphorylation" and "Metabolic pathways" had strong association with HAPE. Based on the findings it appears that the identified mtDNA mutations may be a potential risk factor in development of HAPE with the associated pathways providing mechanistic insight into the understanding of pathobiology of HAPE and sites for development of therapeutic targets.Communicated by Ramaswamy H. Sarma.


Asunto(s)
ADN Mitocondrial , Edema Pulmonar , Humanos , ADN Mitocondrial/genética , Altitud , Edema Pulmonar/genética , Edema Pulmonar/metabolismo , Mutación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética
5.
Eur J Med Res ; 27(1): 231, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333771

RESUMEN

Acute lung injury (ALI), a prevalent complication of severe acute pancreatitis (SAP), is also a leading contributor to respiratory failure and even death of SAP patients. Here, we intended to investigate the function and mechanism of stellate ganglion block (SGB) in ameliorating SAP-induced ALI (SAP-ALI). We engineered an SAP-ALI model in rats and treated them with SGB. HE staining and the dry and wet method were implemented to evaluate pathological alterations in the tissues and pulmonary edema. The rats serum changes of the profiles of TNF-α, IL-6, IL-1ß, and IL-10 were examined. The profiles of miR-155-5p and SOCS5/JAK2/STAT3 were detected. Functional assays were performed for confirming the role of miR-155-5p in modulating the SOCS5/JAK2/STAT3 pathway in pulmonary epithelial cells. Our findings revealed that SGB vigorously alleviated SAP rat lung tissue damage and lung edema and lessened the generation of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß. SGB enhanced SOCS5 expression, hampered miR-155-5p, and suppressed JAK2/STAT3 pathway activation. As evidenced by mechanism studies, miR-155-5p targeted the 3'UTR of SOCS5 and repressed its expression, hence resulting in JAK2/STAT3 pathway activation. During animal trials, we discovered that SGB ameliorated SAP-ALI, boosted SOCS5 expression, and mitigated the levels of pro-inflammatory factors and miR-155-5p in the plasma. In vitro, miR-155-5p overexpression substantially facilitated pulmonary epithelial cell apoptosis, inflammation, and JAK2/STAT3 pathway activation and restrained SOCS5 expression. All in all, our work hinted that SGB could modulate the miR-155-5p/SOCS5/JAK2/STAT3 axis to alleviate SAP-ALI.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Pancreatitis , Edema Pulmonar , Ratas , Animales , Pancreatitis/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Enfermedad Aguda , Ganglio Estrellado/metabolismo , Ganglio Estrellado/patología , Lesión Pulmonar Aguda/genética , Edema Pulmonar/genética , MicroARNs/genética , MicroARNs/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/efectos adversos
6.
Clin Epigenetics ; 14(1): 123, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180894

RESUMEN

BACKGROUND: High-altitude (HA, 2500 m) hypoxic exposure evokes a multitude of physiological processes. The hypoxia-sensing genes though influence transcriptional output in disease susceptibility; the exact regulatory mechanisms remain undetermined in high-altitude pulmonary edema (HAPE). Here, we investigated the differential DNA methylation distribution in the two genes encoding the oxygen-sensing HIF-prolyl hydroxylases, prolyl hydroxylase domain protein 2 (PHD2) and factor inhibiting HIF-1α and the consequent contributions to the HAPE pathophysiology. METHODS: Deep sequencing of the sodium bisulfite converted DNA segments of the two genes, Egl nine homolog 1 (EGLN1) and Hypoxia Inducible Factor 1 Subunit Alpha Inhibitor (HIF1AN), was conducted to analyze the differential methylation distribution in three study groups, namely HAPE-patients (HAPE-p), HAPE-free sojourners (HAPE-f) and healthy HA natives (HLs). HAPE-p and HAPE-f were permanent residents of low altitude (< 200 m) of North India who traveled to Leh (3500 m), India, and were recruited through Sonam Norboo Memorial (SNM) hospital, Leh. HLs were permanent residents of altitudes at and above 3500 m. In addition to the high resolution, bisulfite converted DNA sequencing, gene expression of EGLN1 and HIF1AN and their plasma protein levels were estimated. RESULTS: A significantly lower methylation distribution of CpG sites was observed in EGLN1 and higher in HIF1AN (P < 0.01) in HAPE-p compared to the two control groups, HAPE-f and HLs. Of note, differential methylation distribution of a few CpG sites, 231,556,748, 231,556,804, 231,556,881, 231,557,317 and 231,557,329, in EGLN1 were significantly associated with the risk of HAPE (OR = 4.79-10.29; P = 0.048-004). Overall, the methylation percentage in EGLN1 correlated with upregulated plasma PHD2 levels (R = - 0.36, P = 0.002) and decreased peripheral blood oxygen saturation (SpO2) levels (R = 0.34, P = 0.004). We also identified a few regulatory SNPs in the DNA methylation region of EGLN1 covering chr1:231,556,683-231,558,443 suggestive of the functional role of differential methylation distribution of these CpG sites in the regulation of the genes and consequently in the HIF-1α signaling. CONCLUSIONS: Significantly lower methylation distribution in EGLN1 and the consequent physiological influences annotated its functional epigenetic relevance in the HAPE pathophysiology.


Asunto(s)
Altitud , Edema Pulmonar , Mal de Altura , Proteínas Sanguíneas/genética , ADN/metabolismo , Metilación de ADN , Humanos , Hipertensión Pulmonar , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Oxígeno , Saturación de Oxígeno , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo , Edema Pulmonar/genética , Edema Pulmonar/metabolismo
7.
Gene ; 834: 146590, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35623478

RESUMEN

BACKGROUND: High altitude pulmonary edema (HAPE) is a fatal disease of fluid accumulation in the lungs resulting from acute exposure to high altitude and hypoxia. Now research has found that changes in DNA methylation are genetically related. We investigated the effects of hypermethylation and hypomethylation on HAPE. METHODS: We conducted an analysis of methylation in Chinese HAPE patients (53 patients and 53 controls). EpiTYPER of the Sequenom MassARRAY platform was used to detect DNA methylation at 43 CpG sites in CYP2S1. RESULTS: We used probability analysis to find that only five CPG sites were not methylated. CYP2S1_1_CpG_11, CYP2S1_2_CpG_11, CYP2S1_2_CpG_12, CYP2S1_2_CpG_13, and CYP2S1_3_CPG_11.12 in the case group were lower than those in the control group. Our results showed that, 12 CpG sites had different methylation levels in HAPE patients compared with healthy controls, and only CYP2S1_1_CPG_1.2.3 (OR = 2.920, 95 %Cl = 1.228-6.946, p = 0.015) had a higher risk of hypermethylation than hypomethylation. ROC curve analysis showed that the methylation level of CYP2S1 could effectively predict the risk of HAPE patients. CONCLUSION: Our results showed that several CpG sites in the promoter regions of CYP2S1 gene were abnormally methylated in HAPE patients.


Asunto(s)
Mal de Altura , Edema Pulmonar , Altitud , Mal de Altura/genética , Sistema Enzimático del Citocromo P-450/genética , Metilación de ADN , Humanos , Hipertensión Pulmonar , Edema Pulmonar/genética
8.
Cells ; 10(11)2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34831290

RESUMEN

The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.


Asunto(s)
Células Endoteliales/patología , Estrés Oxidativo , Síndrome de Dificultad Respiratoria/patología , Virosis/patología , Epigénesis Genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Edema Pulmonar/genética , Edema Pulmonar/patología , Edema Pulmonar/virología , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/virología , Virus Sincitiales Respiratorios/patogenicidad , SARS-CoV-2/patogenicidad , Virosis/genética , Virosis/virología
9.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576058

RESUMEN

Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1ß, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.


Asunto(s)
Lesión Pulmonar Aguda/genética , Infecciones por Coxsackievirus/genética , Enfermedad de Boca, Mano y Pie/genética , Edema Pulmonar/genética , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/virología , Animales , Apoptosis/genética , Claudina-5/genética , Infecciones por Coxsackievirus/complicaciones , Infecciones por Coxsackievirus/patología , Infecciones por Coxsackievirus/virología , Citocinas/genética , Modelos Animales de Enfermedad , Células Endoteliales/patología , Células Endoteliales/virología , Enfermedad de Boca, Mano y Pie/complicaciones , Enfermedad de Boca, Mano y Pie/patología , Enfermedad de Boca, Mano y Pie/virología , Humanos , Ratones , Ocludina/genética , Edema Pulmonar/complicaciones , Edema Pulmonar/patología , Edema Pulmonar/virología , Uniones Estrechas/genética , Uniones Estrechas/patología , Proteína de la Zonula Occludens-1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
10.
Biomed Res Int ; 2021: 6733341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34337047

RESUMEN

The study is aimed at investigating the changes in expressions of heat shock protein 27 (HSP27), HSP70, and soluble glycoprotein (SGP) in heart failure (HF) rats complicated with pulmonary edema and exploring their potential correlations with cardiopulmonary functions. The rat model of HF was established, and the rats were divided into HF model group (model group, n = 15) and normal group (n = 15). After successful modeling, MRI and ECG were applied to detect the cardiac function indexes of the rats. The myocardial function indexes were determined, the injury of myocardial tissues was observed via hematoxylin and eosin (HE) staining, and the content of myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α) in the blood was measured. The partial pressure of oxygen (PaO2) and oxygenation index (OI) were observed, and the airway resistance and lung compliance were examined. Moreover, quantitative polymerase chain reaction (qPCR) and Western blotting assay were performed to detect the gene and protein expression levels of HSP27, HSP70, and SGP130. The levels of serum creatine kinase (CK), creatine (Cr), and blood urea nitrogen (BUN) were increased markedly in model group (p < 0.05). Model group had notably decreased fractional shortening (FS) and ejection fraction (EF) compared with normal group (p < 0.05), while the opposite results of left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) were detected. In model group, the content of serum MPO, MMP-9, and TNF-α was raised remarkably (p < 0.05), OI and PaO2 were reduced notably (p < 0.05), the airway resistance was increased (p < 0.05), and the lung compliance was decreased (p < 0.05). Obviously elevated gene and protein expression levels of HSP27, HSP70, and SGP130 were detected in model group (p < 0.05). The expressions of HSP27, HSP70, and SGP130 are increased in HF rats complicated with pulmonary edema, seriously affecting the cardiopulmonary functions of the rats.


Asunto(s)
Regulación de la Expresión Génica , Glicoproteínas/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas HSP70 de Choque Térmico/genética , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Edema Pulmonar/complicaciones , Edema Pulmonar/fisiopatología , Resistencia de las Vías Respiratorias , Animales , Nitrógeno de la Urea Sanguínea , Adaptabilidad , Creatina Quinasa/sangre , Creatinina/sangre , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Oxígeno/metabolismo , Presión Parcial , Peroxidasa/metabolismo , Edema Pulmonar/sangre , Edema Pulmonar/genética , Ratas Sprague-Dawley , Solubilidad , Factor de Necrosis Tumoral alfa/metabolismo
11.
Hum Mol Genet ; 30(18): 1734-1749, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34007987

RESUMEN

High-altitude (HA, >2500 m) hypoxic exposure evokes several physiological processes that may be abetted by differential genetic distribution in sojourners, who are susceptible to various HA disorders, such as high-altitude pulmonary edema (HAPE). The genetic variants in hypoxia-sensing genes influence the transcriptional output; however the functional role has not been investigated in HAPE. This study explored the two hypoxia-sensing genes, prolyl hydroxylase domain protein 2 (EGLN1) and factor inhibiting HIF-1α (HIF1AN) in HA adaptation and maladaptation in three well-characterized groups: highland natives, HAPE-free controls and HAPE-patients. The two genes were sequenced and subsequently validated through genotyping of significant single nucleotide polymorphisms (SNPs), haplotyping and multifactor dimensionality reduction. Three EGLN1 SNPs rs1538664, rs479200 and rs480902 and their haplotypes emerged significant in HAPE. Blood gene expression and protein levels also differed significantly (P < 0.05) and correlated with clinical parameters and respective alleles. The RegulomeDB annotation exercises of the loci corroborated regulatory role. Allele-specific differential expression was evidenced by luciferase assay followed by electrophoretic mobility shift assay, liquid chromatography with tandem mass spectrometry and supershift assays, which confirmed allele-specific transcription factor (TF) binding of FUS RNA-binding protein (FUS) with rs1538664A, Rho GDP dissociation inhibitor 1 (ARHDGIA) with rs479200T and hypoxia upregulated protein 1 (HYOU1) with rs480902C. Docking simulation studies were in sync for the DNA-TF structural variations. There was strong networking among the TFs that revealed physiological consequences through relevant pathways. The two hydroxylases appear crucial in the regulation of hypoxia-inducible responses.


Asunto(s)
Mal de Altura , Sitios Genéticos , Hipertensión Pulmonar , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Oxigenasas de Función Mixta , Polimorfismo de Nucleótido Simple , Edema Pulmonar , Proteínas Represoras , Células A549 , Altitud , Mal de Altura/enzimología , Mal de Altura/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/biosíntesis , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Masculino , Oxigenasas de Función Mixta/biosíntesis , Oxigenasas de Función Mixta/genética , Edema Pulmonar/enzimología , Edema Pulmonar/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factores de Riesgo
12.
Aging (Albany NY) ; 13(3): 4452-4467, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33495402

RESUMEN

Paraquat poisoning causes lung fibrosis, which often results in long-term pulmonary dysfunction. Lung fibrosis has been attributed to collagens accumulation, but the underlying regulatory pathway remains unclear. Here we use the genetically tractable C. elegans as a model to study collagen gene transcription in response to paraquat. We find that paraquat robustly up-regulates collagen gene transcription, which is dependent on KRI-1, a poorly studied protein homologous to human KRIT1/CCM1. KRI-1 knockdown prevents paraquat from activating the oxidative stress response transcription factor SKN-1/Nrf2, resulting in reduced collagen transcription and increased paraquat sensitivity. Using human lung fibroblasts (MRC-5), we confirm that both KRIT1 and Nrf2 are required for collagen transcription in response to paraquat. Nrf2 hyper-activation by KEAP1 knockdown bypasses KRIT1 to up-regulate collagen transcription. Our findings on the regulation of collagen gene transcription by paraquat could suggest potential strategies to treat pulmonary fibrosis caused by paraquat poisoning.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Colágeno/genética , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Estrés Oxidativo/genética , Edema Pulmonar/genética , Fibrosis Pulmonar/genética , Lesión Pulmonar Aguda , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Herbicidas/toxicidad , Proteína KRIT1/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Paraquat/toxicidad , Fibrosis Pulmonar/inducido químicamente , Factores de Transcripción/metabolismo
13.
J Biomol Struct Dyn ; 39(1): 294-309, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31902292

RESUMEN

The human endothelial nitric oxide synthase (NOS3) is 28 Kbp at 7q36.1 and encodes protein comprising of 1280 amino acids. Being a major source of nitric oxide, the enzyme is crucial to the vascular homeostasis and thereby to be an important pharmaceutical target. We hence have been investigating this molecule in a high-altitude disorder namely, high-altitude pulmonary edema (HAPE). We performed a genome-wide association study (GWAS) in a case-control design of sojourners that included healthy controls and HAPE patients (n = 200) each. Four NOS3 missense SNPs i.e. rs1799983 (E298D), rs3918232 (V827M), rs3918201 (R885M) and rs3918234 (Q982L), were associated significantly with HAPE (P-value < 0.05). Furthermore, extensive in silico analyses were performed to predict the detrimental effect of the four variant types and their three most relevant co-factors namely, heme, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) that are accountable for amendment of protein stability leading to structural de-construction. Subsequently, we validated the findings in a larger sample size of the two study groups. HAPE patients had a higher frequency of the four variants and significantly decreased levels of circulating nitric oxide (NO) (P-value < 0.001). The in silico and human subjects findings complement each other. This study explored the impact of HAPE-associated NOS3 variants with its protein structure stability and holds promise to be current and future drug targets.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Edema Pulmonar , Altitud , Estudio de Asociación del Genoma Completo , Humanos , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo III/genética , Edema Pulmonar/genética
14.
PLoS One ; 15(11): e0241215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33166306

RESUMEN

INTRODUCTION: Ritodrine is one of the most commonly used tocolytics in preterm labor, acting as a ß2-adrenergic agonist that reduces intracellular calcium levels and prevents myometrial activation. Ritodrine infusion can result in serious maternal complications, and pulmonary edema is a particular concern among these. The cause of pulmonary edema following ritodrine treatment is multifactorial; however, the contributing genetic factors remain poorly understood. This study investigates the genetic variants associated with ritodrine-induced pulmonary edema. METHODS: In this case-control study, 16 patients who developed pulmonary edema during ritodrine infusion [case], and 16 pregnant women who were treated with ritodrine and did not develop pulmonary edema [control] were included. The control pregnant women were selected after matching for plurality and gestational age at the time of tocolytic use. Maternal blood was collected during admission for tocolytic treatment, and whole exome sequencing was performed with the stored blood samples. RESULTS: Gene-wise variant burden (GVB) analysis resulted in a total of 71 candidate genes by comparing the cumulative effects of multiple coding variants for 19729 protein-coding genes between the patients with pulmonary edema and the matched controls. Subsequent data analysis selected only the statistically significant and deleterious variants compatible with ritodrine-induced pulmonary edema. Two final candidate variants in CPT2 and ADRA1A were confirmed by Sanger sequencing. CONCLUSIONS: We identified new potential variants in genes that play a role in cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) regulation, which supports their putative involvement in the predisposition to ritodrine-induced pulmonary edema in pregnant women.


Asunto(s)
Variación Genética/genética , Edema Pulmonar/inducido químicamente , Edema Pulmonar/genética , Ritodrina/efectos adversos , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Miometrio/efectos de los fármacos , Trabajo de Parto Prematuro/tratamiento farmacológico , Trabajo de Parto Prematuro/genética , Embarazo , Tocolíticos/efectos adversos
15.
Biomed Res Int ; 2020: 3049302, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33145344

RESUMEN

The present study was to investigate the effect of mesenteric lymph duct drainage on lung inflammatory response, histological alteration, and endothelial cell apoptosis in septic rats. Animals were randomly assigned into four groups: control, sham surgery, sepsis, and sepsis plus mesenteric lymph drainage. We used the colon ascendens stent peritonitis (CASP) procedure to induce the septic model in rats, and mesenteric lymph drainage was performed with a polyethylene (PE) catheter inserted into mesenteric lymphatic. The animals were sacrificed at the end of CASP in 6 h. The mRNA expression levels of inflammatory mediators were measured by qPCR, and the histologic damage were evaluated by the pathological score method. It was found that mesenteric lymph drainage significantly reduced the expression of TNF-α, IL-1ß, and IL-6 mRNA in the lung. Pulmonary interstitial edema and infiltration of inflammatory cells were alleviated by mesenteric lymph drainage. Moreover, increased mRNA levels of TNF-α, IL-1ß, IL-6 mRNA, and apoptotic rate were observed in PMVECs treated with septic lymph. These results indicate that mesenteric lymph duct drainage significantly attenuated lung inflammatory injury by decreasing the expression of pivotal inflammatory mediators and inhibiting endothelial apoptosis to preserve the pulmonary barrier function in septic rats.


Asunto(s)
Factores Biológicos/farmacología , Peritonitis/terapia , Neumonía/terapia , Edema Pulmonar/terapia , Sepsis/terapia , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Modelos Animales de Enfermedad , Drenaje/métodos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Linfa/química , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Masculino , Mesenterio , Peritonitis/complicaciones , Peritonitis/genética , Peritonitis/patología , Peroxidasa/genética , Peroxidasa/metabolismo , Neumonía/complicaciones , Neumonía/genética , Neumonía/patología , Cultivo Primario de Células , Edema Pulmonar/complicaciones , Edema Pulmonar/genética , Edema Pulmonar/patología , Ratas , Ratas Sprague-Dawley , Sepsis/complicaciones , Sepsis/genética , Sepsis/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Trends Immunol ; 41(10): 856-859, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32863134

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mainly affects the lungs. Sarcoidosis is an autoinflammatory disease characterized by the diffusion of granulomas in the lungs and other organs. Here, we discuss how the two diseases might involve some common mechanistic cellular pathways around the regulation of autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Edema Pulmonar/tratamiento farmacológico , Sarcoidosis/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Autofagia/genética , Azitromicina/uso terapéutico , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Cloroquina/uso terapéutico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Isoniazida/uso terapéutico , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/genética , Neumonía Viral/virología , Edema Pulmonar/epidemiología , Edema Pulmonar/genética , Edema Pulmonar/virología , Rifampin/uso terapéutico , SARS-CoV-2 , Sarcoidosis/epidemiología , Sarcoidosis/genética , Sarcoidosis/virología , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/virología , Índice de Severidad de la Enfermedad
17.
Arch. bronconeumol. (Ed. impr.) ; 56(6): 360-364, jun. 2020. tab
Artículo en Inglés | IBECS | ID: ibc-198143

RESUMEN

BACKGROUND: High-altitude pulmonary edema (HAPE) is a kind of non-cardiogenic edema with high incidence and life-threatening. This study was designed to explore the association of LINC-PINT and LINC00599 polymorphisms with HAPE susceptibility. METHODS: This study included 244 HAPE patients and 243 age-, sex-matched healthy controls from the Chinese population. The genotypes of polymorphisms were detected using the Agena MassARRAY. The relationship between polymorphisms and HAPE risk was evaluated using a chi2 test with an odds ratio (OR) and 95% confidence intervals (CIs) in multiple genetic models. RESULTS: We observe a significant association between the rs157928 and decreased HAPE risk in genotype model (OR = 0.65, 95% CI = 0.43-0.98, p = 0.038). The subgroup analysis results indicated that rs2272026 was associated with a decreased risk of HAPE in younger patients with age ≤ 32 (codominant model: p = 0.006; recessive model: p = 0.005 additive model: p = 0.018; and allele model: p = 0.012; rs72625676, codominant model: p = 0.038; recessive model: p = 0.037). Among patients older than 32 years, there was a significantly increased risk of HAPE associated with the rs2272026 and rs1962430 (rs2272026: genotype model: p = 0.049; recessive model: p = 0.029; rs1962430: genotype model: p = 0.024; recessive model: p = 0.020). Nevertheless, rs157928 had relationship with significantly reducing the risk of HAPE in the genotype model (p = 0.018). CONCLUSION: Our study suggests that LINC-PINT and LINC00599 polymorphisms are associated with HAPE susceptibility in Chinese population


ANTECEDENTES: El edema pulmonar de altitud (EPA) es un tipo de edema no cardiogénico con una incidencia alta y es potencialmente mortal. Este estudio se diseñó para explorar la asociación entre los polimorfismos de LINC-PINT y LINC00599 y la susceptibilidad al EPA. MÉTODOS: Este estudio incluyó a 244 pacientes con EPA y 243 controles sanos de la misma edad y sexo, todos de origen chino. Los genotipos de los polimorfismos se detectaron utilizando el MassARRAY de AgenaTM La relación entre los polimorfismos y el riesgo de EPA se evaluó utilizando el test de la CHi2 con el odds ratio (OR) e intervalos de confianza (IC) del 95% en múltiples modelos genéticos. RESULTADOS: Observamos una asociación significativa entre el rs157928 y una disminución del riesgo de EPA en el modelo genotípico (OR = 0,65, IC del 95% = 0,43-0,98, p = 0,038). Los resultados de los análisis por subgrupos indicaron que el rs2272026 se asociaba a una disminución del riesgo de EPA en pacientes jóvenes de ≤ 32 años (modelo codominante: p = 0,006; modelo recesivo: p = 0,005; modelo aditivo: p = 0,018; y modelo por alelos: p = 0,012 para rs72625676, modelo concomitante: p = 0,038; modelo recesivo: p = 0,037). Entre los pacientes mayores de 32 años, se encontró un riesgo aumentado de EPA de manera significativa asociado a los rs2272026 y rs1962430 (rs2272026: modelo genotípico: p = 0,049; modelo recesivo: p = 0,029; rs1962430: modelo genotípico: p = 0,024; modelo recesivo: p = 0,020). Sin embargo, el rs157928 tenía relación con una reducción significativa del riesgo de EPA en el modelo genotípico (p = 0,018). CONCLUSIÓN: Nuestro estudio sugiere que los polimorfismos de LINC-PINT y LINC00599 están asociados a la susceptibilidad de EPA en la población china


Asunto(s)
Humanos , Masculino , Femenino , Adulto Joven , Adulto , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Polimorfismo Genético , Edema Pulmonar/genética , Altitud , Estudios de Casos y Controles , Genotipo , China
18.
J Appl Physiol (1985) ; 128(5): 1432-1438, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324476

RESUMEN

Heritable pulmonary arterial hypertension (PAH) is an autosomal dominantly inherited disease caused by mutations in the bone morphogenetic protein receptor 2 (BMPR2) gene and/or genes of its signaling pathway in ~85% of patients. A genetic predisposition to high-altitude pulmonary edema (HAPE) has long been suspected because of familial HAPE cases, but very few possibly disease-causing mutations have been identified to date. This minireview provides an overview of genetic analyses investigating common polymorphisms in HAPE-susceptible patients and the directed identification of disease-causing mutations in PAH patients. Increased pulmonary artery pressure is highlighted as an overlapping clinical feature of the two diseases. Moreover, studies showing increased pulmonary artery pressures in HAPE-susceptible patients during exercise or hypoxia as well as in healthy BMPR2 mutation carriers are illustrated. Finally, high-altitude pulmonary hypertension is introduced and future research perspectives outlined.


Asunto(s)
Mal de Altura , Hipertensión Pulmonar , Edema Pulmonar , Altitud , Mal de Altura/genética , Humanos , Hipertensión Pulmonar/genética , Hipoxia , Edema Pulmonar/genética
19.
J Renin Angiotensin Aldosterone Syst ; 21(1): 1470320319900039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32106754

RESUMEN

OBJECTIVE: The purpose of the study was to investigate the association between angiotensin-converting enzyme gene insertion/deletion polymorphism and high-altitude pulmonary edema. METHODS: A systematic search for relevant literature was performed in MEDLINE, CNKI, and EMBASE. The pooled odds ratios and their corresponding 95% confidence intervals were calculated in STATA 12.0 software. RESULTS: Seven studies, with a total of 304 patients and 564 controls, qualified for the inclusion in the analysis. There was no significant association between angiotensin-converting enzyme insertion/deletion polymorphism and high-altitude pulmonary edema risk in the total population (DD vs II: odds ratio=1.07, 95% confidence interval 0.52-2.24; DI vs II: odds ratio=1.12, 0.85-1.49; dominant model: odds ratio=1.07, 0.83-1.40; recessive model: odds ratio=0.96, 0.53-1.77). Subgroup analysis according to race also revealed no significant correlation between angiotensin-converting enzyme gene insertion/deletion polymorphism and high-altitude pulmonary edema. CONCLUSIONS: Our findings suggest that angiotensin-converting enzyme insertion/deletion polymorphism does not contribute to the risk of high-altitude pulmonary edema. Larger, well-designed studies are required to further validate these results.


Asunto(s)
Altitud , Mutación INDEL/genética , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , Edema Pulmonar/enzimología , Edema Pulmonar/genética , Intervalos de Confianza , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Oportunidad Relativa , Sesgo de Publicación
20.
High Alt Med Biol ; 21(1): 28-36, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31976756

RESUMEN

Background: Exaggerated pulmonary arterial hypertension (PAH) is a hallmark of high-altitude pulmonary edema (HAPE). The objective of this study was therefore to investigate genetic predisposition to HAPE by analyzing PAH candidate genes in a HAPE-susceptible (HAPE-S) family and in unrelated HAPE-S mountaineers. Materials and Methods: Eight family members and 64 mountaineers were clinically and genetically assessed using a PAH-specific gene panel for 42 genes by next-generation sequencing. Results: Two otherwise healthy family members, who developed re-entry HAPE at 3640 m during childhood, carried a likely pathogenic missense mutation (c.1198T>G p.Cys400Gly) in the Janus Kinase 2 (JAK2) gene. One of them progressed to a mild form of PAH at the age of 23 years. In two of the 64 HAPE-S mountaineers likely pathogenic variants have been detected, one missense mutation in the Cytochrome P1B1 gene, and a deletion in the Histidine-Rich Glycoprotein (HRG) gene. Conclusions: This is the first study identifying an inherited missense mutation of a gene related to PAH in a family with re-entry HAPE showing a progression to borderline PAH in the index patient. Likely pathogenic variants in 3.1% of HAPE-S mountaineers suggest a genetic predisposition in some individuals that might be linked to PAH signaling pathways.


Asunto(s)
Mal de Altura , Hipertensión Pulmonar , Edema Pulmonar , Adulto , Altitud , Mal de Altura/genética , Niño , Predisposición Genética a la Enfermedad , Humanos , Hipertensión Pulmonar/genética , Edema Pulmonar/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...