Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Biochem Pharmacol ; 209: 115452, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792038

RESUMEN

It is well demonstrated the key role of Eph-ephrin system, specifically of EphA2 receptor, in supporting tumor growth, invasion, metastasis and neovascularization. We previously identified FXR agonists as eligible antagonists of Eph-ephrin system. Herein we characterize new commercially available FXR (Farnesoid X Receptor) agonists as potential Eph ligands including Cilofexor, Nidufexor, Tropifexor, Turofexorate isopropyl and Vonafexor. Our exploration based on molecular modelling investigations and binding assays shows that Cilofexor binds specifically and reversibly to EphA2 receptor with a Ki value in the low micromolar range. Furthermore, Cilofexor interferes with the phosphorylation of EphA2 and the cell retraction and rounding in PC3 prostate cancer cells, both events depending on EphA2 activation. In conclusion, we can confirm that target hopping can be a successful approach to discover new moiety of protein-protein inhibitors.


Asunto(s)
Neoplasias de la Próstata , Receptor EphA2 , Masculino , Humanos , Receptor EphA2/metabolismo , Efrina-A1/metabolismo , Unión Proteica , Efrinas/metabolismo
2.
Curr Med Chem ; 30(20): 2340-2353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35996244

RESUMEN

BACKGROUND: Eph receptors tyrosine kinase (RTK) were identified in 1987 from hepatocellular carcinoma cell lines and were the largest known subfamily of RTK. Eph receptors can be divided into two categories, EphA and EphB, based on their structure and receptor-ligand specificity. EphA can be divided into 10 species (EphA 1-10) and EphB into 6 species (EphB1-6). Similarly, the ligands of Eph receptors are Ephrins. Ephrins also can be divided into Ephrin A and Ephrin B, of which there are five species(Ephrin-A1-5) and three species(Ephrin-B1-3). Among the Eph receptors, EphA1 has been the least studied so far. As far as we know, Eph receptors are involved in multiple pathologies, including cancer progression, tumor angiogenesis, intestinal environmental stability, the lymph node system, neurological disease, and inhibition of nerve regeneration after injury. There is a link between EphA1, integrin and ECM- related signal pathways. Ephrin-A1 is a ligand of the EphA1 receptor. EphA1 and ephrin-A1 functions are related to tumor angiogenesis. EphA1 and ephrin-A1 also play roles in gynecological diseases. Ephrin-A1 and EphA1 receptors regulate the follicular formation, ovulation, embryo transport, implantation and placental formation, which are of great significance for the occurrence of gynecological tumor diseases. EphA1 has been identified as an oncoprotein in various tumors and has been associated with the prognosis of various tumors in recent years. EphA1 is considered a driver gene in tumor genomics. There are significant differences in EphA1 expression levels in different types of normal tissues and tumors and even in different stages of tumor development, suggesting its functional diversity. Changes at the gene level in cell biology are often used as biological indicators of cancer, known as biomarkers, which can be used to provide diagnostic or prognostic information and are valuable for improving the detection, monitoring and treatment of tumors. However, few prognostic markers can selectively predict clinically significant tumors with poor prognosis. These malignancies are more likely to progress and lead to death, requiring more aggressive treatment. Currently available treatments for advanced cancer are often ineffective, and treatment options are mainly palliative. Therefore, early identification and treatment of those at risk of developing malignant tumors are crucial. Although pieces of evidence have shown the role of EphA1 in tumorigenesis and development, its specific mechanism is still unknown to a great extent. OBJECTIVE: This review reveals the changes and roles of EphA1 in many tumors and cancers. The change of EphA1 expression can be used as a biological marker of cancer, which is valuable for improving tumor detection, monitoring and treatment and can be applied to imaging. Studies have shown that structural modification of EphA1 could make it an effective new drug. EphA1 is unique in that it can be considered a prognostic marker in many tumors and is of important meaning for clinical diagnosis and operative treatment. At the same time, the study of the specific mechanism of EphA1 in tumors can provide a new way for targeted therapy. METHODS: Relevant studies were retrieved and collected through the PubMed system. After determining EphA1 as the research object, by analyzing research articles on EphA1 in the PubMed system in recent 10 years, we found that EphA1 was closely connected with the occurrence and development of tumors and further determined the references according to the influencing factors for review and analysis. RESULTS: EphA1 has been identified as a cancer protein in various tumors, such as hepatocellular carcinoma, nasopharyngeal carcinoma, ovarian cancer, gastric cancer, colorectal cancer, clear cell renal cell carcinoma, esophageal squamous cell carcinoma, breast cancer, prostate cancer and uveal melanoma. EphA1 is abnormally expressed in these tumor cells, which mainly plays a role in cancer progression, tumor angiogenesis, intestinal environmental stability, the lymph node system, nervous system diseases and gynecological diseases. In a narrow sense, EphA1 is especially effective in breast cancer in terms of gynecological diseases. However, the specific mechanism of EphA1 leading to the change of cancer cells in some tumors is not clear, which needs further research and exploration. CONCLUSION: RTK EphA1 can be used as a biomarker for tumor diagnosis (especially a prognostic marker), an indispensable therapeutic target for new anti-tumor therapies, and a novel anti-tumor drug.


Asunto(s)
Neoplasias de la Mama , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Receptor EphA2 , Embarazo , Masculino , Humanos , Femenino , Receptor EphA1/genética , Receptor EphA1/análisis , Receptor EphA1/metabolismo , Efrina-A1/metabolismo , Ligandos , Placenta/química , Placenta/metabolismo , Efrinas/genética , Efrinas/análisis , Efrinas/metabolismo , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Biomarcadores , Receptor EphA2/metabolismo
3.
Curr Oncol ; 29(10): 7680-7694, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36290884

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a type of progressive and distant metastatic tumor. Targeting anti-angiogenic genes could effectively hinder ESCC development and metastasis, whereas ESCC locating on the upper or the lower esophagus showed different response to the same clinical treatment, suggesting ESCC location should be taken into account when exploring new therapeutic targets. In the current study, to find novel anti-angiogenic therapeutic targets, we identified endothelial cell subsets in upper and lower human ESCC using single-cell RNA sequencing (scRNA-seq), screened differentially expressed genes (DEGs), and performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results showed that common DEGs shared in the upper and the lower endothelial cells mainly are involved in vessel development, angiogenesis, and cell motility of endothelial cells by regulating PI3K-AKT, Rap1, Ras, TGF-beta, and Apelin signaling pathways. The critical regulatory genes were identified as ITGB1, Col4A1, Col4A2, ITGA6, LAMA4, LAMB1, LAMC1, VWF, ITGA5, THBS1, PDGFB, PGF, RHOC, and CTNNB1. Cell metabolism-relevant genes, e.g., MGST3, PNP, UPP1, and HYAL2 might be the prospective therapeutic targets. Furthermore, we found that DEGs only in the upper endothelial cells, such as MAPK3, STAT3, RHOA, MAPK11, HIF1A, FGFR1, GNG5, GNB1, and ARHGEF12, mainly regulated cell adhesion, structure morphogenesis, and motility through Phospholipase D, Apelin, and VEGF signaling pathways. Moreover, DEGs only in the lower endothelial cells, for instance PLCG2, EFNA1, CALM1, and RALA, mainly regulated cell apoptosis and survival by targeting calcium ion transport through Rap1, Ras, cAMP, Phospholipase D, and Phosphatidylinositol signaling pathways. In addition, the upper endothelial cells showed significant functional diversity such as cytokine-responsive, migratory, and proliferative capacity, presenting a better angiogenic capacity and making it more sensitive to anti-angiogenic therapy compared with the lower endothelial cells. Our study has identified the potential targeted genes for anti-angiogenic therapy for both upper and lower ESCC, and further indicated that anti-angiogenic therapy might be more effective for upper ESCC, which still need to be further examined in the future.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Fosfolipasa D , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Apelina/genética , Apelina/metabolismo , Transcriptoma , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , Efrina-A1/genética , Efrina-A1/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Calcio/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fosfatidilinositoles , Prostaglandinas F
4.
Nat Plants ; 8(9): 1052-1063, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36038656

RESUMEN

Chloroplast biogenesis is crucial in plant development, as it is essential for the transition to autotrophic growth. This process is light-induced and relies on the orchestrated transcription of nuclear and plastid genes, enabling the effective assembly and regulation of the photosynthetic machinery. Here we reveal a new regulation level for this process by showing the involvement of chromatin remodelling in the nuclear control of plastid gene expression for proper chloroplast biogenesis and function. The two Arabidopsis homologues of yeast EPL1 protein, components of the NuA4 histone acetyltransferase complex, are essential for plastid transcription and correct chloroplast development and performance. We show that EPL1 proteins are light-regulated and necessary for concerted expression of nuclear genes encoding most components of chloroplast transcriptional machinery, directly mediating H4K5ac deposition at these loci and promoting the expression of plastid genes required for chloroplast biogenesis. These data unveil a NuA4-mediated mechanism regulating chloroplast biogenesis that links the transcription of nuclear and plastid genomes during chloroplast development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Efrina-A1/genética , Efrina-A1/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Theranostics ; 12(9): 4127-4146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673569

RESUMEN

Rationale: Angiogenesis is a fundamental process of tumorigenesis, growth, invasion and metastatic spread. Extracellular vesicles, especially exosomes, released by primary tumors promote angiogenesis and cancer progression. However, the mechanism underlying the pro-angiogenic potency of cancer cell-derived exosomes remains poorly understood. Methods: Exosomes were isolated from breast cancer cells with high metastatic potential (HM) and low metastatic potential (LM). The pro-angiogenic effects of these exosomes were evaluated by in vitro tube formation assays, wound healing assays, rat arterial ring budding assays and in vivo Matrigel plug assays. Subsequently, RNA sequencing, shRNA-mediated gene knockdown, overexpression of different EPHA2 mutants, and small-molecule inhibitors were used to analyze the angiogenesis-promoting effect of exosomal EPHA2 and its potential downstream mechanism. Finally, xenograft tumor models were established using tumor cells expressing different levels of EPHA2 to mimic the secretion of exosomes by tumor cells in vivo, and the metastasis of cancer cells were monitored using the IVIS Spectrum imaging system and Computed Tomography. Results: Herein, we demonstrated that exosomes produced by HM breast cancer cells can promote angiogenesis and metastasis. EPHA2 was rich in HM-derived exosomes and conferred the pro-angiogenic effect. Exosomal EPHA2 can be transferred from HM breast cancer cells to endothelial cells. Moreover, it can stimulate the migration and tube-forming abilities of endothelial cells in vitro and promote angiogenesis and tumor metastasis in vivo. Mechanistically, exosomal EPHA2 activates the AMPK signaling via the ligand Ephrin A1-dependent canonical forward signaling pathway. Moreover, inhibition of the AMPK signaling impairs exosomal EPHA2-mediated pro-angiogenic effects. Conclusion: Our findings identify a novel mechanism of exosomal EPHA2-mediated intercellular communication from breast cancer cells to endothelial cells in the tumor microenvironment to provoke angiogenesis and metastasis. Targeting the exosomal EPHA2-AMPK signaling may serve as a potential strategy for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Exosomas , MicroARNs , Receptor EphA2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Células Endoteliales/metabolismo , Efrina-A1/metabolismo , Exosomas/metabolismo , Femenino , Humanos , MicroARNs/metabolismo , Neovascularización Patológica/patología , Ratas , Transducción de Señal/genética , Microambiente Tumoral
6.
Hum Cell ; 35(2): 705-720, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35072898

RESUMEN

Cervical cancer is a serious threat to women's health and lives worldwide. The recovery and survival of cervical cancer can be improved by customizing therapy strategies based on individual-specific gene expression patterns. EFNA1 was reported to be dysregulated in many cancers and associated with their overall survivals, but its prognostic value in cervical cancer is still unclear. In this study, we performed analyses on the single-cell and bulk RNA sequencing data to study the role of EFNA1 in cervical cancer. EFNA1 was found to be significantly upregulated in cervical cancer tissue, especially the cancer cell subgroup within tumors, which was verified by immunohistochemistry. Through Cox regressions, we found that high EFNA1 expression is an independent risk factor for cervical cancer. Nomogram analysis indicated that EFNA1 could be a predicting factor for the survival probabilities of cervical cancer. Gene ontology and pathway analyses showed that EFNA1 was involved in many tumorigenesis pathways, protein, and virus productions. These findings suggested that EFNA1 could be a prognostic biomarker and potential therapeutic target for cervical cancer.


Asunto(s)
Efrina-A1 , Neoplasias del Cuello Uterino , Biomarcadores , Biomarcadores de Tumor/genética , Efrina-A1/genética , Efrina-A1/metabolismo , Femenino , Humanos , Pronóstico , Transcriptoma/genética , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética
7.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613532

RESUMEN

Lung cancer (LC) is the leading cause of cancer death in the United States. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest receptor tyrosine kinases (RTKs) family in mammals. EPHs along with their ligands, EPH-family receptor-interacting proteins (ephrins), have been found to be either up- or downregulated in LC cells, hence exhibiting a defining role in LC carcinogenesis and tumor progression. In their capacity as membrane-bound molecules, EPHs/ephrins may represent feasible targets in the context of precision cancer treatment. In order to investigate available therapeutics targeting the EPH/ephrin system in LC, a literature review was conducted, using the MEDLINE, LIVIVO, and Google Scholar databases. EPHA2 is the most well-studied EPH/ephrin target in LC treatment. The targeting of EPHA2, EPHA3, EPHA5, EPHA7, EPHB4, EPHB6, ephrin-A1, ephrin-A2, ephrin-B2, and ephrin-B3 in LC cells or xenograft models not only directly correlates with a profound LC suppression but also enriches the effects of well-established therapeutic regimens. However, the sole clinical trial incorporating a NSCLC patient could not describe objective anti-cancer effects after anti-EPHA2 antibody administration. Collectively, EPHs/ephrins seem to represent promising treatment targets in LC. However, large clinical trials still need to be performed, with a view to examining the effects of EPH/ephrin targeting in the clinical setting.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Efrinas , Neoplasias Pulmonares , Animales , Humanos , Efrina-A1/metabolismo , Efrina-A2 , Efrinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico
8.
Cell Death Dis ; 12(5): 414, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879771

RESUMEN

Tumor metastasis induced by drug resistance is a major challenge in successful cancer treatment. Nevertheless, the mechanisms underlying the pro-invasive and metastatic ability of drug resistance remain elusive. Exosome-mediated intercellular communications between cancer cells and stromal cells in tumor microenvironment are required for cancer initiation and progression. Recent reports have shown that communications between cancer cells also promote tumor aggression. However, little attention has been regarded on this aspect. Herein, we demonstrated that drug-resistant cell-derived exosomes promoted the invasion of sensitive breast cancer cells. Quantitative proteomic analysis showed that EphA2 was rich in exosomes from drug-resistant cells. Exosomal EphA2 conferred the invasive/metastatic phenotype transfer from drug-resistant cells to sensitive cells. Moreover, exosomal EphA2 activated ERK1/2 signaling through the ligand Ephrin A1-dependent reverse pathway rather than the forward pathway, thereby promoting breast cancer progression. Our findings indicate the key functional role of exosomal EphA2 in the transmission of aggressive phenotype between cancer cells that do not rely on direct cell-cell contact. Our study also suggests that the increase of EphA2 in drug-resistant cell-derived exosomes may be an important mechanism of chemotherapy/drug resistance-induced breast cancer progression.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Efrina-A1/metabolismo , Receptor EphA2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Resistencia a Antineoplásicos , Exosomas/metabolismo , Exosomas/patología , Femenino , Células HEK293 , Xenoinjertos , Humanos , Células MCF-7 , Ratones SCID , Persona de Mediana Edad , Metástasis de la Neoplasia , Transducción de Señal
9.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804570

RESUMEN

Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis.


Asunto(s)
Proteína ADAM12/metabolismo , Carcinoma Pulmonar de Lewis/patología , Efrina-A1/metabolismo , Receptor EphA2/metabolismo , Proteína ADAM12/genética , Animales , Permeabilidad Capilar , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Efrina-A1/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Receptor EphA2/genética , Células Tumorales Cultivadas
10.
Front Immunol ; 12: 793517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975898

RESUMEN

EphA2 receptor and its ephrin ligands are involved in virus infection, epithelial permeability, and chemokine secretion. We hypothesized that ephrinA1/ephA2 signaling participates in rhinovirus (RV)-induced antiviral immune response in sinonasal mucosa of patients with chronic rhinosinusitis (CRS). Therefore, we investigated the expression of ephrinA1/ephA2 in normal and inflamed sinonasal mucosa and evaluated whether they regulate chemokine secretion and the production of antiviral immune mediators including interferons (IFNs) in RV-infected human primary sinonasal epithelial cells. For this purpose, the expression and distribution of ephrinA1/ephA2 in sinonasal mucosa were evaluated with RT-qPCR, immunofluorescence, and western blot. Their roles in chemokine secretion and the production of antiviral immune mediators such as type I and III IFNs, and interferon stimulated genes were evaluated by stimulating ephA2 with ephrinA1 and inactivating ephA2 with ephA2 siRNA or inhibitor in cells exposed to RV and poly(I:C). We found that ephrinA1/ephA2 were expressed in normal mucosa and their levels increased in inflamed sinonasal mucosa of CRS patients. RV infection or poly(I:C) treatment induced chemokine secretion which were attenuated by blocking the action of ephA2 with ephA2 siRNA or inhibitor. The production of antiviral immune mediators enhanced by rhinovirus or poly (I:C) is increased by blocking ephA2 compared with that of cells stimulated by either rhinovirus or poly(I:C) alone. In addition, blocking ephA2 attenuated RV replication in cultured cells. Taken together, these results describe a novel role of ephrinA1/ephA2 signaling in antiviral innate immune response in sinonasal epithelium, suggesting their participation in RV-induced development and exacerbations of CRS.


Asunto(s)
Resfriado Común/metabolismo , Efrina-A1/metabolismo , Células Epiteliales/metabolismo , Mucosa Nasal/metabolismo , Receptor EphA2/metabolismo , Rinitis/metabolismo , Rhinovirus/patogenicidad , Sinusitis/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Enfermedad Crónica , Resfriado Común/inmunología , Resfriado Común/virología , Citocinas/metabolismo , Efrina-A1/genética , Efrina-A2/genética , Efrina-A2/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Poli I-C/farmacología , Receptor EphA2/genética , Rinitis/inmunología , Rhinovirus/crecimiento & desarrollo , Rhinovirus/inmunología , Transducción de Señal , Sinusitis/inmunología , Replicación Viral
11.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265912

RESUMEN

Radiation-induced multiorgan dysfunction is thought to result primarily from damage to the endothelial system, leading to a systemic inflammatory response that is mediated by the recruitment of leukocytes. The Eph-ephrin signaling pathway in the vascular system participates in various disease developmental processes, including cancer and inflammation. In this study, we demonstrate that radiation exposure increased intestinal inflammation via endothelial dysfunction, caused by the radiation-induced activation of EphA2, an Eph receptor tyrosine kinase, and its ligand ephrinA1. Barrier dysfunction in endothelial and epithelial cells was aggravated by vascular endothelial-cadherin disruption and leukocyte adhesion in radiation-induced inflammation both in vitro and in vivo. Among all Eph receptors and their ligands, EphA2 and ephrinA1 were required for barrier destabilization and leukocyte adhesion. Knockdown of EphA2 in endothelial cells reduced radiation-induced endothelial dysfunction. Furthermore, pharmacological inhibition of EphA2-ephrinA1 by the tyrosine kinase inhibitor dasatinib attenuated the loss of vascular integrity and leukocyte adhesion in vitro. Mice administered dasatinib exhibited resistance to radiation injury characterized by reduced barrier leakage and decreased leukocyte infiltration into the intestine. Taken together, these data suggest that dasatinib therapy represents a potential approach for the protection of radiation-mediated intestinal damage by targeting the EphA2-ephrinA1 complex.


Asunto(s)
Dasatinib/uso terapéutico , Intestinos/lesiones , Intestinos/efectos de la radiación , Traumatismos por Radiación/tratamiento farmacológico , Receptor EphA2/antagonistas & inhibidores , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/efectos de la radiación , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de la radiación , Dasatinib/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/efectos de la radiación , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/efectos de la radiación , Efrina-A1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Humanos , Intestinos/efectos de los fármacos , Intestinos/patología , Leucocitos/efectos de los fármacos , Leucocitos/efectos de la radiación , Ligandos , Masculino , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Radiación Ionizante , Receptor EphA2/metabolismo
12.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172177

RESUMEN

Claudin-4 (CLDN4) is a tight junction protein to maintain the cancer microenvironment. We recently reported the role of the CLDN4 not forming tight junction in the induction of epithelial-mesenchymal transition (EMT). Herein, we investigated the role of CLDN4 in renal cell carcinoma (RCC), focusing on CLDN4. CLDN4 expression in 202 RCCs was examined by immunostaining. CLDN4 phosphorylation and subcellular localization were examined using high metastatic human RCC SN12L1 and low metastatic SN12C cell lines. In 202 RCC cases, the CLDN4 expression decreased in the cell membrane and had no correlation with clinicopathological factors. However, CLDN4 was localized in the nucleus in 5 cases (2%), all of which were pT3. Contrastingly, only 6 of 198 nuclear CLDN4-negative cases were pT3. CLDN4 was found in the nuclear fraction of a highly metastatic human RCC cell line, SN12L1, but not in the low metastatic SN12C cells. In SN12L1 cells, phosphorylation of tyrosine and serine residues was observed in cytoplasmic CLDN4, but not in membranous CLDN4. In contrast, phosphorylation of serine residues was observed in nuclear CLDN4. In SN12L1 cells, CLDN4 tyrosine phosphorylation by EphA2/Ephrin A1 resulted in the release of CLDN4 from tight junction and cytoplasmic translocation. Furthermore, protein kinase C (PKC)-ε phosphorylated the CLDN4 serine residue, resulting in nuclear import. Contrarily, in SN12C cells that showed decreased expression of EphA2/Ephrin A1 and PKCε, the activation of EphA2/EphrinA1 and PKCε induced cytoplasmic and nuclear translocation of CLDN4, respectively. Furthermore, the nuclear translocation of CLDN4 promoted the nuclear translocation of Yes-associated protein (YAP) bound to CLDN4, which induced the EMT phenotype. These findings suggest that the release of CLDN4 by impaired tight junction might be a mechanism underlying the malignant properties of RCC. These findings suggest that the release of CLDN4 by impaired tight junction might be one of the mechanisms of malignant properties of RCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Claudina-4/metabolismo , Animales , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Claudina-4/genética , Citoplasma/metabolismo , Efrina-A1/genética , Efrina-A1/metabolismo , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Fosforilación , Proteína Quinasa C-epsilon/metabolismo , Receptor EphA2/genética , Receptor EphA2/metabolismo , Uniones Estrechas/metabolismo , Microambiente Tumoral
13.
Biomed Pharmacother ; 130: 110567, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32745910

RESUMEN

Cancer is one of the major threats to human health. It is of vital importance to reveal the mechanisms of tumorigenesis, identify effective biomarkers and develop novel treatments to improve patient outcome. EFNA1 (ephrinA1) is a member of the EFN family, and it has been studied extensively since its discovery in 1990. Increasing evidence indicates that EFNA1 plays a pivotal role in the pathogenesis of tumors. We provide a detailed overview of the expression and prognostic value of EFNA1 in different types of human malignancies. We briefly discuss the mechanisms of EFNA1 induction in hypoxic environments and its pro-angiogenic function in different cancer cells. We describe the effects of EFNA1 on tumor growth, invasiveness and metastasis. We summarize recent advances in EFNA1-associated cancer therapeutics with emphasis on the prospect of novel anti-tumor methods based on EFNA1.


Asunto(s)
Carcinogénesis , Efrina-A1 , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Efrina-A1/genética , Efrina-A1/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Neovascularización Patológica , Pronóstico
14.
Cell Death Dis ; 11(7): 597, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732965

RESUMEN

Oesophageal squamous cell carcinoma (ESCC) is a common and aggressive malignancy. Although many molecular alterations have been observed in ESCC, the mechanisms underlying the development and progression of this disease remain unclear. In the present study, miR-1224-5p was identified to be downregulated in ESCC tissues compared to normal tissues, and its low expression was correlated with shorter survival time in patients. In vitro experiments showed that miR-1224-5p inhibited the proliferation, colony formation, migration and invasion of ESCC cells. Mechanistic investigation revealed that miR-1224-5p directly targeted TNS4 and inhibited its expression, which led to the inactivation of EGFR-EFNA1/EPHA2-VEGFA (vascular endothelial growth factor A) signalling. Experiments in vivo confirmed the suppressive effect of miR-1224-5p on oesophageal cancer cells. By immunohistochemistry analysis of ESCC specimens, we found that TNS4 expression was positively correlated with that of VEGFA, and was significantly associated with lymph node metastasis and shorter survival time in patients. Together, our data suggest that miR-1224-5p downregulation is a frequent alteration in ESCC that promotes cell proliferation, migration, invasion and tumour growth by activating the EGFR-EFNA1/EPHA2-VEGFA signalling pathway via inhibition of TNS4 expression. Decreased miR-1224-5p and elevated TNS4 are unfavourable prognostic factors for ESCC patients.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , MicroARNs/metabolismo , Tensinas/metabolismo , Animales , Autofagia/genética , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Efrina-A1/metabolismo , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Proteolisis , Receptor EphA2/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Nat Commun ; 11(1): 1343, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165640

RESUMEN

Enlarged vestibular aqueduct (EVA) is one of the most commonly identified inner ear malformations in hearing loss patients including Pendred syndrome. While biallelic mutations of the SLC26A4 gene, encoding pendrin, causes non-syndromic hearing loss with EVA or Pendred syndrome, a considerable number of patients appear to carry mono-allelic mutation. This suggests faulty pendrin regulatory machinery results in hearing loss. Here we identify EPHA2 as another causative gene of Pendred syndrome with SLC26A4. EphA2 forms a protein complex with pendrin controlling pendrin localization, which is disrupted in some pathogenic forms of pendrin. Moreover, point mutations leading to amino acid substitution in the EPHA2 gene are identified from patients bearing mono-allelic mutation of SLC26A4. Ephrin-B2 binds to EphA2 triggering internalization with pendrin inducing EphA2 autophosphorylation weakly. The identified EphA2 mutants attenuate ephrin-B2- but not ephrin-A1-induced EphA2 internalization with pendrin. Our results uncover an unexpected role of the Eph/ephrin system in epithelial function.


Asunto(s)
Efrina-A2/genética , Bocio Nodular/genética , Pérdida Auditiva Sensorineural/genética , Transportadores de Sulfato/genética , Secuencia de Aminoácidos , Animales , Efrina-A1/genética , Efrina-A1/metabolismo , Efrina-A2/química , Efrina-A2/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Bocio Nodular/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Puntual , Unión Proteica , Receptor EphA2 , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo
16.
Oncogene ; 39(13): 2724-2740, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32005975

RESUMEN

C1GALT1 controls the crucial step of GalNAc-type O-glycosylation and is associated with both physiologic and pathologic conditions, including cancers. EPH receptors comprise the largest family of receptor tyrosine kinases (RTKs) and modulate a diverse range of developmental processes and human diseases. However, the role of C1GALT1 in the signaling of EPH receptors remains largely overlooked. Here, we showed that C1GALT1 high expression in gastric adenocarcinomas correlated with adverse clinicopathologic features and is an independent prognostic factor for poor overall survival. Silencing or loss of C1GALT1 inhibited cell viability, migration, invasion, tumor growth and metastasis, as well as increased apoptosis and cytotoxicity of 5-fluorouracil in AGS and MKN45 cells. Phospho-RTK array and western blot analysis showed that C1GALT1 depletion suppressed tyrosine phosphorylation of EPHA2 induced by soluble Ephrin A1-Fc. O-glycans on EPHA2 were modified by C1GALT1 and both S277A and T429A mutants, which are O-glycosites on EPHA2, dramatically enhanced phosphorylation of Y588, suggesting that not only overall O-glycan structures but also site-specific O-glycosylation can regulate EPHA2 activity. Furthermore, depletion of C1GALT1 decreased Ephrin A1-Fc induced migration and reduced Ephrin A1 binding to cell surfaces. The effects of C1GALT1 knockdown or knockout on cell invasiveness in vitro and in vivo were phenocopied by EPHA2 knockdown in gastric cancer cells. These results suggest that C1GALT1 promotes phosphorylation of EPHA2 and enhances soluble Ephrin A1-mediated migration primarily by modifying EPHA2 O-glycosylation. Our study highlights the importance of GalNAc-type O-glycosylation in EPH receptor-regulated diseases and identifies C1GALT1 as a potential therapeutic target for gastric cancer.


Asunto(s)
Adenocarcinoma/patología , Efrina-A1/metabolismo , Efrina-A2/metabolismo , Galactosiltransferasas/metabolismo , Neoplasias Gástricas/patología , Acetilgalactosamina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/cirugía , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Supervivencia Celular/genética , Galactosiltransferasas/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Glicosilación , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Estadificación de Neoplasias , Fosforilación , Receptor EphA2 , Estómago/patología , Estómago/cirugía , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/cirugía , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Dev Cell ; 52(1): 104-117.e5, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31866204

RESUMEN

Ephrins can elicit either contact-mediated cell-cell adhesion or repulsion, depending on the efficiency of the removal of their ligand-receptor complexes from the cell surface, thus controlling tissue morphogenesis and oncogenic development. However, the dynamic of the turnover of newly assembled ephrin-Eph complexes during cell-cell interactions remains mostly unexplored. Here, we show that ephrin-A1-EphA2 complexes are locally formed at the tip of the filopodia, at cell-to-cell contacts. Clusters of ephrin-A1 from donor cells surf on filopodia associated to EphA2-bearing subdomains of acceptor cells. Full-length ephrin-A1 is transferred to acceptor cells by trans-endocytosis through a proteolysis-independent mechanism. Trans-endocytosed ephrin-A1 bound to its receptor enables signaling to be emitted from endo-lysosomes of acceptor cells. Localized trans-endocytosis of ephrin-A1 sustains contact-mediated repulsion on cancer cells. Our results uncover the essential role played by local concentration at the tip of filopodia and the trans-endocytosis of full-length ephrin to maintain long-lasting ephrin signaling.


Asunto(s)
Comunicación Celular , Membrana Celular/metabolismo , Endocitosis , Efrina-A1/metabolismo , Efrina-A2/metabolismo , Seudópodos/fisiología , Adhesión Celular , Efrina-A1/genética , Efrina-A2/genética , Espacio Extracelular/metabolismo , Humanos , Unión Proteica , Transporte de Proteínas , Proteolisis , Transducción de Señal
18.
J Biol Chem ; 294(22): 8791-8805, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31015204

RESUMEN

The EPH receptor A2 (EphA2) tyrosine kinase plays an important role in a plethora of biological and disease processes, ranging from angiogenesis and cancer to inflammation and parasitic infections. EphA2 is therefore considered an important drug target. Two short peptides previously identified by phage display, named YSA and SWL, are widely used as EphA2-targeting agents owing to their high specificity for this receptor. However, these peptides have only modest (micromolar) potency. Lack of structural information on the binding interactions of YSA and SWL with the extracellular EphA2 ligand-binding domain (LBD) has for many years precluded structure-guided improvements. We now report the high-resolution (1.53-2.20 Å) crystal structures of the YSA peptide and several of its improved derivatives in complex with the EphA2 LBD, disclosing that YSA targets the ephrin-binding pocket of EphA2 and mimics binding features of the ephrin-A ligands. The structural information obtained enabled iterative peptide modifications conferring low nanomolar potency. Furthermore, contacts observed in the crystal structures shed light on how C-terminal features can convert YSA derivatives from antagonists to agonists that likely bivalently interact with two EphA2 molecules to promote receptor oligomerization, autophosphorylation, and downstream signaling. Consistent with this model, quantitative FRET measurements in live cells revealed that the peptide agonists promote the formation of EphA2 oligomeric assemblies. Our findings now enable rational strategies to differentially modify EphA2 signaling toward desired outcomes by using appropriately engineered peptides. Such peptides could be used as research tools to interrogate EphA2 function and to develop pharmacological leads.


Asunto(s)
Péptidos/metabolismo , Receptor EphA2/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Efrina-A1/química , Efrina-A1/metabolismo , Humanos , Ligandos , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/farmacología , Fosforilación , Unión Proteica , Ingeniería de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptor EphA2/agonistas , Receptor EphA2/antagonistas & inhibidores , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transducción de Señal/efectos de los fármacos
19.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30909376

RESUMEN

Myocardial tissue damage that occurs during an ischemic event leads to a spiraling deterioration of cardiac muscle structural and functional integrity. Reperfusion is the only known efficacious strategy and is the most commonly used treatment to reduce injury and prevent remodeling. However, timing is critical, and the procedure is not always feasible for a variety of reasons. The complex molecular basis for cardioprotection has been studied for decades but formulation of a viable therapeutic that can significantly attenuate myocardial injury remains elusive. In this review, we address barriers to the development of a fruitful approach that will substantially improve the prognosis of those suffering from this widespread and largely unmitigated disease. Furthermore, we proffer that ephrinA1, a candidate molecule that satisfies many of the important criteria discussed, possesses robust potential to overcome these hurdles and thus offers protection that surpasses the limitations currently observed.


Asunto(s)
Infarto del Miocardio/terapia , Animales , Cardiotónicos , Terapia Combinada , Manejo de la Enfermedad , Efrina-A1/genética , Efrina-A1/metabolismo , Efrina-A1/uso terapéutico , Efrina-A1/ultraestructura , Humanos , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Fragmentos Fc de Inmunoglobulinas/ultraestructura , Ligandos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Recombinantes de Fusión/ultraestructura , Investigación Biomédica Traslacional , Resultado del Tratamiento
20.
Cancer Sci ; 110(3): 841-848, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30657619

RESUMEN

The biological functions of the Eph/ephrin system have been intensively investigated and well documented so far since its discovery in 1987. Although the Eph/ephrin system has been implicated in pathological settings such as Alzheimer's disease and cancer, the molecular mechanism of the Eph/ephrin system in those diseases is not well understood. Especially in cancer, recent studies have demonstrated that most of Eph and ephrin are up- or down-regulated in various types of cancer, and have been implicated in tumor progression, tumor malignancy, and prognosis. However, they lack consistency and are in controversy. The localization patterns of EphA1 and EphA2 in mouse lungs are very similar, and both knockout mice showed similar phenotypes in the lungs. Ephrin-A1 that is a membrane-anchored ligand for EphAs was co-localized with EphA1 and EphA2 in lung vascular endothelial cells. We recently uncovered the molecular mechanism of ephrin-A1-induced lung metastasis by understanding the physiological function of ephrin-A1 in lungs. This review focuses on the function of EphA1, EphA2, and ephrin-A1 in tumors and an establishment of pre-metastatic microenvironment in the lungs.


Asunto(s)
Efrina-A1/metabolismo , Neoplasias Pulmonares/metabolismo , Receptor EphA2/metabolismo , Animales , Regulación hacia Abajo/fisiología , Células Endoteliales/metabolismo , Humanos , Pronóstico , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...