Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Nutrients ; 16(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732560

RESUMEN

Cardiovascular diseases are a broadly understood concept focusing on vascular and heart dysfunction. Lack of physical exercise, type 2 diabetes, obesity, hypertension, dyslipidemia, thromboembolism, and kidney and lung diseases all contribute to the development of heart and blood vessel dysfunction. Although effective and important, traditional treatment with diuretics, statins, beta blockers, calcium inhibitors, ACE inhibitors, and anti-platelet drugs remains a second-line treatment after dietary interventions and lifestyle changes. Scientists worldwide are still looking for an herbal product that would be effective and free from side effects, either taken together with or before the standard pharmacological intervention. Such herbal-originated medication therapy may include Morus alba L. (white mulberry), Elaeagnus rhamnoides (L.) A. Nelson (sea-buckthorn), Allium sativum L. (garlic), Convallaria majalis L. (lily of the valley), Leonurus cardiaca L. (motherwort), and Crataegus spp. (hawthorn). Valuable herbal raw materials include leaves, fruits, seeds, and even thorns. This short review focuses on six herbs that can constitute an interesting and potential therapeutic option in the management of cardiovascular disorders.


Asunto(s)
Enfermedades Cardiovasculares , Crataegus , Ajo , Hippophae , Morus , Extractos Vegetales , Crataegus/química , Morus/química , Animales , Hippophae/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Leonurus/química , Elaeagnaceae/química , Humanos , Fitoterapia
2.
Appl Environ Microbiol ; 90(5): e0028824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38651928

RESUMEN

In many frankia, the ability to nodulate host plants (Nod+) and fix nitrogen (Fix+) is a common strategy. However, some frankia within the Pseudofrankia genus lack one or two of these traits. This phenomenon has been consistently observed across various actinorhizal nodule isolates, displaying Nod- and/or Fix- phenotypes. Yet, the mechanisms supporting the colonization and persistence of these inefficient frankia within nodules, both with and without symbiotic strains (Nod+/Fix+), remain unclear. It is also uncertain whether these associations burden or benefit host plants. This study delves into the ecological interactions between Parafrankia EUN1f and Pseudofrankia inefficax EuI1c, isolated from Elaeagnus umbellata nodules. EUN1f (Nod+/Fix+) and EuI1c (Nod+/Fix-) display contrasting symbiotic traits. While the prediction suggests a competitive scenario, the absence of direct interaction evidence implies that the competitive advantage of EUN1f and EuI1c is likely contingent on contextual factors such as substrate availability and the specific nature of stressors in their respective habitats. In co-culture, EUN1f outperforms EuI1c, especially under specific conditions, driven by its nitrogenase activity. Iron-depleted conditions favor EUN1f, emphasizing iron's role in microbial competition. Both strains benefit from host root exudates in pure culture, but EUN1f dominates in co-culture, enhancing its competitive traits. Nodulation experiments show that host plant preferences align with inoculum strain abundance under nitrogen-depleted conditions, while consistently favoring EUN1f in nitrogen-supplied media. This study unveils competitive dynamics and niche exclusion between EUN1f and EuI1c, suggesting that host plant may penalize less effective strains and even all strains. These findings highlight the complex interplay between strain competition and host selective pressure, warranting further research into the underlying mechanisms shaping plant-microbe-microbe interactions in diverse ecosystems. IMPORTANCE: While Pseudofrankia strains typically lack the common traits of ability to nodulate the host plant (Nod-) and/or fix nitrogen (Fix-), they are still recovered from actinorhizal nodules. The enigmatic question of how and why these unconventional strains establish themselves within nodule tissue, thriving either alongside symbiotic strains (Nod+/Fix+) or independently, while considering potential metabolic costs to the host plant, remains a perplexing puzzle. This study endeavors to unravel the competitive dynamics between Pseudofrankia inefficax strain EuI1c (Nod+/Fix-) and Parafrankia strain EU1Nf (Nod+/Fix+) through a comprehensive exploration of genomic data and empirical modeling, conducted both in controlled laboratory settings and within the host plant environment.


Asunto(s)
Elaeagnaceae , Frankia , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas , Simbiosis , Frankia/genética , Frankia/fisiología , Frankia/metabolismo , Elaeagnaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Cocultivo , Genoma Bacteriano
3.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542392

RESUMEN

This study evaluated the positive effects of autumn olive berries (AOBs) extract on delaying aging by improving lipid metabolism in middle-aged Caenorhabditis elegans that had become obese due to a high-glucose (GLU) diet. The total phenolic content and DPPH radical scavenging abilities of freeze-dried AOBs (FAOBs) or spray-dried AOBs (SAOBs) were examined, and FAOBs exhibited better antioxidant activity. HPLC analysis confirmed that catechin is the main phenolic compound of AOBs; its content was 5.95 times higher in FAOBs than in SAOBs. Therefore, FAOBs were used in subsequent in vivo experiments. FAOBs inhibited lipid accumulation in both the young adult and middle-aged groups in a concentration-dependent manner under both normal and 2% GLU conditions. Additionally, FAOBs inhibited ROS accumulation in a concentration-dependent manner under normal and 2% GLU conditions in the middle-aged worms. In particular, FAOB also increased body bending and egg production in middle-aged worms. To confirm the intervention of genetic factors related to lipid metabolism from the effects of FAOB, body lipid accumulation was confirmed using worms deficient in the daf-16, atgl-1, aak-1, and akt-1 genes. Regarding the effect of FAOB on reducing lipid accumulation, the impact was nullified in daf-16-deficient worms under the 2% GLU condition, and nullified in both the daf-16- and atgl-1-deficient worms under fasting conditions. In conclusion, FAOB mediated daf-16 and atgl-1 to regulate lipogenesis and lipolysis in middle-aged worms. Our findings suggest that FAOB improves lipid metabolism in metabolically impaired middle-aged worms, contributing to its age-delaying effect.


Asunto(s)
Proteínas de Caenorhabditis elegans , Elaeagnaceae , Olea , Animales , Caenorhabditis elegans/metabolismo , Metabolismo de los Lípidos , Olea/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Frutas/metabolismo , Envejecimiento , Elaeagnaceae/metabolismo , Lípidos/farmacología , Longevidad
4.
BMC Res Notes ; 16(1): 364, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066640

RESUMEN

AIM: The purpose of this study was to determine the impact of Elaeagnus Angustifolia extract (EA) on human dermal fibroblast (HDF) survival, migration, and wound healing-related genes. METHODS: After preparing the hydroalcoholic extract of EA, MTT and scratch tests were used to determine the effect of EA on the viability and migration of HDFs. In addition, the quantitative polymerase chain reaction (q-PCR) was conducted to evaluate the impact of EA on the expression of wound healing-related genes in HDFs. RESULT: According to the MTT test, a nontoxic concentration of EA (100 µg/ml) was obtained for further investigations. The scratch test results demonstrated that EA improved HDFs' capacity to migrate when compared to the control group. Additionally, q-PCR results revealed that EA could significantly increase wound healing-related genes (VEGF-A, HLA-G5, and IL-6) in comparison with the control group. CONCLUSIONS: The EA could have a significant impact on the viability and migration of HDFs. Also, EA increased the expression of wound healing-related genes.


Asunto(s)
Elaeagnaceae , Cicatrización de Heridas , Humanos , Piel , Fibroblastos , Proliferación Celular
5.
Environ Sci Pollut Res Int ; 30(58): 122262-122273, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37968482

RESUMEN

Agricultural waste is an unwanted material that is not only unmarketable, but also has secondary costs such as environmental pollution. Oleaster, also known as olive Russian fruit, has various uses, but it also produces waste such as seeds and peels. Oleaster fruit and all its parts are tannin rich, which can be utilized as natural mordant. Improvement of fastness and color properties of natural dyed fibers is obtained by using mordant. The employing of this mordant is effective in reducing agricultural waste and the production of dyeing chemical waste. Reseda extract was utilized as natural dye to investigate the color characteristics. The study of the phenolic percentage of different components of the Oleaster fruit, including peel, seed, and flesh, showed that each of these materials can be used as natural mordant. The formation of physical bonds in the presence of all kinds of mordant was investigated using the FTIR method, and the results showed that their performance is similar and they are effective in surface treatment of wool. Investigation of color characteristics of the yarns showed that the color strength increases in the presence of mordant. Studying the fastness of yarns dyed with ISO methods showed that the samples have high washing fastness.


Asunto(s)
Colorantes , Elaeagnaceae , Lana , Animales , Colorantes/química , Contaminación Ambiental , Semillas , Taninos/análisis , Lana/química , Elaeagnaceae/química
6.
BMC Complement Med Ther ; 23(1): 338, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752472

RESUMEN

BACKGROUND: One of the most common types of cancer in women is breast cancer. There are numerous natural plant-based products, which exert anti-tumoral effects including Elaeagnus Angustifolia (EA). It modulates cell-cycle process, heat-shock proteins expression, anti-proliferative properties, apoptosis induction, blocking of angiogenesis, and cell invasion inhibition. The current study aimed to synthesize and evaluate the anticancer effects of hydroalcoholic EA extract (HEAE), Nanohydroxyapatite (nHAp) and nHAp synthesized trough EA (nHA-EA) in MCF-7 breast cancer cell line. METHODS: In the present study, HEAE preparation and green synthesis of nHA-EA was done and phase composition, functional groups, and crystallin phase of nHA-EA and nHAp were determined using Fourier-transform infrared (FTIR) and X-ray diffraction (XRD). The characteristics of synthesized nanoparticles including structural and morphological parameters were investigated using scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques. Then, by using MTT-assay (Dimethylthiazoldiphenyltetrazolium), the in vitro cytotoxic and half maximal inhibitory concentration (IC50) of EA extract, nHAp, and nHA-EA in the MCF-7 breast cancer cell line was evaluated. Next, we assessed the expression of apoptosis-related genes Bax, Bcl2 and p53 using quantitative reverse-transcriptase polymerase-chain-reaction (qRT-PCR) and migration of MCF-7 cells by scratch assay. RESULTS: The FTIR results demonstrated formation of nHAp and its interaction with HEAE during synthesis process. The XRD results of the synthesized nanoparticles showed similar XRD pattern of nHA-EA and nHAp and purity of synthesized nanomaterials. The average IC50 of HEAE, nHAp, and nHA-EA extract after treatment of cancer cells for 24 h was 400 µg/mL, 200 µg/mL, and 100 µg/mL, respectively. Our results revealed that nHA-EA significantly reduced the migration and invasion of the MCF-7 cells, in comparison to the nHAp and EA extract. Moreover, level of Bax/Bcl2 and p53 was significantly higher in the nHA-EA extract group in comparison to the EA extract and nHAp group. CONCLUSION: Taken together, our results demonstrated that bioactive constituents of EA medicinal plant in form of nHA-EA particles, can effectively exerts potential anticancer and chemo preventive effect against breast cancer growth and can be proposed as a promising beneficial candidate for BC therapy. However, further investigations are required to discover what bioactive compounds are responsible for the chemo preventive effect of this extract.


Asunto(s)
Neoplasias de la Mama , Elaeagnaceae , Femenino , Humanos , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteína p53 Supresora de Tumor , Proteína X Asociada a bcl-2
7.
Molecules ; 28(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764243

RESUMEN

In order to investigate the antioxidant activity of Elaeagnus umbellata polysaccharides, the physicochemical characteristics of purified Elaeagnus umbellata polysaccharides (EUP, consisting of two fractions, EUP1 and EUP2) were investigated using UV spectrophotometry, high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), and Fourier transform infrared spectroscopy (FT-IR). This revealed that EUP1 and EUP2 were acidic polysaccharides with an average molecular weight (MW) of 63 and 38 kDa, respectively. EUP1 mainly consisted of L-rhamnose and D-galactose in a molar ratio of 2.05:1, and EUP2 consisted of D-mannose, L-rhamnose, D-galactose, and D-arabinose in a molar ratio of 2.06:1:2.78:1. Furthermore, EUP exhibited considerable antioxidant potential for scavenging hydroxyl, superoxide anion, DPPH, and ABTS radicals. Therefore, EUP can be developed as a potential antioxidant for the functional food or pharmaceutical field.


Asunto(s)
Antioxidantes , Elaeagnaceae , Antioxidantes/farmacología , Galactosa , Ramnosa , Espectroscopía Infrarroja por Transformada de Fourier , Polisacáridos/farmacología
8.
Meat Sci ; 198: 109097, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36640719

RESUMEN

The effects of oleaster leave essential oil (OLEOs: 1000 and 2000 ppm) in combination with nisin nanoparticles (200 ppm) and ε-polylysine nanoparticles (2000 ppm) on the physicochemical, microbiological and sensory properties of the emulsion-type sausages without added chemical nitrite/nitrate salts were evaluated during 45 days of storage. Nanoparticle attributes were assessed, including encapsulation efficiency (EE%), zeta potential, nanoparticles size, FTIR analysis, and thermal stability (DSC). Overall, ε-PL nanoparticles (ε-PL-NPs) were thermally more stable and showed higher EE% (91.52%) and zeta potential (37.80%) as compared to nisin nanoparticles (82.85%) and (33.60%), respectively. The use of combined ε-PL-NPs (2000 ppm) + Ni-NPs (200 ppm) with oleaster leaves essential oil (2000 ppm) resulted in a higher pH value (5.88), total phenolic content (10.45 mg/100 g) and lower TBARS (2.11 mg/kg), and also decreased total viable bacteria (1.28 Log CFU/g), Clostridium perfringens (1.43 Log CFU/g), E. coli (0.24 Log CFU/g), Staphylococcus aureus (0.63 Log CFU/g), and molds and yeasts (0.86 Log CFU/g) count in samples at day 45 in comparison to the control (120 ppm nitrite). The consumers approved sensory traits in nitrite-free formulated sausages containing ε-PL-NPs and Ni-NPs combined with OLEOs.


Asunto(s)
Elaeagnaceae , Conservación de Alimentos , Nisina , Aceites Volátiles , Escherichia coli , Nitratos , Nitritos/farmacología , Aceites Volátiles/química
9.
Appl Biochem Biotechnol ; 195(3): 1770-1780, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36385368

RESUMEN

The soluble and fermentable carbohydrate contents was detected over 47% of glucose and fructose in Chinese Elaeagnus angustifolia fruit powder (EAF), being over 47 wt% sugar content more than that of grape. Ethanol was therefore fermented directly from EAF, and different submerged fermentation modes were comparatively employed to optimize ethanol harvest. The results indicated that glucose has certain competitive inhibition on fructose bio-utilization, as well as the EAF solid residue involved fermentation mode also hindered the fermented-ethanol titer. Pectinase addition and in situ hydrolysis seemed to assist somewhat the fermentation. The water-solute fermentation mode is preferable, and glucose and fructose components were completely consumed and converted to 80.96 g/L ethanol at 87.6% ethanol yield even under tannin and pectin inhibition. The fermentation result could provide some experimental data and an approach to not only new biomass resource explores of bioethanol and alcohol beverage production, but also the technological development on valorization commercials of EAF in global draught areas.


Asunto(s)
Elaeagnaceae , Etanol , Fermentación , Fructosa , Glucosa , Carbohidratos/química , Frutas , Hidrólisis , Elaeagnaceae/química
10.
Molecules ; 27(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234953

RESUMEN

Elaeagnus angustifolia Linnaeus is a medicinal plant and its fruit has pharmacological activity such as antiinflammatory, antiedema, antinociceptive, and muscle relaxant functions, etc. Two acidic homogeneous polysaccharides (EAP-H-a1 and EAP-H-a2) were isolated from the fruits of Elaeagnus angustifolia L. through DEAE-52 and Sephadex G-75 column chromatography, and the physicochemical, structural properties, and biological activities of the polysaccharides were investigated. Both EAP-H-a1 and EAP-H-a2 were composed of Rha, Ara, Xyl, Glc, and Gal with the molar ratios of 13.7:20.5:23.3:8.8:33.4 and 24.8:19.7:8.2:8.4:38.6, respectively, and with the molecular weights of 705.796 kDa and 439.852 kDa, respectively. The results obtained from Fourier transform infrared spectroscopy (FTIR) confirmed the polysaccharide nature of the isolated substances. Congo red assay confirmed the existence of a triple-helix structure. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis revealed that EAP-H-a1 and EAP-H-a2 had irregular fibrous, filament-like surfaces; and both had crystalline and amorphous structures. Bioactivity analysis showed that the crude polysaccharide, EAP-H-a1, and EAP-H-a2 had clear DPPH and ABTS free radical scavenging activity, and could promote the secretion of NO and the phagocytic activities of RAW 264.7 and THP cells, which showed clear antioxidant and immuno-regulatory activity. These results indicated that Elaeagnus angustifolia L fruit acidic polysaccharides may have potential value in the pharmaceutical and functional food industries.


Asunto(s)
Elaeagnaceae , Frutas , Analgésicos/análisis , Antioxidantes/química , Rojo Congo/análisis , Elaeagnaceae/química , Radicales Libres/análisis , Frutas/química , Preparaciones Farmacéuticas/análisis , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier
11.
Molecules ; 27(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144583

RESUMEN

Due to its eco-friendliness, cost-effectiveness, ability to be handled safely, and a wide variety of biological activities, the green plant-mediated synthesis of nanoparticles has become increasingly popular. The present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using Elaeagnus umbellata (fruit) and the evaluation of its antibacterial, antioxidant, and phytotoxic activities. For the synthesis of AgNPs, fruit extract was treated with a 4 mM AgNO3 solution at room temperature, and a color change was observed. In UV-Visible spectroscopy, an absorption peak formation at 456 nm was the sign that AgNPs were present in the reaction solution. Scanning electron microscopy and physicochemical X-ray diffraction were used to characterize AgNPs, which revealed that they were crystalline, spherical, and had an average size of 11.94 ± 7.325 nm. The synthesized AgNPs showed excellent antibacterial activity against Klebsiella pneumoniae (14 mm), Staphylococcus aureus (13.5 mm), Proteus mirabilis (13 mm), and Pseudomonas aeruginosa (12.5 mm), as well as considerable antioxidant activity against DPPH with 69% inhibition at an IC50 value of 43.38 µg/mL. AgNPs also exhibited a concentration-dependent effect on rice plants. Root and shoot length were found to be positively impacted at all concentrations, i.e., 12.5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL. Among these concentrations, the 50 µg/mL concentration of AgNPs was found to be most effective. The plant biomass decreased at higher AgNP exposure levels (i.e., 100 µg/mL), whereas 50 µg/mL caused a significant increase in plant biomass as compared to the control. This study provides an eco-friendly method for the synthesis of AgNPs which can be used for their antibacterial and antioxidant activities and also as growth promoters of crop plants.


Asunto(s)
Elaeagnaceae , Nanopartículas del Metal , Antibacterianos/química , Antioxidantes/química , Frutas/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plata/química
12.
Inflammopharmacology ; 30(5): 1759-1768, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35723848

RESUMEN

N-Acetylcysteine (NAC) is a chemical compound with anti-inflammatory and antioxidant activity and acts as a free radical scavenger. Elaeagnus angustifolia (EA) is a plant native to the western part of Iran, with antioxidant and anti-inflammatory properties. The present study been taken evaluated the protective effect afforded by EA and NAC extracts on carrageenan-induced acute lung injury in Wistar rats. In this study, 42 rats were randomly assigned into seven groups. NAC and EA extracts were orally administered once/day for 21 continuous days. Pulmonary damage was induced by intratracheal injection of 100 µl of 2% λ-Carrageenan on day 21. Twenty-four hours post-surgery, the rats were euthanized and the samples were collected. Pretreatment with NAC and EA extracts reduced the total and differential cell accumulation as well as IL-6, and TNF-α cytokines. Antioxidant indicators demonstrate that in the groups receiving NAC and EA extract, MDA decreased while thiol and antioxidant capacity elevated. Treatment with NAC and EA significantly reduced Carrageenan-induced pathological pulmonary tissue injury. NAC and EA extract has protective effects on acute carrageenan-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Elaeagnaceae , Acetilcisteína/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Carragenina/farmacología , Citocinas , Elaeagnaceae/química , Depuradores de Radicales Libres/farmacología , Interleucina-6 , Pulmón , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/farmacología , Factor de Necrosis Tumoral alfa/farmacología
13.
Molecules ; 27(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35566071

RESUMEN

The cherry silverberry (Elaeagnus multiflora Thunb.) is a lesser-known plant species with high nutritional and therapeutic potential. Cherry silverberry contains numerous biologically active compounds. The cherry silverberry is a shrub growing up to 3 m. Its drupe-like fruit is ellipsoidal, up to 1 cm long, and set on stems. It is red in color, juicy, and sour, and its taste resembles that of red currants. According to the literature, cherry silverberry fruit contains carbohydrates, organic acids, and amino acids, as well as vitamin C, in addition to biominerals, polyphenols, flavonoids, carotenoids, chlorophylls, and tocopherols, which contribute to its high nutritional value. New biotypes of cherry silverberry cultivated in Poland can be used for the production of functional foods and direct consumption. In China, the cherry silverberry, known as goumi, has been used as a medicinal plant and a natural remedy for cough, diarrhea, itch, foul sores, and, even, cancer. This review article summarizes the scant research findings on the nutritional and therapeutic benefits of cherry silverberry.


Asunto(s)
Antioxidantes , Elaeagnaceae , Antioxidantes/química , Frutas/química , Valor Nutritivo , Extractos Vegetales/química , Polifenoles/química
14.
Environ Res ; 212(Pt C): 113323, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35472463

RESUMEN

The present study focused on synthesizing ZnO nanoparticles (NPs) and CuO NPs using Elaeagnus indica leaf extract as reducing and stabilizing agents using Zn(O2CCH3)2 and Cu2SO4, respectively, for the first time. We have confirmed the formation of aggregated ZnO NPs and CuO NPs with phytochemicals by various spectral analyses and electron microscopy studies. The size of synthesized ZnO NPs and CuO NPs were in the range of 20-30 nm and 30-40 nm, respectively. The antimicrobial activity of ZnO NPs at 75 µg concentration is superior against Salmonella typhimurium, Klebsiella pneumonia, Bacillus subtilis, Staphylococcus epidermidis, and Aspergillus niger. While CuO nanoparticles with 75 µg concentration effectively inhibited S. typhimurium, B. subtilis, S. epidermidis, and A. niger. Phytochemicals and reactive oxygen species generated by the prepared NPs may account for the antimicrobial effects observed. The photodegradation of methylene blue by ZnO NPs and CuO NPs was 91% and 76%, respectively, for 6 h of sunlight exposure. CuO NPs and ZnO NPs have different intrinsic properties and phytochemical compositions; hence ZnO NPs photodegrade faster than CuO NPs even though ZnO has higher bandgap energy than CuO. Consequently, CuO and ZnO NPs produced from E. indica leaf extract might be utilized as antimicrobials and photocatalysts in the future.


Asunto(s)
Elaeagnaceae , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Antibacterianos/química , Antibacterianos/farmacología , Biomimética , Cobre/química , Elaeagnaceae/metabolismo , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/farmacología , Óxido de Zinc/química
15.
Molecules ; 27(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35268631

RESUMEN

In Iran and other parts of Western Asia, the oleaster (Elaeagnus angustifolia L.) fruit is processed in the dried powdery form, and in recent times, increasingly applied/sprinkled in fruit juices such as those made from oranges (Citrus sinensis L.). To our best knowledge, the effectiveness of oleaster fruit extract in fortifying the orange juice has not yet been reported and the knowledge of this will greatly benefit the consumers, particularly those around the Western Asia region. This current work, therefore, investigated the changes in physicochemical, free radical activity, total phenolic compounds, and sensory properties of orange juice fortified with different oleaster fruit extracts. The orange juice mix formulation comprised different concentrations (5, 10, 15, 20, and 25%) of oleaster (alcoholic, aqueous, and hydro-alcoholic) extracts. The control comprised orange concentrate (4% w/v), sugar (8.5% w/v), and citric acid (0.1% w/v) brought to the desirable volume with water. As the free radical activity depicted the antioxidant properties, the physicochemical aspects of this work involved the determinations of Brix, density, ash, pH, total acidity, sucrose, and total sugar, whereas the sensory aspects involved the determinations of color and taste. Whilst the aqueous oleaster 20 and 25% extracts produced notable physicochemical differences in the orange juice mix, both free radical activity, and phenolic compounds significantly increased (p < 0.05) after 30 days despite resembling (p > 0.05) those of control at day 1. More so, the increases in aqueous, alcoholic, and hydro-alcoholic oleaster extracts would decrease (p < 0.05) the sensory color and taste of the orange juice mix in this study.


Asunto(s)
Citrus sinensis , Citrus , Elaeagnaceae , Citrus sinensis/química , Radicales Libres/análisis , Frutas/química , Jugos de Frutas y Vegetales , Extractos Vegetales/química
16.
J Environ Manage ; 305: 114401, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34974219

RESUMEN

Saline-alkali environments are widely distributed in China and significantly hinder the development of agriculture. This study characterizes the long-term effects of planting Elaeagnus angustifolia (E. angustifolia) on the physical and chemical properties, enzyme activities and microbial community characteristics of saline-alkali soil in the Songnen Plain (1, 2 and 3 years). The results showed that planting E. angustifolia reduced soil pH and electrical conductivity (EC) and increased soil total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (Nni), total potassium (TK), dissolved organic C (DOC), dissolved organic matter (DOM) and available potassium (AK) content and catalase, urease, polyphenol oxidase, phosphatase, sucrase and cellulase enzyme activities, and the results peaked in the 3 year. High-throughput sequencing showed that the bacterial abundance and diversity were as follows (from high to low) y3 > y2 > y1 > CK. E. angustifolia resulted in an increase in the relative abundance of the dominant bacteria. Proteobacteria and Pseudomonas were the major phylum and genus, respectively. Redundancy analysis showed that changes in the soil microbial community significantly affect the physical and chemical properties of the soil, with Proteobacteria members being the key microorganisms that reduce soil salinity. Network analysis showed that Pseudomonas (Proteobacteria) participated in the synthesis of key soil enzymes. 16S rRNA sequencing predicted that the expression of genes related to carbon (rbcL, acsA, acsB, Pcc and accA) and nitrogen (amoA/B, nxrA, hao, gdh, ureC and nosZ) transformation increased, and Pseudomonas members were key regulators of carbon and nitrogen dynamics. In conclusion, the planting of E. angustifolia could improve the physical and chemical properties of the soil by releasing root exudates into the soil and increasing the diversity and richness of soil microbial communities to improve saline-alkali soil, providing a theoretical basis for improving saline-alkali soil and promoting the sustainable development of modern agriculture.


Asunto(s)
Elaeagnaceae , Microbiota , Álcalis , Materia Orgánica Disuelta , Estado de Salud , Nitrógeno/análisis , ARN Ribosómico 16S , Suelo , Microbiología del Suelo
17.
Food Chem ; 374: 131568, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34815112

RESUMEN

Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit contains a large number of naturally occurring molecules present as glycoside, methylated, and methyl ester conjugates, which should be hydolysed or transformed to become bioactive forms. For this purpose, Bifidobacterium animalis subsp. lactis HN-3 was selected to ferment Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice (EOJ). After fermentation, the total phenolic content (TPC) and antioxidant capacity of the EOJ increased significantly compared to the non-fermented EOJ. Using widely-targeted metabolomics analysis, polyphenolic compounds involved in the flavonoid biosynthetic pathway were determined to be up-regulated in the fermented EOJ. In addition, the metabolites generated by 8 deglycosidation, 5 demethylation, 5 hydrogenation, and 28 other reactions were detected in higher concentrations in the fermented EOJ compared to the non-fermented EOJ. Interestingly, these up-regulated metabolites have higher antioxidant and other biological activities than their metabolic precursors, which provide a theoretical basis for the development of Bifidobacterium-fermented plant products with stronger functional activities.


Asunto(s)
Bifidobacterium animalis , Elaeagnaceae , Antioxidantes , Fermentación , Jugos de Frutas y Vegetales , Metabolómica , Compuestos de Mostaza Nitrogenada
18.
Res Microbiol ; 173(1-2): 103900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34800660

RESUMEN

Frankia and actinorhizal plants exchange signals in the rhizosphere leading to specific mutual recognition of partners and nitrogen-fixing nodule organogenesis. Frankia soli strain NRRL B-16219, from the Elaeagnus specificity group, colonizes the root tissues of its actinorhizal host through direct intercellular penetration of root epidermis cells and cortex. Here, we studied the early proteogenomic response of strain NRRL B-16219 to treatment with root exudates from compatible Elaeagnus angustifolia, and incompatible Ceanothus thyrsiflorus and Coriaria myrtifolia, host plants grown in nitrogen depleted hydroponic medium. Next-generation proteomics was used to identify the main Frankia proteins differentially expressed in response to the root exudates. No products of the nod genes present in B-16219 were detected. Proteins specifically upregulated in presence of E. angustifolia root exudates include those connected to nitrogen fixation and assimilation (glutamate synthetase, hydrogenase and squalene synthesis), respiration (oxidative phosphorylation and citric acid cycle pathways), oxidative stress (catalase, superoxide dismutase, and peroxidase), proteolysis (proteasome, protease, and peptidase) and plant cell wall degrading proteins involved in the depolymerization of celluloses (endoglucanase, glycosyltransferase, beta-mannanases, glycoside hydrolase and glycosyl hydrolase). Proteomic data obtained in this study will help link signaling molecules/factors to their biosynthetic pathways once those factors have been fully characterized.


Asunto(s)
Elaeagnaceae/microbiología , Frankia , Exudados de Plantas , Raíces de Plantas/microbiología , Proteoma , Frankia/genética , Proteoma/metabolismo , Proteómica , Simbiosis
19.
Chempluschem ; 86(12): 1623-1634, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34907673

RESUMEN

Beneficial to the ecosystem and with significant potential in permaculture, Elaeagnus x submacrophylla Servett. was studied here mainly for the identification of its floral odorants. After olfactory evaluation and determination of the volatile profile of freshly picked flowers by headspace/solid phase microextraction coupled with gas chromatography/mass spectrometry, an ethanolic extract was prepared and investigated for its antioxidant capacity. Unusual molecules were identified in the floral headspace, such as isochavicol or chrysanthemum acetate. The evaluation of the in vitro free radical scavenging capacity (from 0.4 to 1.3 mmol TE/g) and total phenolic content (65.1 mg GAE/g) of the extract pointed out a promising antioxidant activity, potentially related to the identification of several flavonoid glycosides. These results have to be considered in the context of the ever-increasing need to produce innovative natural extracts with notably interesting claims for the cosmetic field.


Asunto(s)
Antioxidantes , Elaeagnaceae , Ecosistema , Flavonoides , Flores
20.
Genome Biol Evol ; 13(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864990

RESUMEN

Elaeagnus mollis Diels (Elaeagnaceae) is a species of shrubs and/or dwarf trees that produces highly nutritious nuts with abundant oil and pharmaceutical properties. It is endemic to China but endangered. Therefore, to facilitate the protection of its genetic resources and the development of its commercially attractive traits we generated a high-quality genome of E. mollis. The contig version of the genome (630.96 Mb long) was assembled into 14 chromosomes using Hi-C data, with contig and scaffold N50 values of 18.40 and 38.86 Mb, respectively. Further analyses identified 397.49 Mb (63.0%) of repetitive sequences and 27,130 protein-coding genes, of which 26,725 (98.5%) were functionally annotated. Benchmarking Universal Single-Copy Ortholog assessment indicated that 98.0% of highly conserved plant genes are completely present in the genome. This is the first reference genome for any species of Elaeagnaceae and should greatly facilitate future efforts to conserve, utilize, and elucidate the evolution of this endangered endemic species.


Asunto(s)
Elaeagnaceae , Animales , Cromosomas , Elaeagnaceae/genética , Especies en Peligro de Extinción , Genes de Plantas , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...