RESUMEN
Large bone defects are a significant health problem today with various origins, including extensive trauma, tumours, or congenital musculoskeletal disorders. Tissue engineering, and in particular bone tissue engineering, aims to respond to this demand. As such, we propose a specific model based on Elastin-Like Recombinamers-based click-chemistry hydrogels given their high biocompatibility and their potent on bone regeneration effect conferred by different bioactive sequences. In this work we demonstrate, using biochemistry, histology, histomorphometry and imaging techniques, the biocompatibility of our matrix and its potent effect on bone regeneration in a model of bone parietal lesion in female New Zealand rabbits.
Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Elastina , Hidrogeles , Ingeniería de Tejidos , Animales , Femenino , Conejos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Química Clic/métodos , Elastina/química , Hidrogeles/química , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Bone lesions have the capacity for regeneration under normal conditions of the bone metabolism process. However, due to the increasing incidence of major traumas and diseases that cause bone-mineral deficiency, such as osteoporosis, scaffolds are needed that can assist in the bone regeneration process. Currently, natural polymeric scaffolds and bioactive nanoparticles stand out. Therefore, the objective of the study was to evaluate the osteoregenerative potential in tibiae of healthy and ovariectomized rats using mineralized collagen and nanohydroxyapatite (nHA) scaffolds associated with elastin. The in-vivo experimental study was performed with 60 20-week-old Wistar rats, distributed into non-ovariectomized (NO) and ovariectomized (O) groups, as follows: Controls (G1-NO-C and G4-O-C); Collagen with nHA scaffold (G2-NO-MSH and G5-O-MSH); and Collagen with nHA and elastin scaffold (G3-NO-MSHC and G6-O-MSHC). The animals were euthanized 6 weeks after surgery and the samples were analyzed by macroscopy, radiology, and histomorphometry. ANOVA and Tukey tests were performed with a 95% CI and a significance index of p < 0.05. In the histological analyses, it was possible to observe new bone formed with an organized and compact morphology that was rich in osteocytes and with maturity characteristics. This is compatible with osteoconductivity in both matrices (MSH and MSHC) in rats with normal conditions of bone metabolism and with gonadal deficiency. Furthermore, they demonstrated superior osteogenic potential when compared to control groups. There was no significant difference in the rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the immune response but negatively influenced the bone-defect repair process.
Asunto(s)
Durapatita , Elastina , Femenino , Ratas , Animales , Humanos , Ratas Wistar , Colágeno , Osteogénesis , Regeneración Ósea , Ovariectomía , Andamios del Tejido , Ingeniería de TejidosRESUMEN
The self-assembled layer-by-layer technique has attracted a great deal of attention as a method for engineering bio-functional surfaces under mild chemical conditions. The production of multilayer films, starting from newly designed building blocks, may be laborious, considering the inherent limitations for anticipating how minimal changes in the macromolecular composition may impact both film deposition and performance. This paper presents an automated, high-throughput approach to depositing polyelectrolyte multilayers (PEMs) in multiwell plates, enabling the screening of nearly 100 film formulations in the same process. This high-throughput layer-by-layer (HT-LbL) method runs in an affordable, fully commercial platform using Python-coded routines that can be easily adapted for the materials science lab settings. The HT-LbL system was validated by investigating the deposition of polysaccharide-based films in multiwell plates, probing the absorbance signal of ionically stained polyelectrolyte multilayers (PEMs) prepared in one single batch. The HT-LbL method was also used to investigate the deposition of PEMs with a small library of genetically engineered elastin-like polypeptides (ELPs) with different levels of ionizable and hydrophobic amino acid residues. The deposition of ELP/chitosan films was assessed based on the signal of fluorescently labeled species (chitosan or ELP-mCherry), demonstrating that both electrostatic and hydrophobic residues are essential for film buildup. The growth and surface properties of ELP-mCherry/chitosan films also seemed susceptible to the assembly pH, forming a higher film growth and a rougher and more hydrophobic surface for both polyelectrolytes deposited under a low ionization degree. Overall, this study illustrates the challenge of predicting the growth and properties of multilayer films and how the HT-LbL can accelerate the development of multilayer films that demand high levels of testing and optimization.
Asunto(s)
Quitosano , Quitosano/química , Polielectrolitos , Elastina , Ensayos Analíticos de Alto Rendimiento , Polisacáridos/químicaRESUMEN
Angiotensin-converting enzyme I (ACE) is a key part of the renin-angiotensin system. Its main function is to regulate blood pressure and the balance of salts in the body. Somatic ACE has two domains, N-C-, each of which has a catalytic site that exhibits 60%sequence identity. The N-domain has a specific action in the hydrolysis of beta-amyloid bodies and angiotensin (1-7), which activates the MAS receptor and triggers anti-thrombotic and anti-inflammatory actions. Our goal was to obtain the catalytic site Ala361 to Gly468 of the N domain region, csACEN, without needing purification by chromatography. We employed a method that uses an Elastin-like Polypeptide (ELP) and Intein sequences linked to the peptide of interest. The more differential for obtaining the pure peptide was the cultivation temperatures in the synthesis of ELPcsACEN at 37 °C, with a significant increase in expression. In the purification by ELP precipitation, we recorded the highest efficiency in the concentrations of 0.57 M and 0.8 M of ammonium sulfate buffer. Intein autocleavage study allows removal of the ELP sequence at acidic pH, with the buffers MES and Tris-HCl The present study defined the best conditions for obtaining pure csACEN that the literature has not yet described for peptides. Obtaining pure csACEN aims at future studies for therapeutic use in hypertension, Alzheimer's, and oncology.
Asunto(s)
Elastina , Inteínas , Angiotensinas , Dominio Catalítico , Elastina/química , Elastina/metabolismo , Péptidos/químicaRESUMEN
Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.
Asunto(s)
Elastina , Nicotiana , Células CACO-2 , Elastina/química , Humanos , Fragmentos de Inmunoglobulinas , Péptidos/química , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/metabolismoRESUMEN
The purpose of our study was to obtain new wound dressings in the form of hydrogels that promote wound healing taking advantage of the broad activities of elastin (ELT) in physiological processes. The hydrogel of ELT and polyvinylpyrrolidone (PVP; ELT-PVP) was obtained by cross-linking induced by gamma irradiation at a dose of 25 kGy. The physicochemical changes attributed to cross-linking were analyzed through scanning electron microscopy (SEM), infrared spectroscopy analysis with Fourier transform (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Furthermore, we performed a rheological study to determine the possible changes in the fluidic macroscopic properties produced by the cross-linking method. Finally, we accomplished viability and proliferation analyses of human dermal fibroblasts in the presence of the hydrogel to evaluate its biological characteristics. The hydrogel exhibited a porous morphology, showing interconnected porous with an average pore size of 16 ± 8.42 µm. The analysis of FTIR, DSC, and TGA revealed changes in the chemical structure of the ELT-PVP hydrogel after the irradiation process. Also, the hydrogel exhibited a rheological behavior of a pseudoplastic and thixotropic fluid. The hydrogel was biocompatible, demonstrating high cell viability, whereas ELT presented low biocompatibility at high concentrations. In summary, the hydrogel obtained by gamma irradiation revealed the appropriate morphology to be applied as a wound dressing. Interestingly, the hydrogel exhibited a higher percentage of cell viability compared with ELT, suggesting that the cross-linking of ELT with PVP is a suitable strategy for biological applications of ELT without generating cellular damage.
Asunto(s)
Materiales Biocompatibles/metabolismo , Elastina/metabolismo , Apósitos Oclusivos , Polimerizacion/efectos de la radiación , Povidona/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Rastreo Diferencial de Calorimetría/métodos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Elastina/química , Elastina/ultraestructura , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Hidrogeles/química , Hidrogeles/metabolismo , Hidrogeles/farmacología , Microscopía Electrónica de Rastreo , Povidona/química , Povidona/farmacología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Termogravimetría/métodos , Cicatrización de Heridas/efectos de los fármacosRESUMEN
The formation of hydrogels by photosensitized oxidation and crosslinking of histidine-derived polymers is demonstrated for the first time. The photooxidation of pendant His mediated by singlet oxygen was used to promote covalent coupling by its dimerization. As a proof-of-concept, two systems were studied: (i) chondroitin sulfate (CS) functionalized with His, and (ii) an elastin-like peptide (ELP) containing His produced by recombinant techniques. Both materials were crosslinked by irradiation at 425 nm in the presence of Zn-porphyrin derivatives yielding His-based hydrogels. The molecular structure and physicochemical properties of ELP-His and other 5 ELPs with photooxidizable amino acids were studied in silica by computer simulation. A correlation between the protein conformation and its elastic properties is discussed. CS-His hydrogels demonstrate larger storage moduli than ELPs with other amino acids. The obtained results show the potential use of photooxidation to create a new type of His-based hydrogels.
Asunto(s)
Histidina , Hidrogeles , Simulación por Computador , Elastina , Oxígeno , Oxígeno SingleteRESUMEN
A flacidez tissular abdominal é uma disfunção dermatológica que incomoda principalmente as mulheres. A radiofrequência e o microagulhamento são recursos utilizados para minimizar essa flacidez. Objetivo: Investigar os efeitos do microagulhamento associado a radiofrequência na flacidez tissular abdominal. Métodos: Trata-se de um estudo experimental, controlado e randomizado, com amostra de 20 mulheres, faixa etária entre 18 e 35 anos, dispostas em dois grupos: Grupo 1 (G1) foi aplicada 1 sessão de microagulhamento, após 15 dias reavaliação utilizando a plicometria e perimetria e Grupo 2 (G2) 1 sessão de microagulhamento, após 15 dias realizaram-se 4 sessões de radiofrequência com intervalo de 1 dia entre as sessões. Resultados: O G2 apresentou diminuição de flacidez do músculo reto abdominal direito apresentando p = 0,009, flanco direito p = 0,001 e flanco esquerdo p = 0,004, assim como a redução da circunferência abdominal. A avaliação de satisfação corporal do G2 teve escore final p = 0,029. Conclusão: O microagulhamento associado a radiofrequência promoveram uma melhora clínica da flacidez tissular abdominal e flancos. (AU)
Asunto(s)
Femenino , Adulto , Cutis Laxo , Punción Seca , Ondas de Radio , Colágeno , Elastina , Proliferación Celular , FibroblastosRESUMEN
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).
Asunto(s)
Biopolímeros/química , Regeneración Ósea/fisiología , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Birrefringencia , Matriz Ósea/química , Matriz Ósea/fisiología , Remodelación Ósea/fisiología , Sustitutos de Huesos/química , Calcificación Fisiológica/fisiología , Bovinos , Colágeno/química , Colágeno/metabolismo , Elastina/química , Elastina/metabolismo , Imagenología Tridimensional , Masculino , Ensayo de Materiales , Ratas , Ratas Wistar , Cráneo/diagnóstico por imagen , Cráneo/lesiones , Cráneo/fisiología , Porcinos , Ingeniería de Tejidos/métodos , Microtomografía por Rayos XRESUMEN
Tubular polymer scaffolds based on tissue engineering techniques have been studied as potential alternatives for vascular regeneration implants. The blood vessels of the cardiovascular system are mainly fibrous, composed of collagen (Col) and elastin (El), and its inner layer consists of endothelial cells. In this work, Col and El were combined with polyurethane (PU), a biocompatible synthetic polymer, and rotary jet spinning, a new and highly productive technique, to produce fibrous scaffolds. The scaffolds produced at 18 000 rpm presented homogeneous, bead-free, and solvent-free fibers. The blend formation between PU-Col-El was identified by chemical composition analysis and enhanced the thermal stability up to 324°C. The hydrophilic nature of the scaffold was revealed by its low contact angle. Cell viability of human umbilical vein endothelial cells with the scaffold was proven for 72 hours. The combined strategy of rotary jet spinning with a polymer blend containing Col and El was verified as an effective and promising alternative to obtain tubular scaffolds for tissue engineering on a large-scale production.
Asunto(s)
Materiales Biocompatibles/química , Prótesis Vascular , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Colágeno/química , Elastina/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Poliuretanos/químicaRESUMEN
BACKGROUND: Hyperoxia at resuscitation increases oxidative stress, and even brief exposure to high oxygen concentrations during stabilization may trigger organ injury with adverse long-term outcomes in premature infants. We studied the long-term effects of short-term perinatal oxygen exposure on cell cycle gene expression and lung growth in adult mice. METHODS: We randomized mice litters at birth to 21, 40, or 100%O2 for 30 min and recovered in room air for 4 or 12 weeks. Cell cycle gene expression, protein analysis, and lung morphometry were assessed at 4 and 12 weeks. RESULTS: The principal component analysis demonstrated a high degree of correlation for cell cycle gene expression among the three oxygen groups. Lung elastin was significantly lower in the 100%O2 groups at 4 weeks. On lung morphometry, radial alveolar count, alveolar number, and septal count were similar. However, the mean linear intercept (MLI) and septal length significantly correlated among the oxygen groups. The MLI was markedly higher in the 100%O2 groups at 4 and 12 weeks of age, and the septal length was significantly lower in the 100%O2 groups at 12 weeks. CONCLUSION: Short-term exposure to high oxygen concentrations lead to subtle changes in lung development that may affect alveolarization. The changes are related explicitly to secondary crest formation that may result in alteration in lung elastin. Resuscitation with high oxygen concentrations may have a significant impact on lung development and long-term outcomes such as BPD in premature infants.
Asunto(s)
Hiperoxia/patología , Pulmón/patología , Oxígeno/efectos adversos , Animales , Elastina/metabolismo , Femenino , Pulmón/crecimiento & desarrollo , Ratones , Estrés Oxidativo , EmbarazoRESUMEN
BACKGROUND: The major intrinsic cause of facial skin degeneration is age, associated with extrinsic factors such as exposure to sun. Its major pathologic causes are degeneration of the elastin matrix, with loss of oxytalan and elaunin fibers in the subepidermal region, and actinic degeneration of elastin fibers that lose their functional properties in the deep dermis. Therapy using autologous adipose mesenchymal stem cells for regeneration of extracellular matrix in patients with solar elastosis was addressed in qualitative and quantitative analyses of the dermal elastic fiber system and the associated cells. METHODS: Mesenchymal stem cells were obtained from lipoaspirates, expanded in vitro, and introduced into the facial skin of patients submitted after 3 to 4 months to a face-lift operation. In the retrieved skin, immunocytochemical analyses quantified elastic matrix components; cathepsin K; matrix metalloproteinase 12 (macrophage metalloelastase); and the macrophage M2 markers CD68, CD206, and hemeoxygenase-1. RESULTS: A full de novo formation of oxytalan and elaunin fibers was observed in the subepidermal region, with reconstitution of the papillary structure of the dermal-epidermal junction. Elastotic deposits in the deep dermis were substituted by a normal elastin fiber network. The coordinated removal of the pathologic deposits and their substitution by the normal ones was concomitant with activation of cathepsin K and matrix metalloproteinase 12, and with expansion of the M2 macrophage infiltration. CONCLUSION: The full regeneration of solar elastosis was obtained by injection of in vitro expanded autologous adipose mesenchymal stem cells, which are appropriate, competent, and sufficient to elicit the full structural regeneration of the sun-aged skin. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.
Asunto(s)
Tejido Adiposo/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Cuidados Preoperatorios/métodos , Ritidoplastia , Envejecimiento de la Piel , Anciano , Biopsia , Brasil , Elastina/análisis , Elastina/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/análisis , Proteínas de la Matriz Extracelular/metabolismo , Cara , Femenino , Estudios de Seguimiento , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Rejuvenecimiento , Piel/patología , Piel/efectos de la radiación , Luz Solar/efectos adversos , Trasplante Autólogo/métodos , Resultado del TratamientoRESUMEN
The production of bioactive peptides from organic by-waste materials is in line with current trends devoted to guaranteeing environmental protection and a circular economy. The objectives of this study were i) to optimize the conditions for obtaining bioactive hydrolysates from chicken combs and wattles using Alcalase, ii) to identify the resulting peptides using LC-ESI-MS2 and iii) to evaluate their chelating and antioxidant activities. The hydrolysate obtained using a ratio of enzyme to substrate of 5% (w/w) and 240 min of hydrolysis showed excellent Fe2+ chelating and antioxidant capacities, reducing Fe3+ and inhibiting 2, 2'-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The mapping of ion distribution showed that a high degree of hydrolysis led to the production of peptides with m/z ≤ 400, suggesting low mass peptides or peptides with multiple charge precursor ions. The peptides derived from the proteins of cartilage like Collagen alpha-2(I), Collagen alpha-1(I), Collagen alpha-1(III) and elastin contributed to generation of bioactive compounds. Hydrolysates from chicken waste materials could be regarded as candidates to be used as ingredients to design processed foods with functional properties.
Asunto(s)
Cresta y Barbas/efectos de los fármacos , Cresta y Barbas/metabolismo , Hidrólisis/efectos de los fármacos , Péptidos/farmacología , Animales , Antioxidantes/farmacología , Benzotiazoles/farmacología , Compuestos de Bifenilo/farmacología , Pollos , Cromatografía Liquida/métodos , Colágeno/metabolismo , Elastina/metabolismo , Espectrometría de Masas/métodos , Picratos/farmacología , Hidrolisados de Proteína/metabolismo , Subtilisinas/metabolismo , Ácidos Sulfónicos/farmacologíaRESUMEN
Tissue engineering represents a promising alternative for reconstructive surgical procedures especially for the repair of bone defects that do not regenerate spontaneously. The present study aimed to evaluate the effects of the elastin matrix (E24/50 and E96/37) incorporated with hydroxyapatite (HA) or morphogenetic protein (BMP) on the bone repair process in the distal metaphysis of rat femur. The groups were: control group (CG), hydrolyzed elastin matrix at 50°C/24h (E24/50), E24/50 + HA (E24/50/HA), E24/50 + BMP (E24/50/BMP), hydrolyzed elastin matrix at 37°C/96h (E96/37), E96/37 + HA (E96/37/HA), E96/37 + BMP (E96/37/BMP). Macroscopic and radiographic analyses showed longitudinal integrity of the femur in all groups without fractures or bone deformities. Microtomographically, all groups demonstrated partial closure by mineralized tissue except for the E96/37/HA group with hyperdense thin bridge formation interconnecting the edges of the ruptured cortical. Histologically, there was no complete cortical recovery in any group, but partial closure with trabecular bone. In defects filled with biomaterials, no chronic inflammatory response or foreign body type was observed. The mean volume of new bone formed was statistically significant higher in the E96/37/HA and E24/50 groups (71.28 ± 4.26 and 66.40 ± 3.69, respectively) than all the others. In the confocal analysis, it was observed that all groups presented new bone markings formed during the experimental period, being less evident in the CG group. Von Kossa staining revealed intense calcium deposits distributed in all groups. Qualitative analysis of collagen fibers under polarized light showed a predominance of red-orange birefringence in the newly regenerated bone with no difference between groups. It was concluded that the E24/50 and E96/37/HA groups promoted, with greater speed, the bone repair process in the distal metaphysis of rat femur.
Asunto(s)
Regeneración Ósea/efectos de los fármacos , Fémur/lesiones , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Proteínas Morfogenéticas Óseas/administración & dosificación , Modelos Animales de Enfermedad , Durapatita/administración & dosificación , Elastina/administración & dosificación , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Humanos , Masculino , Ratas , Factores de Tiempo , Microtomografía por Rayos XRESUMEN
BACKGROUND: Striae distensae, commonly known as stretch marks, are cutaneous lesions that accompany the hormonal upheavals of the major stages of life: puberty and pregnancy. Stretch marks occur in 90% of women, and they appear as red or purple lines that slowly fade to pale lines on the skin. There have been few studies regarding stretch mark origins, and new preventive and corrective treatments are needed. AIMS: The aim of this work was to understand the primary genes and proteins involved in the regulation of striae compared to normal skin and to identify the differentially expressed genes and biochemical aspects of SA and SR Importantly, this is the first published study to use a molecular high-throughput approach combined with in vivo evaluation. METHODS: In this study, we analyzed the molecular differences between skin with and without stretch marks (rubra [SR] and alba [SA]) of female volunteers using DNA microarray (Whole Human Genome Microarray Kit, 4×44 K, Agilent Technologies) analyses of cutaneous biopsies (2 mm) and in vivo confocal Raman spectroscopy of selected buttock regions, a technique recently introduced as a noninvasive skin evaluation method. RESULTS: We identified gene expression alterations related to ECM, cellular homeostasis, and hormones such as secretoglobulins. Spectral analyses of collagen, fibrillin, and glycosaminoglycans were conducted by Raman spectroscopy at different skin depths. The main differences observed when comparing skin with and without stretch marks were at depths between 75 and 95 µm, corresponding to the dermal-epidermal junction and dermis regions and showing differences between normal skin and stretched skin regarding collagen, collagen hydration, and elastin fibers. CONCLUSION: The results obtained by RNA and protein analyses are complementary and show that significant changes occur in the skin affected by stretch marks. These results suggest new strategies and opportunities to treat this skin disorder and for the development of new and eficiente cosmetic products.
Asunto(s)
Piel/patología , Estrías de Distensión/etiología , Adolescente , Adulto , Biopsia , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Voluntarios Sanos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Piel/química , Espectrometría Raman , Estrías de Distensión/patología , Adulto JovenRESUMEN
Elastin is one of the main components of the extracellular matrix; it provides resistance and elasticity to a variety of tissues and organs of the human body, besides participating in cellular signaling. On the other hand, elastin-derived peptides are synthetic biopolymers with a similar conformation and structure to elastin, but these possess the advantage of solubility in aqueous mediums. Due to their biological activities and physicochemical properties, elastin and related peptides may be applied as biomaterials to develop diverse biomedical devices, including scaffolds, hydrogels, and drug delivery systems for tissue engineering. Likewise, the combination of elastin with natural or synthetic polymers has demonstrated to improve the mechanical properties of biomedical products and drug delivery systems. Here we comprehensively describe the physicochemical properties and physiological functions of elastin. Moreover, we offer an overview of the use of elastin and its derivative polymers as biomaterials to develop scaffolds and hydrogels for tissue engineering. Finally, we discuss some perspectives on the employment of these biopolymers to fabricate new biomedical products.
Asunto(s)
Materiales Biocompatibles/química , Elastina/química , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Péptidos/química , Ingeniería de TejidosRESUMEN
BACKGROUND: Hyperoxia at resuscitation increases oxidative stress, and even brief exposure to high oxygen concentrations during stabilization may trigger organ injury with adverse long-term outcomes in premature infants. We studied the long-term effects of short-term perinatal oxygen exposure on cell cycle gene expression and lung growth in adult mice. METHODS: We randomized mice litters at birth to 21,40, or 100%O2 for 30 min and recovered in room air for 4 or 12 weeks. Cell cycle gene expression, protein analysis, and lung morphometry were assessed at 4 and 12 weeks. RESULTS: The principal component analysis demonstrated a high degree of correlation for cell cycle gene expression among the three oxygen groups. Lung elastin was significantly lower in the 100%O2 groups at 4 weeks. On lung morphometry, radial alveolar count, alveolar number, and septal count were similar. However, the mean linear intercept (MLI) and septal length significantly correlated among the oxygen groups. The MLI was markedly higher in the 100%O2 groups at 4 and 12 weeks of age, and the septal length was significantly lower in the 100%O2 groups at 12 weeks. CONCLUSION: Short-term exposure to high oxygen concentrations lead to subtle changes in lung development that may affect alveolarization. The changes are related explicitly to secondary crest formation that may result in alteration in lung elastin. Resuscitation with high oxygen concentrations may have a significant impact on lung development and long-term outcomes such as BPD in premature infants.
Asunto(s)
Animales , Femenino , Embarazo , Ratones , Oxígeno/efectos adversos , Hiperoxia/patología , Pulmón/patología , Elastina/metabolismo , Estrés Oxidativo , Pulmón/crecimiento & desarrolloRESUMEN
Purpose:To evaluate the effects of tadalafil (TD) in preventing histological alterations of the corpus cavernosum caused by isolated lesions of cavernous nerve (ILCN) and artery (ILCA) in rats.Methods:Fifty male Wistar rats were randomly assigned in five groups: G1: control; G2: bilateral ILCN; G3: bilateral ILCA; G4: ILCN+TD; G5: ILCA+TD. The cavernous bodies were submitted to histomorphometry, immunohistochemistry and biochemical analysis.Results:Nerve density was significantly higher in G2 and G4 compared to control (22.62±2.84 and 19.53±3.47 vs. 15.72±1.82; respectively, p<0.05). Smooth muscle density was significantly lower in G2 and G3 in comparison to G1 (12.87±1.90 and 18.93±1.51 vs. 21.78±1.81, respectively; p<0.05). A significant decrease in the sinusoidal lumen area was observed in G2 compared to controls (5.01±1.62 vs. 9.88±3.66, respectively; p<0.05) and the blood vessel density was increased in G2 and G3 (29.32±4.13 e 20.80±2.47 vs. 10.13±2.71, p<0.05). Collagen density was higher in G3 compared to G1 (93.76±15.81 vs. 64.59±19.25; p<0.05).Conclusions:Histomorphometric alterations caused by ILCN were more intense than those produced by vascular injury, but the collagen analyses showed more fibrosis in animals with ILCA. TD was effective in preventing the majority of the alterations induced by the periprostatic bundle injury.(AU)
Asunto(s)
Animales , Masculino , Ratas , Tadalafilo/administración & dosificación , Tadalafilo/uso terapéutico , Pene/lesiones , Disfunción Eréctil/prevención & control , Elastina , ColágenoRESUMEN
Lysyl oxidase like 3 (LOXL3) is a copper-dependent amine oxidase responsible for the crosslinking of collagen and elastin in the extracellular matrix. LOXL3 belongs to a family including other members: LOX, LOXL1, LOXL2, and LOXL4. Autosomal recessive mutations are rare and described in patients with Stickler syndrome, early-onset myopia and non-syndromic cleft palate. Along with an essential function in embryonic development, multiple biological functions have been attributed to LOXL3 in various pathologies related to amino oxidase activity. Additionally, various novel roles have been described for LOXL3, such as the oxidation of fibronectin in myotendinous junction formation, and of deacetylation and deacetylimination activities of STAT3 to control of inflammatory response. In tumors, three distinct roles were described: (1) LOXL3 interacts with SNAIL and contributes to proliferation and metastasis by inducing epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells; (2) LOXL3 is localized predominantly in the nucleus associated with invasion and poor gastric cancer prognosis; (3) LOXL3 interacts with proteins involved in DNA stability and mitosis completion, contributing to melanoma progression and sustained proliferation. Here we review the structure, function and activity of LOXL3 in normal and pathological conditions and discuss the potential of LOXL3 as a therapeutic target in various diseases.
Asunto(s)
Aminoácido Oxidorreductasas/genética , Artritis/genética , Fisura del Paladar/genética , Enfermedades del Tejido Conjuntivo/genética , Matriz Extracelular/genética , Pérdida Auditiva Sensorineural/genética , Miopía/genética , Neoplasias/genética , Desprendimiento de Retina/genética , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Artritis/enzimología , Artritis/patología , Fisura del Paladar/enzimología , Fisura del Paladar/patología , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Enfermedades del Tejido Conjuntivo/enzimología , Enfermedades del Tejido Conjuntivo/patología , Elastina/química , Elastina/genética , Elastina/metabolismo , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/química , Matriz Extracelular/enzimología , Regulación de la Expresión Génica , Pérdida Auditiva Sensorineural/enzimología , Pérdida Auditiva Sensorineural/patología , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Miopía/enzimología , Miopía/patología , Neoplasias/enzimología , Neoplasias/patología , Especificidad de Órganos , Desprendimiento de Retina/enzimología , Desprendimiento de Retina/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismoRESUMEN
BACKGROUND: Trichophyton rubrum is the main etiological agent of skin and nail infections worldwide. Because of its keratinolytic activity and anthropophilic nature, infection models based on the addition of protein substrates have been employed to assess transcriptional profiles and to elucidate aspects related to host-pathogen interactions. Chalcones are widespread compounds with pronounced activity against dermatophytes. The toxicity of trans-chalcone towards T. rubrum is not fully understood but seems to rely on diverse cellular targets. Within this context, a better understanding of the mode of action of trans-chalcone may help identify new strategies of antifungal therapy and reveal new chemotherapeutic targets. This work aimed to assess the transcriptional profile of T. rubrum grown on different protein sources (keratin or elastin) to mimic natural infection sites and exposed to trans-chalcone in order to elucidate the mechanisms underlying the antifungal activity of trans-chalcone. RESULTS: Overall, the use of different protein sources caused only slight differences in the transcriptional profile of T. rubrum. The main differences were the modulation of proteases and lipases in gene categories when T. rubrum was grown on keratin and elastin, respectively. In addition, some genes encoding heat shock proteins were up-regulated during the growth of T. rubrum on keratin. The transcriptional profile of T. rubrum exposed to trans-chalcone included four main categories: fatty acid and lipid metabolism, overall stress response, cell wall integrity pathway, and alternative energy metabolism. Consistently, T. rubrum Mapk was strongly activated during the first hours of trans-chalcone exposure. Noteworthy, trans-chalcone inhibited genes involved in keratin degradation. The results also showed effects of trans-chalcone on fatty acid synthesis and metabolic pathways involved in acetyl-CoA supply. CONCLUSION: Our results suggest that the mode of action of trans-chalcone is related to pronounced changes in fungal metabolism, including an imbalance between fatty acid synthesis and degradation that interferes with cell membrane and cell wall integrity. In addition, this compound exerts activity against important virulence factors. Taken together, trans-chalcone acts on targets related to dermatophyte physiology and the infection process.