Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cells ; 11(20)2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36291158

RESUMEN

The eye lens is a transparent, ellipsoid organ in the anterior chamber of the eye that is required for fine focusing of light onto the retina to transmit a clear image. Cataracts, defined as any opacity in the lens, remains the leading cause of blindness in the world. Recent studies in humans and mice indicate that Eph-ephrin bidirectional signaling is important for maintaining lens transparency. Specifically, mutations and polymorphisms in the EphA2 receptor and the ephrin-A5 ligand have been linked to congenital and age-related cataracts. It is unclear what other variants of Ephs and ephrins are expressed in the lens or whether there is preferential expression in epithelial vs. fiber cells. We performed a detailed analysis of Eph receptor and ephrin ligand mRNA transcripts in whole mouse lenses, epithelial cell fractions, and fiber cell fractions using a new RNA isolation method. We compared control samples with EphA2 knockout (KO) and ephrin-A5 KO samples. Our results revealed the presence of transcripts for 12 out of 14 Eph receptors and 8 out of 8 ephrin ligands in various fractions of lens cells. Using specific primer sets, RT-PCR, and sequencing, we verified the variant of each gene that is expressed, and we found two epithelial-cell-specific genes. Surprisingly, we also identified one Eph receptor variant that is expressed in KO lens fibers but is absent from control lens fibers. We also identified one low expression ephrin variant that is only expressed in ephrin-A5 control samples. These results indicate that the lens expresses almost all Ephs and ephrins, and there may be many receptor-ligand pairs that play a role in lens homeostasis.


Asunto(s)
Catarata , Cristalino , Receptor EphA2 , Humanos , Ratones , Animales , Efrinas/genética , Efrinas/metabolismo , Receptor EphA1/metabolismo , Efrina-A5/genética , Efrina-A5/metabolismo , Ligandos , Receptor EphA2/genética , Receptor EphA2/metabolismo , Cristalino/metabolismo , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Catarata/genética , ARN Mensajero/metabolismo
2.
Genes (Basel) ; 13(10)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36292776

RESUMEN

Genome-wide association studies (GWASs) have identified more than 500 loci for bone mineral density (BMD), but functional variants in these loci are less known. The aim of this study was to identify RNA modification-related SNPs (RNAm-SNPs) for BMD in GWAS loci. We evaluated the association of RNAm-SNPs with quantitative heel ultrasound BMD (eBMD) in 426,824 individuals, femoral neck (FN) and lumbar spine (LS) BMD in 32,961 individuals and fracture in ~1.2 million individuals. Furthermore, we performed functional enrichment, QTL and Mendelian randomization analyses to support the functionality of the identified RNAm-SNPs. We found 300 RNAm-SNPs significantly associated with BMD, including 249 m6A-, 28 m1A-, 3 m5C-, 7 m7G- and 13 A-to-I-related SNPs. m6A-SNPs in OP susceptibility genes, such as WNT4, WLS, SPTBN1, SEM1, FUBP3, LRP5 and JAG1, were identified and functional enrichment for m6A-SNPs in the eBMD GWAS dataset was detected. eQTL signals were found for nearly half of the identified RNAm-SNPs, and the affected gene expression was associated with BMD and fracture. The RNAm-SNPs were also associated with the plasma levels of proteins in cytokine-cytokine receptor interaction, PI3K-Akt signaling, NF-kappa B signaling and MAPK signaling pathways. Moreover, the plasma levels of proteins (CCL19, COL1A1, CTSB, EFNA5, IL19, INSR, KDR, LIFR, MET and PLXNB2) in these pathways were found to be associated with eBMD in Mendelian randomization analysis. This study identified functional variants and potential causal genes for BMD and fracture in GWAS loci and suggested that RNA modification may play an important role in osteoporosis.


Asunto(s)
Densidad Ósea , Fracturas Óseas , Humanos , Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Efrina-A5/genética , FN-kappa B/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fracturas Óseas/genética , Genómica , Receptores de Citocinas/genética , Citocinas/genética , ARN
3.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269561

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has the potential to treat a variety of neurologic and psychiatric disorders. The extent of rTMS-induced neuroplasticity may be dependent on a subject's brain state at the time of stimulation. Chronic low intensity rTMS (LI-rTMS) has previously been shown to induce beneficial structural and functional reorganisation within the abnormal visual circuits of ephrin-A2A5-/- mice in ambient lighting. Here, we administered chronic LI-rTMS in adult ephrin-A2A5-/- mice either in a dark environment or concurrently with voluntary locomotion. One day after the last stimulation session, optokinetic responses were assessed and fluorescent tracers were injected to map corticotectal and geniculocortical projections. We found that LI-rTMS in either treatment condition refined the geniculocortical map. Corticotectal projections were improved in locomotion+LI-rTMS subjects, but not in dark + LI-rTMS and sham groups. Visuomotor behaviour was not improved in any condition. Our results suggest that the beneficial reorganisation of abnormal visual circuits by rTMS can be significantly influenced by simultaneous, ambient visual input and is enhanced by concomitant physical exercise. Furthermore, the observed pathway-specific effects suggest that regional molecular changes and/or the relative proximity of terminals to the induced electric fields influence the outcomes of LI-rTMS on abnormal circuitry.


Asunto(s)
Efrina-A2/genética , Efrina-A5/genética , Estimulación Magnética Transcraneal/métodos , Corteza Visual/fisiología , Animales , Técnicas de Silenciamiento del Gen , Luz , Locomoción , Ratones , Modelos Animales , Plasticidad Neuronal , Desempeño Psicomotor
4.
Virus Res ; 312: 198719, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219760

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is a life-threatening disease to recently stocked shrimp. This disease is mainly caused by Vibrio parahaemolyticus and, to date, it has not been effectively controlled. Bacteriophages are a promising method to control bacterial diseases in aquaculture and multiple phages that infect Asian strains of V. parahaemolyticus have been described. However, few studies have characterized the bacteriophages that infect Latin American strains. Here, two lytic Vibrio phages (vB_VpaP_AL-1 and vB_VpaS_AL-2) were isolated from estuary water in Sinaloa, Mexico. The host ranges were tested using ten AHPND-causing strains isolated from Mexico and phage AL-1 was able to infect two strains while AL-2 infected four. One-step growth curve showed that AL-1 produced 85 PFU/cell and AL-2 produced 68 PFU/cell in 30 and 40 min, respectively. Both phages were able to tolerate temperatures ranging from 20 to 50 °C and pH values ranging from 4 to 10. Phages AL-1 and AL-2 have double-stranded DNA genomes of 42,854 bp and 58,457 bp, respectively. In total, 53 putative ORFs associated with the phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in the AL-1 genome, while 92 ORFs associated with the same functions as the AL-1 and 1 tRNA were predicted in the AL-2 genome. The lifecycle was classified as virulent for both phages. Morphology, phylogeny, and comparative genomic analyses assigned phage AL-1 as a new member of the genus Maculvirus in the Autographiviridae family, and phage AL-2 as a new member of the Siphoviridae family. These findings suggest that vB_VpaP_AL-1 and vB_VpaS_AL-2 are potential biocontrol agents against AHPND-causing V. parahaemolyticus from Mexico.


Asunto(s)
Bacteriófagos , Vibrio parahaemolyticus , Efrina-A5/genética , Genoma Viral , Genómica , Humanos , Necrosis/genética , Vibrio parahaemolyticus/genética
5.
Br J Cancer ; 126(4): 628-639, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34824448

RESUMEN

BACKGROUND: The treatment of pancreatic cancer (PDAC) remains clinically challenging, and neoadjuvant therapy (NAT) offers down staging and improved surgical resectability. Abundant fibrous stroma is involved in malignant characteristic of PDAC. We aimed to investigate tissue remodelling, particularly the alteration of the collagen architecture of the PDAC microenvironment by NAT. METHODS: We analysed the alteration of collagen and gene expression profiles in PDAC tissues after NAT. Additionally, we examined the biological role of Ephrin-A5 using primary cultured cancer-associated fibroblasts (CAFs). RESULTS: The expression of type I, III, IV, and V collagen was reduced in PDAC tissues after effective NAT. The bioinformatics approach provided comprehensive insights into NAT-induced matrix remodelling, which showed Ephrin-A signalling as a likely pathway and Ephrin-A5 (encoded by EFNA5) as a crucial ligand. Effective NAT reduced the number of Ephrin-A5+ cells, which were mainly CAFs; this inversely correlated with the clinical tumour shrinkage rate. Experimental exposure to radiation and chemotherapeutic agents suppressed proliferation, EFNA5 expression, and collagen synthesis in CAFs. Forced EFNA5 expression altered CAF collagen gene profiles similar to those found in PDAC tissues after NAT. CONCLUSION: These results suggest that effective NAT changes the extracellular matrix with collagen profiles through CAFs and their Ephrin-A5 expression.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/terapia , Colágeno/genética , Efrina-A5/genética , Neoplasias Pancreáticas/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/efectos de la radiación , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Colágeno/metabolismo , Efrina-A5/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Terapia Neoadyuvante , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Cultivo Primario de Células , Estudios Retrospectivos , Transducción de Señal , Células Tumorales Cultivadas , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de la radiación
6.
Biomed Res Int ; 2021: 4118216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722763

RESUMEN

OBJECTIVES: This study is aimed at exploring the relationships between miRNAs and mRNAs and to characterize their biological functions in temporal lobe epilepsy (TLE). METHODS: Novel clinical significant miRNAs and target genes and their potential underlying mechanisms have been discovered and explored by mining miRNAs and mRNA expression data of TLE patients using various bioinformatics methods. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate the bioinformatic analysis results. RESULTS: A total of 6 dysregulated miRNAs and 442 differentially expressed genes (DEGs) related to TLE were obtained from GEO database (GSE114701 and GSE127871 datasets). A protein-protein interaction (PPI) network containing the 442 DEGs was established. mRNA response elements from the 6 dysregulated miRNAs were predicted using the miRDB and TargetScan bioinformatic tools. By merging the identified targets of the dysregulated miRNAs and the 247 downregulated DEGs, a miRNA-mRNA network was constructed revealing the interaction of miR-484 with eight mRNAs (ABLIM2, CEP170B, CTD-3193O13.9, EFNA5, GAP43, PRKCB, FXYD7, and NCAN). A weighted correlation network analysis (WGCNA) based on the eight genes was established and demonstrated that these mRNAs, except FXYD7 and NCAN, were hub genes in the network. Gene Oncology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the six hub genes were mainly involved in cellular-related biological functions and the neurotransmitter synapse pathway. The differences in expression levels of the miR-484 and the three hub genes (CTD-3193O13.9, EFNA5, and PRKCB) observed experimentally in TLE patients compared to those of healthy controls were consistent with the WGCNA prediction. CONCLUSION: Our study suggests that understanding the miRNA-mRNA interactions will provide insights into the epilepsy pathogenesis. In addition, our results indicate that miR-484 may be a promising novel biomarker for TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , MicroARNs/genética , ARN Mensajero/genética , China , Biología Computacional/métodos , Minería de Datos/métodos , Efrina-A5/genética , Epilepsia del Lóbulo Temporal/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Ontología de Genes , Redes Reguladoras de Genes/genética , Humanos , Anotación de Secuencia Molecular , Mapas de Interacción de Proteínas/genética , Proteína Quinasa C beta/genética , Transcriptoma/genética
7.
Hum Cell ; 34(2): 550-563, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389678

RESUMEN

PIWI (P element induced wimpy testis) integrating RNAs (piRNAs) are small non-coding RNAs with the length of approximately 30 nucleotides that plays crucial roles in germ cells and adult stem cells. Recently, accumulating data have shown that piRNA and PIWI proteins are involved in tumorigenesis. However, the roles of PIWI proteins and piRNAs in pancreatic cancer are still elusive. Here, we showed that piR-017061 is significantly downregulated in pancreatic cancer patients' samples and pancreatic cancer cell lines. Furthermore, we studied the function of piR-017061 in pancreatic cancer and our data revealed that piR-017061 inhibits pancreatic cancer cell growth in vitro and in vivo. Moreover, we analyzed the genomic loci around piR-017061 and identified EFNA5 as a novel target of piR-017061. Importantly, our data further revealed a direct binding between piR-017061 and EFNA5 mRNA mediated by PIWIL1. Mechanically, piR-017061 cooperates with PIWIL1 to facilitate EFNA5 mRNA degradation and loss of piR-017061 results in accumulation of EFNA5 which facilitates pancreatic cancer development. Hence, our data provided novel insights into PIWI/piRNA-mediated gene regulation and their function in pancreatic cancer. Since PIWI proteins and piRNA predominately express in germline and cancer cells, our study provided novel therapeutic strategy for pancreatic cancer treatment.


Asunto(s)
Proteínas Argonautas/fisiología , Carcinogénesis/genética , Carcinogénesis/patología , Proliferación Celular/genética , Efrina-A5/genética , Efrina-A5/metabolismo , Epistasis Genética/genética , Epistasis Genética/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN Interferente Pequeño/fisiología , Línea Celular Tumoral , Humanos , Terapia Molecular Dirigida
8.
Biomed Res Int ; 2020: 7161027, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102589

RESUMEN

Retinal neovascularization (RNV) is an important pathological feature of vitreoretinopathy that can lead to severe vision loss. The purpose of this study was to identify the role of ephrin-A5 (Efna5) in RNV and to explore its mechanism. The expression pattern and biological significance of Efna5 were investigated in a mouse model of oxygen-induced retinopathy (OIR). The expression of Efna5 and downstream signaling pathway members was determined by RT-PCR, immunofluorescence, immunohistochemistry, and western blot analyses. shRNA was used to knockdown Efna5 in the retina of the OIR mouse model. Retinal flat mounts were performed to evaluate the impact of Efna5 silencing on the RNV process. We found that the Efna5 was greatly upregulated in the retina of OIR mice. Elevated Efna5 mainly colocalized with the retinal vessels and endothelial cells. We then showed that knockdown of Efna5 in OIR mouse retinas using lentivirus-mediated shRNA markedly decreased the expression of Efna5 and reduced the retinal neovascularization and avascular retina area. We further showed hypoxia stimulation dramatically increased both total and phosphorylation levels of ERK1/2 and the phosphorylation levels of Akt in OIR mice. More importantly, knockdown of Efna5 could inhibit the p-Akt and p-ERK signaling pathways. Our results suggested that Efna5 may regulate the RNV. This study suggests that Efna5 was significantly upregulated in the retina of OIR mice and closely involved in the pathological retinal angiogenesis.


Asunto(s)
Efrina-A5/metabolismo , Neovascularización Retiniana/etiología , Retinopatía de la Prematuridad/etiología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Efrina-A5/antagonistas & inhibidores , Efrina-A5/genética , Técnicas de Silenciamiento del Gen , Inyecciones Intravítreas , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Retinopatía de la Prematuridad/genética , Retinopatía de la Prematuridad/metabolismo , Regulación hacia Arriba
9.
Am J Physiol Endocrinol Metab ; 319(1): E81-E90, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32396496

RESUMEN

We have previously shown that systemic injection of erythropoietin-producing hepatocellular receptor A7 (EPHA7)-Fc raises serum luteinizing hormone (LH) levels before ovulation in female rats, indicating the induction of EPHA7 in ovulation. In this study, we aimed to identify the mechanism and hypothalamus-pituitary-ovary (HPO) axis level underlying the promotion of LH secretion by EPHA7. Using an ovariectomized (OVX) rat model, in conjunction with low-dose 17ß-estradiol (E2) treatment, we investigated the association between EPHA7-ephrin (EFN)A5 signaling and E2 negative feedback. Various rat models (OVX, E2-treated OVX, and abarelix treated) were injected with the recombinant EPHA7-Fc protein through the caudal vein to investigate the molecular mechanism underlying the promotion of LH secretion by EPHA7. Efna5 was observed strongly expressed in the arcuate nucleus of the female rat by using RNAscope in situ hybridization. Our results indicated that E2, combined with estrogen receptor (ER)α, but not ERß, inhibited Efna5 and gonadotropin-releasing hormone 1 (Gnrh1) expressions in the hypothalamus. In addition, the systemic administration of EPHA7-Fc restrained the inhibition of Efna5 and Gnrh1 by E2, resulting in increased Efna5 and Gnrh1 expressions in the hypothalamus as well as increased serum LH levels. Collectively, our findings demonstrated the involvement of EPHA7-EFNA5 signaling in the regulation of LH and the E2 negative feedback pathway in the hypothalamus, highlighting the functional role of EPHA7 in female reproduction.


Asunto(s)
Efrina-A5/metabolismo , Receptor alfa de Estrógeno/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Precursores de Proteínas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Efrina-A5/efectos de los fármacos , Efrina-A5/genética , Estradiol/farmacología , Receptor beta de Estrógeno/metabolismo , Estrógenos/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Femenino , Hormona Liberadora de Gonadotropina/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/efectos de los fármacos , Hormona Luteinizante/efectos de los fármacos , Oligopéptidos/farmacología , Ovariectomía , Ovario/efectos de los fármacos , Ovario/metabolismo , Precursores de Proteínas/efectos de los fármacos , Ratas , Receptor EphA7/genética , Receptor EphA7/metabolismo , Receptor EphA7/farmacología , Proteínas Recombinantes
10.
Biomed Pharmacother ; 125: 109889, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32036212

RESUMEN

MicroRNA-645 (miR-645) has been implicated in numerous types of human cancers including colon cancer. However, the effects and mechanisms of action of miR-645 dysregulation on the growth and malignancy of colorectal cancer (CRC) remain unclear. In this study, we demonstrated that miR-645 knockdown significantly diminished CRC cell migration and invasion and repressed epithelial-mesenchymal transition (EMT). Conversely, miR-645 overexpression enhanced CRC cell migration, invasion, and EMT. In vivo assays confirmed that miR-645 knockdown substantially reduced CRC growth and metastasis. Regarding the mechanism, ephrin-A5 (EFNA5) was identified as a direct target gene of miR-645. MiR-645 specifically targeted the 3'-untranslated region of EFNA5 mRNA and hindered its expression. EFNA5 knockdown attenuated the effects of miR-645 knockdown on CRC cell migration and invasion. Additionally, we noted a statistically significant inverse correlation between EFNA5 mRNA and miR-645 levels in tumors from 28 patients with CRC. Hence, miR-645 acts as an oncogenic miRNA that may increase CRC cell migration, invasiveness, and metastasis by targeting EFNA5.


Asunto(s)
Neoplasias Colorrectales/genética , Efrina-A5/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Interferencia de ARN , Regiones no Traducidas 3' , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Genes Reporteros , Humanos , Masculino
11.
Cytokine ; 132: 154631, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30685201

RESUMEN

BACKGROUND/PURPOSE: High serum interferon alpha (IFN-α) is an important heritable phenotype in systemic lupus erythematosus (SLE) which is involved in primary disease pathogenesis. High vs. low levels of IFN-α are associated with disease severity and account for some of the biological heterogeneity between SLE patients. The aim of the study was to replicate and fine-map previously detected genetic associations with serum IFN-α in SLE. METHODS: We previously undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci identified in this screen were selected for follow up in a large independent cohort of 1370 SLE patients (703 European-ancestry, 432 African ancestry, and 235 Amerindian ancestry). Each ancestral background was analyzed separately, and ancestry-informative markers were used to control for ancestry and admixture. RESULTS: We find a rare haplotype spanning the promoter region of EFNA5 that is strongly associated with serum IFN-α in both African-American and European-American SLE patients (OR = 3.0, p = 3.7 × 10-6). We also find SNPs in the PPM1H, PTPRM, and NRGN regions associated with IFN-α levels in European-American, Amerindian, and African-American SLE patients respectively. Many of these associations are within regulatory regions of the gene, suggesting an impact on transcription. CONCLUSION: This study demonstrates the power of molecular sub-phenotypes to reveal genetic factors involved in complex autoimmune disease. The distinct associations observed in different ancestral backgrounds emphasize the heterogeneity of molecular pathogenesis in SLE.


Asunto(s)
Interferón-alfa/sangre , Lupus Eritematoso Sistémico/genética , Efrina-A5/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Lupus Eritematoso Sistémico/sangre , Polimorfismo de Nucleótido Simple
12.
Sci Rep ; 9(1): 12009, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427645

RESUMEN

Axonal growth cones are guided by molecular cues in the extracellular environment. The mechanisms of combinatorial integration of guidance signals at the growth cone cell membrane are still being unravelled. Limb-innervating axons of vertebrate spinal lateral motor column (LMC) neurons are attracted to netrin-1 via its receptor, Neogenin, and are repelled from ephrin-A5 through its receptor EphA4. The presence of both cues elicits synergistic guidance of LMC axons, but the mechanism of this effect remains unknown. Using fluorescence immunohistochemistry, we show that ephrin-A5 increases LMC growth cone Neogenin protein levels and netrin-1 binding. This effect is enhanced by overexpressing EphA4 and is inhibited by blocking ephrin-A5-EphA4 binding. These effects have a functional consequence on LMC growth cone responses since bath addition of ephrin-A5 increases the responsiveness of LMC axons to netrin-1. Surprisingly, the overexpression of EphA4 lacking its cytoplasmic tail, also enhances Neogenin levels at the growth cone and potentiates LMC axon preference for growth on netrin-1. Since netrins and ephrins participate in a wide variety of biological processes, the enhancement of netrin-1 signalling by ephrins may have broad implications.


Asunto(s)
Axones/metabolismo , Efrina-A5/genética , Proteínas de la Membrana/genética , Neuronas Motoras/metabolismo , Netrina-1/genética , Animales , Orientación del Axón , Pollos , Conos de Crecimiento/metabolismo , Proteolisis
13.
Acta Neuropathol Commun ; 7(1): 114, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300041

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the brainstem, spinal cord and motor cortex. ALS is characterized by genetic and clinical heterogeneity, suggesting the existence of genetic factors that modify the phenotypic expression of the disease. We previously identified the axonal guidance EphA4 receptor, member of the Eph-ephrin system, as an ALS disease-modifying factor. EphA4 genetic inhibition rescued the motor neuron phenotype in zebrafish and a rodent model of ALS. Preventing ligands from binding to the EphA4 receptor also successfully improved disease, suggesting a role for EphA4 ligands in ALS. One particular ligand, ephrin-A5, is upregulated in reactive astrocytes after acute neuronal injury and inhibits axonal regeneration. Moreover, it plays a role during development in the correct pathfinding of motor axons towards their target limb muscles. We hypothesized that a constitutive reduction of ephrin-A5 signalling would benefit disease progression in a rodent model for ALS. We discovered that in the spinal cord of control and symptomatic ALS mice ephrin-A5 was predominantly expressed in neurons. Surprisingly, reduction of ephrin-A5 levels in SOD1G93A mice accelerated disease progression and reduced survival without affecting disease onset, motor neuron numbers or innervated neuromuscular junctions in symptomatic mice. These findings suggest ephrin-A5 as a modifier of disease progression that might play a role in the later stages of the disease. Similarly, we identified a more aggressive disease progression in patients with lower ephrin-A5 protein levels in the cerebrospinal fluid without modifying disease onset. In summary, we identified reduced expression of ephrin-A5 to accelerate disease progression in a mouse model of ALS as well as in humans. Combined with our previous findings on the role of EphA4 in ALS our current data suggests different contribution for various members of the Eph-ephrin system in the pathophysiology of a motor neuron disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Progresión de la Enfermedad , Efrina-A5/deficiencia , Adulto , Anciano , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Efrina-A5/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Superóxido Dismutasa-1/genética
15.
J Med Genet ; 56(2): 104-112, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30352868

RESUMEN

BACKGROUND: Mapping the breakpoints in de novo balanced chromosomal translocations (BCT) in symptomatic individuals provides a unique opportunity to identify in an unbiased way the likely causative genetic defect and thus find novel human disease candidate genes. Our aim was to fine-map breakpoints of de novo BCTs in a case series of nine patients. METHODS: Shallow whole-genome mate pair sequencing (SGMPS) together with long-range PCR and Sanger sequencing. In one case (BCT disrupting BAHD1 and RET) cDNA analysis was used to verify expression of a fusion transcript in cultured fibroblasts. RESULTS: In all nine probands 11 disrupted genes were found, that is, EFNA5, EBF3, LARGE, PPP2R5E, TXNDC5, ZNF423, NIPBL, BAHD1, RET, TRPS1 and SLC4A10. Five subjects had translocations that disrupted genes with so far unknown (EFNA5, BAHD1, PPP2R5E, TXNDC5) or poorly delineated impact on the phenotype (SLC4A10, two previous reports of BCT disrupting the gene). The four genes with no previous disease associations (EFNA5, BAHD1, PPP2R5E, TXNDC5), when compared with all human genes by a bootstrap test, had significantly higher pLI (p<0.017) and DOMINO (p<0.02) scores indicating enrichment in genes likely to be intolerant to single copy damage. Inspection of individual pLI and DOMINO scores, and local topologically associating domain structure suggested that EFNA5, BAHD1 and PPP2R5E were particularly good candidates for novel disease loci. The pathomechanism for BAHD1 may involve deregulation of expression due to fusion with RET promoter. CONCLUSION: SGMPS in symptomatic carriers of BCTs is a powerful approach to delineate novel human gene-disease associations.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Puntos de Rotura del Cromosoma , Trastornos de los Cromosomas/genética , Efrina-A5/genética , Proteína Fosfatasa 2/genética , Translocación Genética , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Adulto Joven
16.
Burns ; 45(3): 682-690, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30482614

RESUMEN

Ephrin ligand/Eph receptor signaling is important in both tissue development and homeostasis. There is increasing evidence that Ephrin/Eph signaling is important in the skin, involved in hair follicle cycling, epidermal differentiation, cutaneous innervation and skin cancer. However, there is currently limited information on the role of Ephrin/Eph signaling in cutaneous wound healing. Here we report the effects of the Ephrin-A2 and A5 ligands on wound healing. Using Ephrin-A2-/-, Ephrin-A5-/- and Ephrin-A2A5-/- transgenic mice, in vitro wound healing assays were conducted using isolated keratinocytes and fibroblasts. Ephrin-A2-/-, Ephrin-A2A5-/- and wild type mice with excisional wounds were used to analyze the impact of these ligands on wound closure, scar outcome, collagen orientation and re-innervation in vivo. The absence of the Ephrin-A2 and A5 ligands did not have any effect on dermal fibroblast proliferation or on fibroblast or keratinocyte migration. The loss of Ephrin-A2 and A5 ligands did not impact on the rate of wound closure or re-innervation after injury. However, changes in the gross morphology of the healed scar and in collagen histology of the scar dermis were observed in transgenic mice. Therefore Ephrin-A2 and A5 ligands may play an important role in final scar appearance associated with collagen deposition and structure.


Asunto(s)
Cicatriz/genética , Efrina-A2/genética , Efrina-A5/genética , Herida Quirúrgica/patología , Cicatrización de Heridas/genética , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Cicatriz/patología , Colágeno , Fibroblastos , Queratinocitos , Ratones , Ratones Noqueados , Ratones Transgénicos
17.
Differentiation ; 102: 1-9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29800803

RESUMEN

Ephrin type-A receptor 2 (EPHA2) and one of its ligands, ephrin-A5 (EFNA5), have been associated with loss of eye lens transparency, or cataract, - an important cause of visual impairment. Here we show that mice functionally lacking EPHA2 (Epha2-null), EFNA5 (Efna5-null), or both receptor and ligand (Epha2/Efna5-null) consistently develop mostly transparent lenses with an internal refractive disturbance and a grossly disturbed cellular architecture. In situ hybridization localized Epha2 and Efna5 transcripts to lens epithelial cells and nascent fiber cells at the lens equator. In vivo labeling of Epha2-null lenses with a thymidine analog detected a significant decrease in lens epithelial cell proliferation within the germinative zone resulting in impaired early lens growth. Ex vivo imaging of Epha2-null, Efna5-null, and Epha2/Efna5-null lenses labelled in vivo with a membrane-targeted red fluorescent protein revealed misalignment of elongating fiber cells at the lens equator and loss of Y-suture pattern formation near the anterior and posterior poles of the lens. Immuno-fluorescent labeling of lens major intrinsic protein or aquaporin-0 (MIP/AQP0) showed that the precise, radial column patterning of hexagonal fiber cells throughout the cortex region was disrupted in Epha2-null, Efna5-null and Epha2/Efna5-null lenses. Collectively, these data suggest that Epha2 and Efna5 participate in the complex, global patterning of lens fiber cells that is necessary for maximal optical quality.


Asunto(s)
Efrina-A5/genética , Cristalino/metabolismo , Morfogénesis/genética , Receptor EphA2/genética , Animales , Catarata/genética , Efrina-A5/deficiencia , Efrina-A5/metabolismo , Células Epiteliales/metabolismo , Ratones Noqueados , Receptor EphA2/metabolismo
18.
Cell Cycle ; 17(7): 892-902, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619874

RESUMEN

Recent findings suggest that ephrinA5 (Efna5) has a novel role in female mouse fertility, in addition to its well-defined role as a neurogenesis factor. Nevertheless, its physiological roles in ovarian granulosa cells (GC) have not been determined. In this study, mouse GC were cultured and transfected with ephrin A5 siRNA and negative control to determine the effects of Efna5 on GC apoptosis, proliferation, cell cycle progression, and related signaling pathways. To understand the mode signaling, the mRNA expression levels of Efna5 receptors (Eph receptor A5, Eph receptor A3, Eph receptor A8, and Eph receptor B2) were examined. Both mRNA and protein expressions of apoptosis-related factors (Bax, Bcl-2, Caspase 8, Caspase 3, and Tnfα) and a proliferation marker, Pcna, were investigated. Additionally, the role of Efna5 on paracrine oocyte-secreted factors and steroidogenesis hormones were also explored. Efna5 silencing suppressed GC apoptosis by downregulating Bax and upregulating Bcl-2 in a Caspase 8-dependent manner. Efna5 knockdown promoted GC proliferation via p-Akt and p-ERK pathway activation. The inhibition of Efna5 enhanced BMH15 and estradiol expression, but suppressed GDF9, while progesterone level remained unaltered. These results demonstrated that Efna5 is a pro-apoptotic agent in GC and plays important role in folliculogenesis by mediating apoptosis, proliferation, and steroidogenesis in female mouse. Therefore Efna5 might be potential therapeutic target for female fertility disorders.


Asunto(s)
Efrina-A5/genética , Estradiol/metabolismo , Fertilidad/genética , Células de la Granulosa/metabolismo , Progesterona/metabolismo , Transducción de Señal/genética , Animales , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Ciclo Celular/genética , Proliferación Celular , Efrina-A3/genética , Efrina-A3/metabolismo , Efrina-A5/antagonistas & inhibidores , Efrina-A5/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Femenino , Regulación de la Expresión Génica , Células de la Granulosa/citología , Ratones , Cultivo Primario de Células , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29464193

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) induces plasticity in normal and abnormal neural circuitries, an effect that may be influenced by intrinsic brain activity during treatment. Here, we study potential synergistic effects between low-intensity rTMS (LI-rTMS) and concurrent neural activity in promoting circuit reorganization and enhancing visual behavior. We used ephrin-A2A5-/- mice, which are known to possess visuotopic mapping errors that are ameliorated by LI-rTMS, and assessed the impact of stimulation when mice were engaged in a visual learning task. A detachable coil was affixed to each mouse, and animals underwent 2 wk of 10-min daily training in a two-choice visual discrimination task with concurrent LI-rTMS or sham stimulation. No-task controls (+LI-rTMS/sham) were placed in the task arena without visual task training. At the end of the experiment, visuomotor tracking behavior was assessed, and corticotectal and geniculocortical pathway organization was mapped by injections of fluorescent tracers into the primary visual cortex. Consistent with previous results, LI-rTMS alone improved geniculocortical and corticotectal topography, but combining LI-rTMS with the visual learning task prevented beneficial corticotectal reorganization and had no additional effect on geniculocortical topography or visuomotor tracking performance. Unexpectedly, there was a significant increase in the total number of trials completed by task + LI-rTMS mice in the visual learning task. Comparison with wild-type mice revealed that ephrin-A2A5-/- mice had reduced accuracy and response rates, suggesting a goal-directed behavioral deficit, which was improved by LI-rTMS. Our results suggest that concurrent brain activity during behavior interacts with LI-rTMS, altering behavior and different visual circuits in an abnormal system.


Asunto(s)
Efrina-A2/fisiología , Efrina-A5/fisiología , Aprendizaje , Plasticidad Neuronal , Desempeño Psicomotor , Estimulación Magnética Transcraneal , Corteza Visual/fisiología , Animales , Conducta Animal , Conducta de Elección , Discriminación en Psicología , Efrina-A2/genética , Efrina-A5/genética , Femenino , Cuerpos Geniculados/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estimulación Luminosa
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(12): 1272-1277, 2017 Dec.
Artículo en Chino | MEDLINE | ID: mdl-29237529

RESUMEN

OBJECTIVE: To investigate the changes in the expression of EphA5 and its ligand ephrinA5 in the hippocampus of rats with epilepsy and their role in the pathogenesis of temporal lobe epilepsy (TLE). METHODS: A total of 240 Sprague-Dawley rats were randomly divided into control group and TLE group, with 120 rats in each group. A rat model of lithium-pilocarpine TLE was established, and then the rats were divided into subgroups at 12 and 24 hours and 7, 15, 30, and 60 days after epilepsy was induced. In-situ hybridization was used to measure the mRNA expression of ephrinA5 in the CA3 region and the dentate gyrus of the hippocampus in 9 rats; immunohistochemistry was used to measure the protein expression of EphA5 in the CA3 region and the dentate gyrus of the hippocampus in 9 rats; Neo-Timm silver staining was used to observe mossy fiber sprouting in the CA3 region of the hippocampus in 2 rats. RESULTS: In-situ hybridization showed mRNA expression of ephrinA5 in the CA3 region of the hippocampus, but this was not found in the dentate gyrus. Compared with the control group at the same time point, the TLE group had a significant reduction in the mRNA expression of ephrinA5 in the CA3 region of the hippocampus at 7 and 15 days after epilepsy was induced (P<0.05); at 30 and 60 days after epilepsy was induced, the TLE group had a gradual increase in the mRNA expression of ephrinA5 in the CA3 region of the hippocampus, and there was no significant difference between the TLE and control groups (P>0.05). Immunohistochemistry showed that EphA5 protein was expressed in the CA3 region and the dentate gyrus of the hippocampus and had a similar trend of change as ephrinA5 mRNA. Neo-Timm silver staining showed that the TLE group developed marked mossy fiber sprouting in the CA3 region of the hippocampus at 7 and 15 days after epilepsy was induced. CONCLUSIONS: Downregulation of ephrinA5 and EphA5 in the CA3 region of the hippocampus may participate in the mechanism of mossy fiber sprouting and is closely associated with the development and progression of epilepsy.


Asunto(s)
Efrina-A5/fisiología , Epilepsia del Lóbulo Temporal/etiología , Hipocampo/química , Receptor EphA5/fisiología , Animales , Efrina-A5/análisis , Efrina-A5/genética , Epilepsia del Lóbulo Temporal/metabolismo , Masculino , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptor EphA5/análisis , Receptor EphA5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...